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An n x m sonar sequence is a subset of the n x m grid with exactly one point in each column, 
such that the (r~) vectors determined by them are all distinct. We show that for fixed n the 

maximal m for which a sonar sequence exists satisfies n - Cn 11/20 < m < n + 4n 2/3 for all n and 
m > n + c log n log log n for infinitely many n. 

Another problem concerns the maximal number D of points that can be selected from the n x m 
grid so that all the (D) vectors have slopes. We prove n 1/2 << D << n4/5 

An n • m sonar  sequence [3] is an a r ray  of do t s  and  b lanks  having n rows and  
exac t ly  one do t  in each of i ts  m columns,  sub jec t  to  the  requi rement  t ha t  d is t inc t  
pa i rs  of do t s  de t e rmine  d i s t inc t  vectors.  Any  two such vectors  mus t  differ in slope or 
in length. Wheneve r  p is pr ime,  an example  of a p x p sonar  sequence a l ,  a 2 , . . . ,  ap 

is given by  le t t ing  ai - i 2 ( m o d p ) ,  and  choosing 1 _< ai <_ p, so t ha t  ai gives the  row 

coord ina te  of the  do t  in the  ith column.  
Recal l ing the  size of gaps  between pr imes  this  example  shows t ha t  in t ry ing  to 

maximize  m,  it  is a lways poss ible  to  achieve m > n - n 11/20. By Theorem 4, which 

uses the  m e t h o d  of [2], an  uppe r  b o u n d  for large n is m < n + 4n 2/3. Theorem 5 
uses a new resul t  in [5] to  say t ha t  for infini tely many  n, there  exists  an  n • m sonar  
sequence wi th  m > n + c log n log log log n. 

Now consider  an  n • n a r r ay  having D dots.  Rober t  Peile ra ised the  quest ion 
of max imiz ing  D when the  vectors  de t e rmined  by different pai rs  of do t s  are  required 

to  differ in slope. Theorem 1 tells  us t ha t  D < 5n 4/5 for large n. Theorem 2 by 

a lgebra ic  cons t ruc t ion  shows t ha t  D > (1/2  + o(1 ) )n  1/2. In cont ras t ,  r a n d o m  choice 

in Theorem 3 guaran tees  D > ~n  1/2 for large n. 
For  compar i son  let K be  the  number  of dots  in n • n a r ray  in which the  vectors  

de t e rmined  by  different pai rs  of do t s  differ in length.  As proved in [4] an  uppe r  
b o u n d  for K is 

K < cn ( logn )  -1 /4 ,  
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and a lower bound is 

K > n (2-c)/3 

for any E > 0 and sufficiently large n. 

Theorem 1. With distinct slopes, an upper  bound for the number  of dots is 0(n4/5). 

Proof.  Let us consider a set of D points in n x n array such tha t  all the slopes are 
distinct. Choose an integer m and write 

A d={( id , jd ) :  O<_i, j < _ m - 1 } ,  

a set of m 2 points. We shall use d as a variable. We cover the n x n square by 
t ranslated copies of A d. Since d 2 copies cover a square of size dm x dm, then 

d2(1-'t-d-~m) 2 < 4n21ra 2 

copies cover the whole square if dm < n, tha t  is, 

(1) d < [n/m]. 

If  t denotes the number  of copies used and Wl, �9 �9 wt are the number  of points in 
each, then we have ~[: wi = D, hence 

( 2 )  D ( D - t )  1 D 2 m  2 
P =  Z i >_ 2t >-Dll(4t) > 16 n 2 

if t <_ D/2, tha t  is, if 

(2) m 2 > 8n2/D. 

Each of the P pairs determines a Vector whose coordinates are divisible by d. Divide 
each vector by d; we get a vector with coordinates < m, al together m 2 possibilities, 
and no two such vectors coincide, because tha t  would mean two parallel vectors in 
the original system. 

D2m 2 
We have found ~ vectors for every d, and d can run up to In~m], so we have 

D2m 2 

16n 2 
tha t  is, 

(3) D2[n/m] < 16n 2. 

To optimize this, we select the maximal  m allowed by (2): 

for large n. (3) yields D 5/2 <_ 48n 2, hence 

D _< 5n 4/5. | 
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Theorem 2. It is possible to select (1/2 + o(1))n 1/2 grid points from an n x n grid 
so that all slopes determined by pairs of  points are distinct. 

Proof. Let the grid consist of the integer points (x ,y) ,  0 <_ x, y < n. Let q be the 
largest prime power so that  m :-- q2 § q § 1 < n, and let p be the largest prime less 
than n. The prime number theorem guarantees that  q ,~ v ~ ,  p ~,- n. By a classical 
result of Singer [1], there exists a perfect difference set A = ( a l , a 2 , . . . , a q + l }  of 
residues modulo m, i.e., all the q2 _{_ q differences a i - aj,  i ~ j ,  are distinct modulo 
m. Of course, if we translate A by forming A + d = (a i + d (rood m)la i E A) ,  
then A § d is also a perfect difference set. As d runs from 1 to m the average 
of [{A + d} N [0,p/2)l is exactly (p + 1)(q + 1)/2m. Therefore for some d at least 
p(q + 1)/2m of the elements of A + d lie in the interval [0,p/2). Call the set of these 

elements B = {b l , . . . , b t} .  Thus, 0 _< bl < "'" < bt < p/2  where t _> ~ .  Since 
all bi - bj, i ~ j ,  are distinct (rood m), then all sums bi + bj, i <_ j ,  are distinct 
(mod m), and consequently distinct as integers. Furthermore, since all bi < p/2  
then all sums bi + bj, i <_ j ,  are distinct (mod p). Let b 2 - c i (rood p), 1 < i < t. 

Thus, b/2 = ci + kip for integers ki, where 0 _< c/<: p. 
Now, for our set S of grid points we take 

S = {(bi, ci)ll  <_ i <_ t}. 

(Essentially, we have wrapped the parabola y = x 2 around a p x p torus and selected 
t points (bi, b 2) on it.) To check that  S has the distinct slope property, we calculate 
for i < j ,  

- c j  _ - k i p -  - k p) 

bi - bj bi - bj 

- b i - b-----~ P b i - bj 

=- bi + bj (rood p) 

since p is prime and bi - bj ~ 0 (mod p). Since by construction all the bi § bj, 

i < j ,  are distinct, the S has the distinct slope property. Finally, since t > Pq- (~  = 
- -  zTt~ 

(1/2 § o(1))q = (1/2 § o(1))vfn, then we are done. | 

It  may be worth noting, in connection with Theorem 2, that  if there are infinitely 
many primes q such that  q" § q § 1 is a prime (everybody believes this to be so) then 
there are infinitely many n for which it is possible to select (1 + o(1))n 1/2 points of 
an n x n grid so that  different pairs of points determine different slopes. 

It  would be interesting to know if we could actually get sets of size n 1/2+e for a 
fixed e > 0. 

Theorem 3. For large n suppose an n x n array has D dots with all slopes distinct. 
I f  there are no points at which a new dot can be placed without causing a repeated 
slope, then D > ~n 1/2. 

Proof. We will show that  if D < 3nl/2 then some of the n 2 points will remain not 
excluded. 
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Each of the (D) distinct slopes is determined by a coprime pair of integers {a, i}, 
a i - a  - i  

, , A line having one of these and we may suppose a < i, giving slopes i a '  i a 
n 

slopes, going through one of the D dots, will hit at most - other points of the 

n x n array. Clearly smaller values of i produce more hits. For each i the number 
of coprime pairs with a <_ i is r therefore the number of hits per dot will be less 

than x n provided we choose x large enough to make x ~ i = 1 4 r  > (D). ~ i = 1 4 "  r T 
To choose x we rely on the fact from [6] that  x ]a0x 2 ~ i = 1  r > for large x. 

Accordingly, l e t x = [ ( ~ ) l / 2 D ] , a n d o b s e r v e t h a t  

x 1 2 5 2  D2 ( D )  
Z 4 r  = T  > " 
i=1  

3nl/2 ~ D ,  and x we obtain: Finally, using D < ~ , x < ~-~i=1 ~ < x, 

D . 4 n ~ - ~ r  ) < 3 1/2 4 n . 1 3 . ~ n l / 2  117 
i 5 n " ~ = 125 n2' 

i= l  

Thus, counting dots plus hits, the total  number of points excluded is less than 
~n 1/2 + ~ n  2, which is less than n 2 for large n. | 

Theorem 4. I[ an n x m sonar sequence exists then m < n 4- 5n 2/3. 

Proof. Consider an n x m sonar sequence. The array of dots and blanks has n rows 
and m columns, with one dot per column. 

Let copies of an R x R window be translated so that  each dot or blank sits in R 2 
windows. Thus the number of windows used will be W = (n + R - 1)(ra + R - 1). 

R2m 
The average number of dots per window is A = -W-" 

If the ith window has wi dots, then the number of occurrences of a pair of dots 
in a window is 

w 

2 
i---1 

Since A is the average, 

W 
W A ( A  - 1) < Z wi(wi - 1) 

2 - 2 
i= l  

Because pairs of dots determine distinct vectors, we can get an upper bound on 
the actual number of occurrences of a pair of dots in a window by counting all the 
possible pat terns of two dots in a window, as follows. There are R 2 places to put 
the first dot, then, allowing only one per column, there are R(R  - 1) places to put  
the second dot. That  counts each twice, so the number of possible pat terns of two 

dots in a window is R 2R (R  - 1) 
2 
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Pu t t ing  these restrictions together  we have: 

w R 2 ( R  2 - R)  W A ( A  - 1) < V "  - 1) < 
2 - Z.~ 2 - 2 ' 

i=1 

m ( A - 1 )  < R 2 - R ,  

m R 2 m  < R 2 + m - R ,  
W 

W W W 
m < - - + R 2  

- m R m  

Expanding  this we choose the integer R such tha t  n 2/3 <_ R < n 2/3 + 1, so 
tha t  W < n m  + n 2 / 3 m  + n 5/3 + n 4/3, and R 2 > n 4/3. From these we can see tha t  

nh/3Tn 4/3 m m ril l3 m < n + n  2 / 3 +  ~ + ~ + ~ +  + 1 .  Finally b e c a u s e n  < m < 2n 

we have m < n + 4n 2/3 + 4n 1/3 + 1. Thus the proof is complete tha t  for large n, 
m < n + 5n 2/3. | 

Comment .  More careful computa t ion  shows tha t  actually m < n + 3n2/3 + 2nl/3 + 9 
for all n. 

Theo rem 5. For some constant  c > 0 there are in f ini te ly  m a n y  integers n such that  
an n x m sonar sequence exists with  n > n + c log n log log log n. 

Proof.  In [5] S. W. Graham and C. J. Ringrose prove that ,  for infinitely many 
primes p, the least quadrat ic  non-residue between 1 and p is larger than  L -- 
c log p log log log p. 

If  p is any odd prime, a p • p sonar sequence al ,  a 2 , . . . ,  ap can be obtained 
by letting ai - b/2 (mod p) where b ~ 0 (mod p), and choosing 1 < a i < p. To 
verify tha t  distinct pairs of dots determine distinct vectors notice modulo p tha t  
ai+k - ai -- aj+k -- aj  only if 2ik =- 2 j k ,  which happens only when k = 0 or i - j .  

When  p i s such  tha t  all the numbers  between 1 and L are quadrat ic  residues, and 
b is a non-residue, we find L < ai <_ p for each i from 1 to p. Thus  with m -- p, and 
n < p - L, this will be an n x m sonar sequence with m > n + c log n log log log n. | 

Open Prob lem Does an n • n array with n dots exist for every n, in which distinct 
pairs of dots determine vectors which differ in slope or in length? 
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