

Non-Convex Compressed Sensing based Channel State Information Feedback for Massive MIMO FDD Downlink Channels

김정현*, 김인선, <mark>박진수, 송민규</mark>, 송홍엽, 한성우° 연세대학교, 국방과학연구소°

2015년 4월 15일 - 17일 The 25th Joint Conference on Communications and Information

Outline

Background

Compressed Sensing (CS)

System Model

Finite-rate feedback Massive MIMO system

Proposed Scheme

- Non-Convex CS-based feedback
- Theoretical Analysis
- Simulation Results
- Conclusions

Background

- Compressed sensing
 - Compression

Background

- Compressed sensing
 - Recovery (without noise and error)

$$\boldsymbol{s} = \boldsymbol{\Psi} \boldsymbol{h} \rightarrow \widetilde{\boldsymbol{h}} = \boldsymbol{\Psi}^T \widetilde{\boldsymbol{s}}$$

CCS-based Feedback

- CSI recovery
 - With noise and error

 $\boldsymbol{s} = \boldsymbol{\Psi} \boldsymbol{h} \rightarrow \boldsymbol{\tilde{h}} = \boldsymbol{\Psi}^T \boldsymbol{\tilde{s}}$

NCCS-based Feedback – proposed

Theoretical Analysis

Convex Compressed Sensing(CCS)-based scheme

$$\min_{s} \|s\|_{1}, \quad \text{subject to } \Theta s = b.$$

Non-Convex Compressed Sensing(NCCS)-based scheme

$$\min_{s} \|s\|_{p}, \quad \text{subject to} \ \|\Theta s - b\|_{2} \leq \epsilon.$$

where 0 .

Theoretical Analysis

Norm

$$\|x\|_{p} = \begin{cases} \left(\sum_{i=1}^{n} |x_{i}|^{p}\right)^{1/p}, & p \in [1, \infty) \\ \max_{i=1, 2, \dots, n} |x_{i}|, & p = \infty \end{cases}$$

$$||x||_0 = |Supp(x)|$$
 where $Supp(x) = \{i : x_i \neq 0\}$

Quasi-norm

 $||x||_p = (\sum_{i=1}^n |x_i|^p)^{1/p}$ where 0

10

Theoretical Analysis

• Signal recovery by l_p -norm

Simulation Results

Parameters

주요 파라미터	실험 설정 값
기지국 안테나 수 N_t	256개
사용자 안테나 수 N_r	니개
공간 상관도를 갖는 MIMO 채널 모델	uniformly-spaced linear antenna arrays [3]
Feedback 비트 수	5,20 비트
측정행렬 Φ	Random Gaussian matrix
성김화행렬 ₩	Discrete Cosine Transform(DCT) matrix
l_p -norm	p = 0.1
압축률	$\eta = 0.25$
Convex CS 복구 알고리즘	Orthogonal Matching Pursuit(OMP)
Non-Convex CS 복구 알고리즘	Iterative Reweighted Least Squares(IRLS)

[3] P. Kuo, H.T. Kung, and P.Ting, "Compressive Sensing Based Channel Feedback Protocols for Spatially-Correlated Massive Antenna Arrays," *in Proc. IEEE Wireless Commun. and Networking Conf. (WCNC)*, pp. 492-497, Apr. 2012.

Simulation Results

▶ 다운링크 전송 시 전송률 비교

[3] P. Kuo, H.T. Kung, and P.Ting, "Compressive Sensing Based Channel Feedback Protocols for Spatially-Correlated Massive Antenna Arrays," *in Proc. IEEE Wireless Commun. and Networking Conf. (WCNC)*, pp. 492-497, Apr. 2012. Conclusions Any Questions?

NCCS 기법을 Massive-MIMO시스템의 CSI 피드백에 적용 NCCS 기법의 특성으로 인해, 기존 CCS 기반 피드백보다 → 피드백 값이 부정확하더라도 효과적으로 CSI 복구 가능 → 양자화 오류 및 잡음의 영향 극복

주어진 실험 환경 하에서, 기존 CCS 기반 피드백보다 20비트 피드백을 사용한 경우 → 3*dB* 이득 5비트 피드백을 사용한 경우 → 4.5*dB* 이득