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Low-Density Parity-Check Codes* 
R. G. GALLAGER? 

Summary-A low-density parity-check code is a code specified 
by a parity-check matrix with the following properties : each column 
contains a small fixed numberj > 3 of I’s and each row contains 
a small fixed number k > j of 1’s. The typical minimum distance of 
these codes increases linearly with block length for a fixed rate and 
fixed j. When used with maximum likelihood decoding on a snfh- 
ciently quiet binary-input symmetric channel, the typical prob- 
ability of decoding error decreases exponentially with block length 
for a fixed rate and fixedj. 

A simple but nonoptimum decoding scheme operating directly 
from the channel a posteriori probabilities is described. Both the 
equipment complexity and the data-handling capacity in bits per 
second of this decoder increase approximately linearly with block 
length. 

equations. We call the set of digits contained in a parity- 
check equation a parity-check set. For example, the 
first parity-check set in Fig. 1 is the set of digits (1,2,3,5). 

The use of parity-check codes makes coding (as dis- 
tinguished from decoding) relatively simple to implement. 
Also, as Elias [3] has shown, if a typical parity-check 
code of long block length is used on a binary symmetric 
channel, and if the code rate is between critical rate and 
channel capacity, then the probability of decoding error 
will be almost as small as that for the best possible code 
of that rate and block length. 

Forj > 3 and a sufficiently low rate, the probability of error using 
this decoder on a binary symmetric channel is shown to decrease 
at least exponentially with a root of the block length. Some experi- 
mental results show that the actual probability of decoding error is 
much smaller than this theoretical bound. 

Unfortunately, the decoding of parity-check codes is 
not inherently simple to implement, and thus we must 
look for special classes of parity-check codes, such as 
described below, for which reasonable decoding procedures 
exist. 

CODING FOR DIGITAL DATA TRANSMISSION LOW-DENSITY PARITY-CHECK CODES 

c 

ODING for error correction is one of the many 
tools available for achieving reliable data trans- 
mission in communication systems. For a wide 

variety of channels, the Noisy Channel Coding Theorem 
[l, 61 of Information Theory proves that if properly coded 
information is transmitted at a rate below channel 
capacity, then the probability of decoding error can be 
made to approach zero exponentially with the code 
length. The theorem does not, however, relate the code 
length to the computation time or the equipment costs 
necessary to achieve this low error probability. This 
paper describes a class of coding and decoding schemes 
that can utilize the long block lengths necessary for low 
error probability without requiring excessive equipment 
or computation. 

Low-density parity-check codes are codes specified by 
a matrix containing mostly O’s and only a small number 
of 1’s. In particular, an (n, j, k) low-density code is a code 
of block length n with a matrix like that of Fig. 2 where 
each column contains a small fixed number, j, of l’s and 
each row contains a small fixed number, /c, of 1’s. Note 
that this type of matrix does not have the check digits 
appearing in diagonal form as in Fig. 1. However, for 

INFORMATION ;$lgICI; 
DIGITS Y 

/L-7- 
x1 x2 x3 x4 x5 X6 Xl 

The codes to be discussed here are special examples of 
parity-check codes.’ The code words of a parity-check 
code are formed by combining a block of binary informa- 
tion digits with a block of check digits. Each check digit 
is the modulo 2 sum’ of a prespecified set of information 
digits. These formation rules for the check digits can be 
conveniently represented by a parity-check matrix, as in 
Fig. 1. This matrix represents a set of linear homogeneous 
modulo 2 equations called parity-check equations, and 
the set of code words is the set of solutions of these 

Fig. l-Example of parity-check matrix. 
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11110000000000 
00001111000000 
00000000111100 
00000000000011 
00000000000000 

10001000100010 
01000100010000 
00100010000001 
00010000001000 
00000001000100 

000000 
000000 
000000 
110000 
001111 

000000 
001000 
000100 
100010 
010001 

10000100000100 
01000010001000 
00100001000010 
00010000100001 
00001000010000 

000100 
010000 
000010 
001000 
100001 

2 The modulo 2 sum is 1 if the ordinary sum is odd and 0 if the 
ordinary sum is even. Fig. 2-Example of a low-density code matrix; N = 20, j = 3, k = 4. 
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coding purposes, the equations represented by these 
matrices can always be solved to give the check digits as 
explicit sums of information digits. 

These codes are not optimum in the somewhat artificial 
sense of minimizing probability of decoding error for a 
given block length, and it can be shown that the maximum 
rate at which these codes can be used is bounded below 
channel capacity. However, a very simple decoding 
scheme exists for low-density codes, and this compensates 
for their lack of opt’imality. 

The analysis of a low-density code of long block length 
is difficult because of the immense number of code words 
involved. It is simpler to analyze a whole ensemble of 
such codes because the st,atist,ics of an ensemble permit 
one to average over quantities that are not tractable in 
individual codes. From the ensemble behavior, one can 
make statistical statements about the properties of the 
member codes. Furthermore, one can with high probability 
find a code with these properties by random selection from 
the ensemble. 

In order to define an ensemble of (n, j, k) low-density 
codes, consider Fig. 2 again. Xote that the matrix is 
divided into j submatrices, each containing a single 1 in 
each column. The first of these submatrices contains all 
its l’s in descending order; i.e., the i’th row contains l’s 
in columns (i - 1)/c + 1 to i7c. The other submatrices 
are merely column permutations of the first. We define an 
ensemble of (72, j, 1:) codes as the ensemble resulting from 
random permutation of the columns of each of the bottom 
j - 1 submatrices of a matrix such as Pig. 2, with equal 
probability assigned to each permutation.3 There are two 
interesting results that can be proven using this ensemble, 
the first concerning the minimum distance of the member 
codes, and the second concerning the probability of 
decoding error. 

The minimum distance of a code is the number of 
positions in which the two nearest code words differ. 
Over the ensemble, the minimum distance of a member 
code is a random variable, and it can be shown [4] that 
the distribution function of this random variable can be 
overbounded by a function such as sketched in Fig. 3. 
As the block length increases, for fixed j 2 3 and 1; > j, 
this function approaches a unit step at a fixed fraction 
8ik of the block length. Thus, for large n, practically all 
the codes in the ensemble have a minimum distance of at 
least nsj,. In Fig. 4 this ratio of typical minimum distance 
to block length is compared to that for a parity-check 
code chosen at random, i.e., with a matrix filled in with 
equiprobable independent binary digits. It should be 
noted that for all the specific nonrandom procedures 
known for constructing codes, the ratio of minimum 
distance to block length appears to approach 0 with in- 
creasing block length. 

3 There is no guarantee that all the rows in such matrices will 
be linearly independent, and, in fact, all the matrices to be discussed 
here contain at least j-1 dependent rows. This simply means that 
the codes have a slightly higher information rate than the matrix 
indicates. 

The probability of error using maximum likelihood 
decoding for low-density codes clearly depends upon the 
particular channel on which the code is being used. The 
results are particularly simple for the case of the BSC, 
or binary symmetric channel, which is a binary-input, 
binary-output, memoryless channel with a fixed prob- 
ability of transition from either input to the opposite 
output. Here it can be shown [4] that over a reasonable 
range of channel transition probabilities, the low-density 
code has a probability of decoding error that decreases 
exponentially with block length and that the exponent 
is the same as that for the optimum code of slightly higher 
rate as given in Fig. 5. 

Fig. 3-Sketch of bound to minimum distance distribution function. 

Rate h 6 

0.167 0.255 0.263 

0.2 0.25 0.210 0.122 0.241 0.214 
0.333 0.129 0.173 

0.4 0.5 0.044 0.023 0.145 0.11 

Fig. 4-Comparison of Sjk, the ratio of typical minimum distance 
to block length for an (n, j, k) code, to 6, the same ratio for an 
ordinary parity-check code of the same rate. 

/c 
RATE FOR EQUIVALENT 

Rate OPTIMULM CODE 

3 6 0.5 0.555 
3 i 0.4 0.43 

:: 4 0.333 0.25 0.343 0.266 

Fig. ~-LOSS of rate associated with low-density codes. 

Although this result for the BSC shows how closely 
low-density codes approach the optimum, the codes are 
not designed primarily for use on this channel. The 
BSC is an approximation to physical channels only when 
there is a receiver that makes decisions on the incoming 
signal on a bit-to-bit basis. Since t,he decoding procedure 
to be described later can actually use the channel a 
posteriori probabilities, and since a bit-by-bit decision 
throws away available information, we are actually 
int#erested in the probability of decoding error of a binary- 
input, continuous-output channel. If the noise affects 
the input symbols symmetrically, then this probability 
can again be bounded by an exponentially decreasing 
fun&ion of the block length, but the exponent is a rather 
complicated function of t.he channel and code. It is 
expected that the same type of result holds for a wide 
class of channels with memory, but no analytical results 
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have yet been derived. For channels with memory, it is 
clearly advisable, however, to modify the ensemble some- 
what, particularly by permuting the first submatrix and 
possibly by changing the probability measure on the 
permutations. 

DECODING 

Introduction 

Two decoding schemes will be described here that appear 
to achieve a reasonable balance between complexity and 
probability of decoding error. The first is particularly 
simple but is applicable only to the BSC at rates far 
below channel capacity. The second scheme, which de- 
codes directly from the a posteriori probabilities at the 
channel output, is more promising but can be understood 
more easily after the first scheme is described. 

In the first decoding scheme, the decoder computes all 
the parity checks and then changes any digit that is 
contained in more than some fixed number of unsatisfied 
parity-check equations. Using these new values, the parity 
checks are recomputed, and the process is repeated until 
the parity checks are all satisfied. 

If the parity-check sets are small, this decoding pro- 
cedure is reasonable, since most of the parity-check sets 
will contain either one transmission error or no trans- 
mission errors. Thus when most of the parity-check 
equations checking on a digit are unsatisfied, there is a 
strong indication that that digit is in error. For example, 
suppose a transmission error occurred in the first digit 
of the code in Fig. 2. Then parity checks 1, 6, and 11 would 
be violated, and all three parity-check equations checking 
digit 1 would be violated. On the other hand, at most, 
one of the three equations checking on any other digit 
in the block would be violated. 

To see how an arbitrary digit d can be corrected even 
if its parity-check sets contain more than one transmission 
error, consider the tree structure in Fig. 6. Digit d is 
represented by the node at the base of the tree, and each 
line rising from this node represents one of the parity- 
check sets containing digit d. The other digits in these 
parity-check sets are represented by the nodes on the 
first tier of the tree. The lines rising from tier 1 to tier 2 
of the tree represent the other parity-check sets containing 
the digits on tier 1, and the nodes on tier 2 represent the 
other digits in those parity-check sets. Notice that if 
such a tree is extended to many tiers, the same digit will 
appear in more than one place, but this will be discussed. 

Assume now that both digit d and several of the digits 

Fig. 6-Parity-check set tree. 

in the first tier are transmission errors. Then on the first 
decoding attempt, the error-free digits in the second tier 
and their parity-check constraints will allow correction 
of the errors in the first tier. This in turn will allow correc- 
tion of digit d on the second decoding attempt. Thus 
digits and parity-check equations can aid in decoding a 
digit seemingly unconnected with them. The probabilistic 
decoding scheme to be described next utilizes these extra 
digits and extra parity-check equations more system- 
atically. 

Probabilistic Decoding 

Assume that the code words from an (n, j, k) code are 
used with equal probability on an arbitrary binary-input 
channel. For any digit d, using the notation of Fig. 6, 
an iteration process will be derived that on the m’th 
iteration computes the probability that the transmitted 
digit in position d is a 1 conditional on the received symbols 
out to and including the m’th tier. For the first iteration, 
we can consider digit d and the digits in the first tier to 
form a subcode in which all sets of these digits that satisfy 
the j parity-check equations in the tree have equal 
probability of transmission.4 

Consider the ensemble of events in which the trans- 
mitted digits in the positions of d and the first tier are 
independent equiprobable binary digits, and the prob- 
abilities of the received symbols in these positions are 
determined by the channel transition probabilities Pz(y). 
In this ensemble the probability of any event conditional 
on the event that the transmitted digits satisfy the j 
parity-check equations is the same as the probability 
of an event in the subcode described above. Thus, within 
this ensemble we want to find the probability that the 
transmitted digit in position d is a 1 conditional on the 
set of received symbols {y} and on the event X that the 
transmitted digits satisfy the j parity-check equations 
on digit d. We write this as 

Using this ensemble and notation, we can prove the 
following theorem: 

Theorem I: Let P, be the probability that the trans- 
mitted digit in position d is a 1 conc$tional on the received 
digit in position d, and let Pi, be the same probability 
for the l’th digit in the i’th parity-check set of the first 
tier in Fig. 6. Let the digits be statistically independent 
of each other, and let X be the event that the transmitted 
digits satisfy the j parity-check constraints on digit d. 
Then 

4 An exception to this statement occurs if some linear combi- 
nation of those parity-check equations not containing d produces a 
parity-check set containing only digits in the first tier. This will be 
discussed later but is not a serious restriction. 
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In order to prove this theorem, we need the following 
lemma: 

Lemma 1: Consider a sequence of m independent binary 
digits in which the l’th digit is 1 with probability P,. 
Then the probability that an even number of digits are 
1 is 

1 + fi (1 - 2Pd 1=1 
2 

Proof of Lemma: Consider the fmlction 

rJzn=I (1 - I’, + P,O. 

Observe that if this is expanded into a polynomial in t, 
the coeficient of ti is the probability of il’s. The function 
rpLLl (1 - r2 - PA is identical except that all the odd 
powers of t are negative. Adding these two functions, all 
the even powers of t are doubled, and the odd terms 
cancel out. Finally, letting t = 1 and dividing by 2, the 
result is the probability of an even number of ones. But 

Q (1 - PI + PL) + Q (1 - P, - P,) 
____ .-~__~ 

1 + fi (1 - 2P,) 
1==1 = 

2 , 

thus proving the lemma. 
Proof of Theorem: By the definition of conditional 

probabilities, 

Given that zd = 0, a parity check on d is satisfied if the 
other (k - 1) positions in the parity-check set contain an 
even number of 1’s. Since all digits in the ensemble are 
statistically independent, the probability that all j parity 
checks are satisfied is the product of the probabilities of the 
individual checks being satisfied. Using Lemma 1 this is 

I 

k-l 
1 + n (1 - 2P,,) 

Pr (X 1 x,1 = 0, IYI) = lj 
I=1 

2 1. (3) 

Similarly, 
b-l 

1 - n (1 - 2Pi,) 
Pr (S 1 x,1 = 1=1 

2 (4) 

Substituting (3) and (4) into (2) we get the statement 
of the theorem; Q.E.D. 

Judging from the complexity of this result, it would 
appear difficult to compute the probability that the 
transmitted digit in position d is a 1 conditional on the 
received digits in two or more tiers of the tree in Fig. 6. 
Fortunately, however, the many-tier case can be solved 
from the l-tier case by a simple iterative technique. 

INFORMATION THEORY January 

Consider first the 2-tier case. We can use Theorem 1 
to find the probability that each of the transmitted digits 
in the first tier of the tree is a 1 conditional on the received 
digits in the second tier. The only modification of the 
theorem is that the first product is taken over only j - 1 
terms, since the parity-check set containing digit d is 
not included. Now these probabilities can be used in (1) 
to find the probability that the transmitted digit in 
position d is 1. The validity of the procedure follows 
immediately from the independence of the new values of 
Pi, in the ensemble used in Theorem 1. By induction, 
this iteration process can be used to find the probability 
that the transmitted digit d is 1 given any number of tiers 
of distinct digits in the tree. 

The general decoding procedure for the entire code 
may now be stated. For each digit and each combination 
of j - 1 parity-check sets containing that digit, use (1) 
to calculate the probability of a transmitted 1 conditional 
on the received symbols in the j - 1 parity-check sets. 
Thus there are j different probabilities associated with each 
digit, each one omitting 1 parity-check set. Next, these 
probabilities are used in (1) to compute a second-order 
set of probabilities. The probability to be associated with 
one digit in the computation of another digit d is the 
probability found in the first iteration, omitting the 
parity-check set containing digit d. If the decoding is 
successful, then the probabilities associated with each 
digit approach 0 or 1 (depending on the transmitted 
digit) as the number of iterations is increased. This 
procedure is only valid for as many iterations as meet the 
independence assumption in Theorem I. This assumption 
breaks down when the tree closes upon itself. Since each 
tier of the tree coutains (j - 1)(/c - 1) more nodes than 
the previous tier, the independence assumption must 
break down while m is quite small for any code of reason- 
able block length. This lack of independence can be 
ignored, however, on the reasonable assumption that the 
dependencies have a relatively minor effect and tend to 
cancel each other out somewhat. Also, even if dependencies 
occur in the m’th iteration, the first m - 1 iterations have 
reduced the equivocation in each digit. Then we can 
consider the probabilities after the m - I iterations to 
bc a 112’~ received sequence that should be easier to decode 
than the original received sequence. 

The most significant feature of this decoding scheme 
is that the computation per digit per iteration is inde- 
pendent of block length. Furthermore it can be shown 
that the average number of iterations required to decode 
is bounded by a quantity proportional to the log of the 
log of the block length. 

For the actual computation of the probabilities in 
Theorem 1, it appears to be more convenient to USC (1) in 
terms of log-likelihood ratios. Let 
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where a is the sign and p the magnitude of the log-likeli- 
hood ratio. After some manipulation, (1) becomes 

where 

f(P) = In *. 

The calculat’ion of the log-likelihood ratios in (6) for 
each digit can be performed either serially in time or by 
parallel computations. The serial computation can be 
programmed for a general-purpose computer, and the 
experimental data at the end of this paper was obtained 
in this manner. For fast decoding, parallel computing is 
more promising, and Fig. 7 sketches a simplified block 
diagram showing how this can be done. 

” DIOITS 

n(l-R) 
PARITY CHECKS 

DECODED 
OUTPUT 

Fig. 7-Decoding apparatus. 

If the input to the decoder is in the form of a log- 
likelihood ratio, the first row of boxes in Fig. 7 computes 
f(p) for each digit, corresponding to the right-most 
operation in (6). The output from the adders on the next 
row is ~ZI: f(Pi2), corresponding to the two right-most 
operations in (6). Likewise, successive rows in Fig. 7 
correspond to operations in (6) working to the left. 
Clearly, Fig. 7 omits some details, such as operations on the 
signs of the log-likelihood ratios and the association of j 
different, log-likelihood ratios with each digit, but these 
create no essential difficulty. 

We see from Fig. 7 that a parallel computer can be 
simply instrumented requiring principally a number 
proportional to n of analogue adders, modulo 2 adders, 
amplifiers, and nonlinear circuits to approximate the 
function f(P). How closely this function must be approxi- 
mated is a subject for further study, but there are indica- 
tions that it is not critical.5 

6 Some recent Lxperimental work indicates that if computation 
is strictly digital, 6 significant bits are sufficient to represent j(p) 
without appreciable effect on the probability of decoding error. 

Probability of Error Using Probabilistic Decoding 

A mathematical analysis of probabilistic decoding is 
difficult, but a very weak bound on the probability of error 
can be derived easily. 

Assume a BSC with crossover probability pO and 
assume first an (n, j, k) code with i = 3 parity-check sets 
containing each digit. Consider a parity-check set tree, 
as in Fig. 6, containing m independent tiers, but let the 
tiers be numbered from top to bottom so that the upper- 
most tier is the 0 tier and the digit to be decoded is tier m. 

Modify the decoding procedure as follows: if both 
parity checks corresponding to the branches rising from 
a digit in the first tier are unsatisfied, change the digit; 
using these changed digits in the first tier, perform the 
same operation on the second tier, and continue this 
procedure down to digit d. 

The probability of decoding error for digit d after this 
procedure is an upper bound to that resulting from making 
a decision after the m’th iteration of the probabilistic 
decoding scheme. Both procedures base their decision only 
on the received symbols in the m-tier tree, but the 
probabilistic scheme always makes the most likely de- 
cision from this information. 

We now determine the probability that a digit in the 
first tier is in error after applying the modified decoding 
procedure described above. If the digit is received in 
error (an event of probability p,) then a parity check 
constraining that digit will be unsatisfied if, and only if, 
an even number (including zero) of errors occur among 
the other lc - 1 digits in the parity-check set. From 
Lemma 1, the probability of an even number of errors 
among k - 1 digits is 

1 + (1 - 2pO)k-1* 
2 (7) 

Since an error will be corrected only if both parity checks 
rising from the digit are unsatisfied, the following expres- 
sion gives the probability that a digit in the first tier is 
received in error and then corrected. 

po 
[ 

1 + (1 - 2p(J-l 2 
2 I. (8) 

By the same reasoning, (9) gives the probability that a 
digit in the first tier is received correctly but then changed 
because of unsatisfied parity checks. 

(1 - PO) 
[ 

1 - (1 - 2pJ-l 2 
2 I* (9) 

Combining (8) and (9), the probability of error of a digit 
in the first tier after applying this decoding process is 

C 1 + (1 - 2p$-l 2 
PI = PO - po 2 1 

+ (1 - PO) [ 
1 - (1 - 2p$-’ 2 

2 I- (10) 
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By induction it easily follows that if pi is the probability 
of error after processing of a digit in the ith tier, then 

January 

This same argument can be applied to codes with more 
than 3 parity-check sets per digit. Stronger results will be 
achieved if for some integer b, to be determined later, 
a digit is changed whenever b or more of the parity-check 
constraints rising from the digit are violated. Using this 
criterion and following the reasoning leading to (11) we 
obtain 

pi+1 = PO - po 
[ 

1 + (1 - 2p$-l 2 
2 1 

+ (1 - PO) [ 
1 - (1 - 2p,)“-’ 2 

2 I. (11) 
We now show that for sufficiently small pO, the sequence 
[p%] converges to 0. Consider Fig. 8 which is a sketch of 
Pi+1 as a function of p,. Since the ordinate for one value 
of i is the abscissa for the next, the dotted zig-zag line 
illustrates a convenient graphical method of finding pi 
for successive values of i. It can be seen from the figure 
that if 

0 < pi+1 < pi (for 0 < pi i po) 
02) 

Pi+1 = pi (for pi = 0), 

then the sequence [pi] -+ 0. It can be seen from (11) that 
for p0 sufficiently small, inequality (12) is satisfied. Fig. 9 
gives the maximum p, for several values of k. 

p,+1 
j-l i - 1 

= PO - PO c c ) I 
l-b\ ‘ I 

[ 

1 + (1 - 2pi)k-l z I[ 1 i-l-2 - (1 - api)“-’ 
. 2 2 1 

+ (1 - pa) g (j 1 ‘) 
1-6, ‘ / 

[ 
1 (1 1 - - 

2pJk-’ I[ 1 + (1 - 2pJ-1 
. 2 2 1 i-l-l* (13) 

The integer b can now be chosen to minimize P~+~. The 
solution to this minimization is the smallest integer b for 
which 

l--PO< 
[ 

1 + (1 _ 2p,)“-l 1 ?b--i-t2 

PO - 1 - (1 - 2p,)“-l . (14) 

From this equation, it is seen that as pi decreases, b 
also decreases. Fig. 10 sketches P,+~ as a function of pi 
when b is changed according to (14). The break points in 
the figure represent changes in 6. 

pi 
Fig. 8. 

p*+, 

j K Rate 

i 6 

i 5 4 

0.5 0.4 

0.333 0.25 

PO 

0.04 0.061 

0.075 0.106 

Fig. g--Maximum po for weak bound decoding convergence. 

The rate at which [pi] --+ 0 may be determined by 
noting from (11) that for small pi 

pi+1 = p2@ - l)p,. 

From this it is easy to show that for suficiently large i, 

p% = $4~ - ~)PJ, 

where C is a constant independent of i. Since the number 
of independent tiers in the tree increases logarithmically 
with block length, this bound to the probability of de- 
coding error approaches 0 with some small negative 
power of block length. This slow approach to 0 appears 
to be a consequence of the modification of the decoding 
scheme and of the strict independence requirement, rather 
than of probabilistic decoding as a whole. 

Fig. lo-Behavior of decoding iterations for j > 3. 

The proof that the probability of decoding error ap- 
proaches 0 with an increasing number of iterations for 
sufficiently small cross over probabilities is the same a: 
before. The asymptotic approach of the sequence [pt. 
to 0 is different, however. From (14), if pi is sufficient’lg 
small, b takes the value j/2 for j even and j + l/2 for , 
odd. Using these values of b and expanding (13) in : 
power series in pi, 

pi+1 = PO 

( 1 

; 1 ; (lc _ l)“-“/2p~~-1w2 

2 

+ higher order terms (j odd) (1: 

pi+1 = ( > 
i -21 (k - 1);/zp:/2 

+ higher order terms (j even). 
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Using this, it can be shown that for a suitably chosen 
positive constant Ci, and sufficiently large i 

pi 5 em [ -Cjk(y)i] (j odd) (16) 

(j even). 

It is interesting to relat,e this result to the block length 
of the code. Since there are (j - I)“@ - 1)” digits in the 
m’th tier of a tree, n must be at least this big, giving the 
left side of (17). On the other hand, a specific procedure 
can be described [4] for constructing codes satisfying the 
right side of (17). 

ln (4 In ( 2 - 2j(iin 1) > 
In (j - l)(lc - 1) ’ m ’ 2 In (k - l)(j -7’ 

Combining (16) and (17), the probability of 
error for a code satisfying (17) is bounded by 

P,< exp-C,, 
[ 

n 
-- 212 2j(kl 1) 1 

ln [(j - 1)/2]/[2 In (j - 1)(/c - l)] 

(17) 

decoding 

(j odd) 

Pm 5 exp -C,k [ 2 - 2j(knm l) 1 
In [(j/2)]/[2 In (j - l)(k - l)] (j even). 

For i > 3, this probability of decoding error bound de- 
creases exponentially wit’h a root of n. Observe that if 
the number of iterat’ions m which can be made without 
dependencies were (2 ln(j - l)(k - l))/(ln j/2) times 
larger, then the probability of decoding error would 
decrease exponentially with n. It is hypothesized that 
using the probabilistic decoding scheme and continuing 
to iterate after dependencies occur will produce this 
exponential dependence. 

,4 second way to evaluate the probabilistic decoding 
scheme is to calculate the probability distributions of the 
log-likelihood ratios in (6) for a number of iterations. 
This approach makes it possible to find whether a code of 
given j and Ic is capable of achieving arbitrarily small 
error probabilit,y on any given channel. With the aid of 
the IBM 709 computer, it was found that a code with 
j = 3, Ic = 6 is capable of handling transition probabilities 
up to 0.07 and with j = 3, Ic = 4, transition probabilities 
up to 0.144 can be handled. These figures are particularly 
interesting since they disprove the common conjecture 
that the computational cutoff rate of sequential decoding 
[7] bounds the rate at which any simple decoding scheme 
can operate. 

EXPERIMENTAL RESULTS 

The probability of decoding an error P(e) associated 
with a coding and decoding scheme can be directly 
measured by simulating both the scheme and the channel 

of interest on a computer. Unfortunately, the experiment 
must be repeated until there are many decoding failures if 
P(e) is to be evaluated with any accuracy, and thus many 
times l/P(e) trials are necessary. For block lengths of 
about 500, an IBM 7090 computer requires about 0.1 
seconds per iteration to decode by the probabilistic 
decoding scheme. Consequently, many hours of computa- 
tion time are necessary to evaluate even a P(e) of the 
order of 10e4. 

Because of limitations on available computer time, 
all of the results presented will be for situations in which 
P(e) is large. Certa.inly it would be more interesting to 
have results for small P(e). However, the data presented 
are at least sufficiently convincing to justify further 
experimental work. 

The first two codes to be discussed were used on the 
BSC and the last code on a Gaussian noise channel. The 
BSC was unduly emphasized for the following reasons: 
first, the effect of channel variations on the BSC can be 
eliminated by controlling the number of crossovers 
rather than the crossover probability; next,, the BSC is 
convenient for comparison with other coding and de- 
coding schemes; and finally, it is likely that the operation 
of the decoding scheme on one channel is typical of its 
operation on other channels. 

A (504, 3, 6) Code on Binary Symmetric Channel 

A code of block length 504 with each digit contained 
in three parity-check sets and each parity-check set 
containing 6 digits was selected by t,he IBM 704 computer 
using a pseudo-random .number routine. The only re- 
striction on the code was that no two parity-check sets 
should contain more than one digit in common. That 
restriction guaranteed the validity of the first-order 
iteration in the decoding process and also excluded the 
remote possibility of choosing a code with minimum 
distance of 2. 

Fig. 11 plots the fraction of times the decoder was unable 
to decode correctly as a function of the number of cross- 
overs. The number in parentheses beside each point is the 
number of trials performed with that number of cross- 
overs. In all the trials on this code, the decoder never 
decoded to the wrong code word; it just failed to find a 
code word. If a feedback channel is available, this in- 
ability to decode troublesome noise patterns is not a 
serious limitation, since retransmission is possible. 

Out of the error patterns correctly decoded, 86 per cent 
were decoded in between 9 and 19 iterations. The rest 
were spread out between 20 and 40 iterations. There 
appeared to be a slight increase in the number of iterations 
necessary to decode as the number of crossovers was 
increased from 37 to 41, but not enough to be st,atistically 
significant. The other curve drawn in Fig. 11 is the theo- 
retical bound using maximum likelihood decoding. 

In a later test made on an IBM 7090 computer, a 
(504,3,6) code was generated and 1000 sequences of 32 
errors each were decoded. The process failed to decode in 
26 cases and decoded the other 974 sequences correctly. 
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These results appear encouraging when we observe that 
no other known coding and decoding scheme of this rate 
is able to decode this many errors with a reasonable 
amount of computation. How well the decoding scheme 
works with smaller numbers of errors is of greater interest, 
though. The rate at which the experimental probability 
of error decreases as the number of crossovers decreases 
is discouraging, but there is no justification for extra- 
polating this curve to much smaller numbers of crossovers. 
Either a great deal of additional experimental data or a 
new theoretical approach will be necessary for evaluation 
of smaller numbers of cross overs. 
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Fig. 11-Experimental results for (504, 3, 6) code as function of 
number of transition errors. 

A (500, 3, 4) Code on the Binary. Symmetric Channel 

A (500, 3, 4) code, which has a rate of a, was chosen by 
the IBM 704 computer in the same way as the (504, 
3, 6) code of the last section. Sequences containing from 
20 to 77 crossovers were put in to be decoded. There were 
two sequences for each number of crossovers from 65 to 69 
and from 72 to 77 and one sequence for all the other num- 
bers. The decoding was successful for all sequences except 
one 73-crossover case, one 75-crossover case, and both 
77-crossover cases. The theoretical error-correcting break- 
point for the (500, 3, 4) ensemble is 103 errors, and the 
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error-correcting breakpoint for the ensemble of all codes 
of rate 2 is 108 errors. 

A (500, 3, 5) Code on White Gaussian Noise Channel 

Assume a channel that accepts inputs of plus or minus 
1 and adds a Gaussian random variable of mean 0 and 
variance 1 to the input to form the output. The log- 
likelihood ratio of the input conditional on the output is 
simply twice the received signal. The channel capacity of 
this channel can be calculated [5] to be 0.5 bits per symbol. 
However, if the receiver converts the channel into a 
BSC by making a decision on each symbol and throwing 
away the probabilities, the probability of crossover 
becomes 0.16, and the channel capacity is reduced to 
0.37 bits per symbol. 

In this experiment a (500, 3, 5) code, which has a rate 
of 0.4 bits per symbol, was simulated on the IBM 704 
computer along with the channel just described. Proba- 
bilistic decoding was performed using the log-likelihood 
ratios at the output of the channel. Out of 13 trials, the 
decoding scheme decoded correctly on 11 trials and 
failed to decode twice. 

This experiment is interesting since it suggests that 
the loss of rate necessitated by the nonnptimum coding 
and decoding techniques proposed here is more than 
compensated for by the opportunity of using the a pos- 
teriori probabilities at the channel output. 
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