¼ö¾÷°èȹ¼­

À¯ÇÑü ÀÌ·Ð ¹× ÀÀ¿ë

¼ö1,2,3 (C029)

´ã´ç±³¼ö:¼ÛÈ«¿± hy.song@coding.yonsei.ac.kr   x4861   http://coding.yonsei.ac.kr/~hysong    

°ú¸ñ¼Ò°³ ¹× ¼ö¾÷³»¿ë: Finite Field¿¡ ´ëÇÑ ±âÃÊÀ̷аú ÀÀ¿ë¿¡ ´ëÇؼ­ °øºÎÇÑ´Ù.
º» °ú¸ñÀº ¼öÇÐÀû detailÀ» ´Ù·ê ¿¹Á¤À̸ç, Æò¼Ò ¼öÇÐÀû ¹è°æÁö½ÄÀ» ¹è°¡ÇÏ°í ½ÍÀº Àü±âÀüÀÚ°øÇаú Çкλý ¹× ´ëÇпø»ý¿¡°Ô µµ¿òÀÌ µÉ °ÍÀÌ´Ù.

Textbook 1: Galois Theory, by Emil Artin (Àüü ¾à 80 ÆäÀÌÁö)

Linear Algebra (¾à 1ÁÖ)

Field Theory (¾à 4ÁÖ)

Applications (¾à 1ÁÖ)

Áß°£½ÃÇè

Textbook 2:  Fields for Computer Scientists and Engineers, by Robert J. McEliece, Chapters 5-11.

Chapter 5. Abstract Properties of Finite Fields (¾à 1ÁÖ)

Chapter 6. Finite Fields exists and are unique (¾à 1ÁÖ)

Chapter 7. Factoring Polynomials over Finite Fields  (¾à 1ÁÖ)

Chapter 8. Trace, Norm, and Bit-Serial Multiplication (¾à 1ÁÖ)

Chapter 9. Linear Recurrences over Finite Fields (¾à 1ÁÖ)

Chapter 10. The Theory of m-sequences (¾à 1ÁÖ)

Chapter 11.  Crosscorrelation Properties of m-sequences (¾à 1ÁÖ)

±â¸»½ÃÇè

Æò°¡¹æ¹ý:

 

±âŸ»çÇ×:

l       2±ÇÀÇ textbookÀº º¹»ç/Á¦º»ÇÏ¿© °ø±Þ

l       ¹«´Ü°á¼® 1ȸ=FÇÐÁ¡

l       Áö°¢ 2ȸ = ¹«´Ü°á¼® 1ȸ

l       HWÁ¦Ãâ±âÇÑ=1ÁÖÀÏ, ¼ö¾÷½Ã°£ ½ÃÀÛ½Ã