¼ö¾÷°èȹ¼
À¯ÇÑü ÀÌ·Ð ¹×
ÀÀ¿ë
¼ö1,2,3 (C029)
´ã´ç±³¼ö:¼ÛÈ«¿± hy.song@coding.yonsei.ac.kr
x4861 http://coding.yonsei.ac.kr/~hysong
°ú¸ñ¼Ò°³ ¹× ¼ö¾÷³»¿ë: Finite Field¿¡ ´ëÇÑ ±âÃÊÀ̷аú ÀÀ¿ë¿¡ ´ëÇؼ °øºÎÇÑ´Ù.
º» °ú¸ñÀº ¼öÇÐÀû detailÀ» ´Ù·ê ¿¹Á¤À̸ç, Æò¼Ò ¼öÇÐÀû ¹è°æÁö½ÄÀ» ¹è°¡ÇÏ°í ½ÍÀº Àü±âÀüÀÚ°øÇаú Çкλý
¹× ´ëÇпø»ý¿¡°Ô µµ¿òÀÌ µÉ °ÍÀÌ´Ù.
Textbook 1: Galois Theory, by Emil Artin (Àüü
¾à
80 ÆäÀÌÁö)
Linear
Algebra (¾à 1ÁÖ)
Field
Theory (¾à 4ÁÖ)
Applications
(¾à 1ÁÖ)
Áß°£½ÃÇè
Textbook 2: Fields for Computer Scientists
and Engineers, by Robert J. McEliece, Chapters 5-11.
Chapter 5. Abstract Properties of
Finite Fields (¾à 1ÁÖ)
Chapter 6. Finite Fields exists and
are unique (¾à 1ÁÖ)
Chapter 7. Factoring Polynomials over
Finite Fields (¾à 1ÁÖ)
Chapter 8. Trace, Norm, and
Bit-Serial Multiplication (¾à 1ÁÖ)
Chapter 9. Linear Recurrences over
Finite Fields (¾à 1ÁÖ)
Chapter 10. The Theory of m-sequences
(¾à 1ÁÖ)
Chapter 11. Crosscorrelation
Properties of m-sequences (¾à 1ÁÖ)
±â¸»½ÃÇè
Æò°¡¹æ¹ý:
- Áß°£½ÃÇè --
30 Á¡ (textbook 1)
- ±â¸»½ÃÇè --
30 Á¡ (textbook 2)
- ¾à 8ȸ Homework Sets -- total 40 Á¡
- »ó´ëÆò°¡: A=30-50%,
B=30-50%, ³ª¸ÓÁö=0-40%.
±âŸ»çÇ×:
l
2±ÇÀÇ textbookÀº
º¹»ç/Á¦º»ÇÏ¿©
°ø±Þ
l
¹«´Ü°á¼® 1ȸ=FÇÐÁ¡
l
Áö°¢ 2ȸ = ¹«´Ü°á¼® 1ȸ
l
HWÁ¦Ãâ±âÇÑ=1ÁÖÀÏ, ¼ö¾÷½Ã°£ ½ÃÀÛ½Ã