

A study on the repair set of locally repairable codes

Mi-Young Nam, Jung-Hyun Kim, and Hong-Yeop Song Yonsei Univ. KICS Fall Conference 2015

Regenerating Code

ASSUMPTIONS:

- ✓ The number of nodes r that should be contacted by a new comer for node repair
- \checkmark The number of nodes *K* by a Data Collector for file retrieval
- \checkmark $r \ge K$ is assumed
- ✓ Any *r* helper node should be able to repair a failed node

ANALYSIS using Information-Flow Graph

✓ The maximum file size that can be stored by using a Regenerating code is

$$B \le \sum_{i=0}^{K-1} \min\{(r-i)\beta, \alpha\}$$

= min{3 β, α } + min{2 β, α } + min{ β, α
for $r = K = 3$ in the above example

Traditional LRCs

ASSUMPTIONS:

✓ Every helper node sends its whole stored data to a newcomer node

 $: \beta = \alpha$

- \checkmark Therefore, the repair set is disjoint
- \checkmark Then the worst case cannot be avoided

 $R_{2,1}$ is the repair matrix of size $(\alpha \times \alpha)$

that transforms a data v_2 into some useful data in a node V1

• $R_{3,1}$ is the repair matrix of size $(\alpha \times \alpha)$

that transforms a data v_3 into some useful data in a node V1

- Both $R_{2,1}$ and $R_{3,1}$ are full-rank otherwise $\beta < \alpha$ is possible
- Then node V2 can be repaired from node V1 and V3 and a node V3 also can be repaired from node V1 and V2.

$$v_k = R_{k,1}^{-1} \left(v_1 - \sum_{\substack{j=1, \ j \neq k}}^{r=3} R_{j,1} v_j \right), for \ i = 2, 3$$

Locally Repairable Code

DIFFERENCE FROM REGENERATING CODE:

✓ A code which satisfies r < K is a Locally Repairable Code

✓ If we assume a random selection of helper nodes, then we cannot avoid the worst case above

$$B \le \sum_{i=0}^{r-1} \min\{(r-i)\beta, \alpha\}$$

= min{2\beta, \alpha\} + min{\beta, \alpha\} + **0**

DIFFERENCE FROM REGENERATING CODE:

✓ For every node, a specific set of *r* helper nodes, that participate in the repair process of that node, are predetermined

That is, fixed repair set is given

✓ Careful construction of repair set makes the code avoid the worst case performance above

Repair set

- ✓ If we want to avoid the worst case in LRC the followings should be satisfied:
 i) β < α,
 ii) R(i) ⊈ ∪_{i∈S} R(j),
 - for all $i \in [n]$ and for all $S \subseteq [n] \setminus \{i\}, |S| \leq K 1$.
- ✓ Repair set construction for codes with locality 2 $R(i) = \{(i-1), (i+1)_{mod n}\}, for all i \in [n]$

^{(*} R(i) is the repair set of node i)

Concluding Remarks

- A structure of a repair set for LRC based on IFG
- Explicit repair-set for LRC with locality r = 2
- No explicit repair-set for LRC with locality r > 2

