(n,k)-sequences and its Application to FH Design

ChangHyun Eo and Hong-Yeop Song

Department of Electronics Engineering Yonsei University

Coding and Information Theory Workshop Feb. 20, 1998

- The sequence itself is a permutation of order 8.
- Triangle below the sequence calculates differences of corresponding terms mod 4 if both less than 3 or if both larger than or equal to 4.
- In any row of this triangle, differences do not repeat.

0 ŀ × N * × _ ¥ * * Example of a sequence of length 21 N × × × × × 4 × 15 * * * * * ★ × × * σ 00 * ¥ × * × * * ω ٭ F 14 σ * \vdash * 4 * ✻ С С * ¥ ¥ N 16 С ω * σ * * * 4 ¥ ¥ 4 × * ω N 19 ✻ ✻ ٭ ٭ * ✻ -* H × * σ ω ¥ ¥ × ✻ \vdash С * * ¥ ¥ * ✻ * × $\overline{}$ N * ¥ С 4 * ¥ 4 * 12 * N N ω × ¥ N ✻ N * ω ✻ ¥ σ 4 × × × * × ဖ * N * С ω * * * * × ✻ ¥ ٭ * ✻ ٭ ٭ ⊢ σ С * * ¥ С ω ¥ ٭ * * ¥ * С * * × 18 σ ٭ * σ ٭ -4 4 * * ¥ ¥ × ω * × ¥ F ⊁ 4 ¥ σ ٭ * × ٭ 10 × * σ × * С ¥ × ¥ ٭ 17 ω ¥ N × N * ٭ F μ3 * * * * ¥ ٭ С ω * ¥ 0 4 × ✻

Definition: (n,k)-Sequences

Let a_1, a_2, \ldots, a_{kn} be a permutation of 0, 1, 2, ..., kn - 1. Let (a_i, a_j) be called a "comparable pair" if $\lfloor a_i/n \rfloor = \lfloor a_j/n \rfloor$, where $\lfloor x \rfloor$ is the integer part of x.

Then,
$$a_1, a_2, \ldots, a_{kn}$$
 is called an " (n,k) -sequence" if

$$a_{s+d} - a_s \not\equiv a_{t+d} - a_t \pmod{n}$$

for every s, t and d such that $1 \le s < t < t + d \le kn$ and such that (a_{s+d}, a_s) and (a_{t+d}, a_t) are comparable pairs. Existence whenever nk + 1 is prime Let kn + 1 = p > 2 be a prime, and α be a primitive root mod p.

For each $i = 1, 2, \ldots, kn$, we denote

$$\log_{\alpha}(i) = j \quad \Longleftrightarrow \quad \alpha^{j} = i$$

where $0 \leq j \leq kn - 1$.

Let q_i and r_i be determined by the relation $\log_{\alpha}(i) = kq_i + r_i$, where $0 \le r_i \le k - 1$.

Then

$$a_i = q_i + nr_i$$

is an (n, k)-sequence.

Proof of Existence

 (a_i,a_j) comparable \leftrightarrow $r_i=r_j$ Therefore, we have (mod p)

$$\alpha^{k(a_i-a_j)} \equiv \frac{\alpha^{ka_i}}{\alpha^{ka_j}} \equiv \frac{\alpha^{k(q_i+nr_i)}}{\alpha^{k(q_j+nr_j)}} \equiv \frac{\alpha^{kq_i+r_i}}{\alpha^{kq_j+r_j}} \equiv \frac{i}{j}$$

Assume
$$(a_{s+d}, a_s)$$
 and (a_{t+d}, a_t) are
"distinct" comparable pairs. Then

$$\begin{array}{ll} \text{if} & a_{s+d} - a_s \equiv a_{t+d} - a_t \pmod{n}, \\ \Longrightarrow & k(a_{s+d} - a_s) \equiv k(a_{t+d} - a_t) \pmod{kn}, \\ \Longrightarrow & \alpha^{k(a_{s+d} - a_s)} \equiv \alpha^{k(a_{t+d} - a_t)} \pmod{p}, \\ \Longrightarrow & \frac{s+d}{s} \equiv \frac{t+d}{t} \pmod{p}, \\ \Longrightarrow & d \equiv 0 \quad \text{or} \quad s \equiv t \pmod{p}. \end{array}$$

Since 0 < d < kn = p - 1 and $1 \le s \ne t \le kn$, we have a contradiction. (q.e.d) Transformations of (n, 2)-sequences Let a_1, a_2, \ldots, a_{2n} be an (n, 2)-sequence. Call a_i of type A if $0 \le a_i \le n - 1$, and of type B if $n \le a_i \le 2n - 1$.

- S_A : add (mod n) some constant to every term of type A
- S_B : add (mod n) some constant to every term of type B
- M : multiply (mod n) some constant m to every a_i 's, where gcd (m, n) = 1
 - R : take the backward reading
- P : interchange type A and type B by adding n if $a_i < n$ or by subtracting n if $a_i \ge n$

Note that S_A , S_B and M preserve the type of each term and P transposes two types.

Examples of Transformations

- S_A : $\dot{0}\dot{1}465\dot{3}7\dot{2} \Rightarrow \dot{1}\dot{2}465\dot{0}7\dot{3}$
- S_B : $\dot{0}\dot{1}465\dot{3}7\dot{2} \Rightarrow \dot{0}\dot{1}647\dot{3}5\dot{2}$
- $M: \dot{0}\dot{1}465\dot{3}\dot{7}\dot{2} \Rightarrow \dot{0}\dot{3}46\dot{7}\dot{1}\dot{5}\dot{2}$
 - $R: \quad 01465372 \Rightarrow 27356410$
 - $P: \dot{0}\dot{1}465\dot{3}7\dot{2} \Rightarrow 45\dot{0}\dot{2}\dot{1}7\dot{3}6$

Here, the dot represents the term of type A.

■ Number of distinct (n, 2)-sequences The number of "essentially distinct" (n, 2)-sequences for $n \le 11$ is determined by computer search, and is shown in the next table.

On(n,k)-sequences

n	2 <i>n</i>	#	CPU	$b_i \longrightarrow a_i$
1	2	1		$01 \longrightarrow 01 \star$
2	4	1		$0110 \longrightarrow 0231 \star$
3	6	2		$001011 \longrightarrow 013254\star$
				$011001 \longrightarrow 035124$
4	8	2		$00111010 \longrightarrow 01465372$
				$01001110 \longrightarrow 04217563$
5	10	5		$0011101001 \longrightarrow 0159738246$
				0100011101 0513476928
				0514367928*
				$0111010001 \longrightarrow 0589173246$
				0596184237
6	12	4	0.0 Sec	$001110010101 \longrightarrow 026B831A4957$
				$010011110010 \longrightarrow 06218A7B4593$
				0621A8B74593*
				$010111000110 \longrightarrow 061BA8452793$
7	14	8	2.0. Sec	$00110010110011 \longrightarrow 017B24D5CA3698$
•		Ŭ	210 200	017B64C3D825A9
				$01001110001101 \longrightarrow 07148AB6539D2C$
				$01011000111010 \longrightarrow 071CA524D986B3$
				$01100010111001 \longrightarrow 07A124958DC63B$
				$01100101011001 \longrightarrow 07B1395A48D62C$
				$01101110001001 \rightarrow 0791AB8365D42C$
				$01110010110001 \longrightarrow 079A14D28C653B$
8	16	6	1.6 Min	0182AFD379BE6C54
				0182E9B37FDA0C54*
				$0011101001011100 \longrightarrow 018AD3B20F79EC54$
				010ED5D2097FAC54
				$0111001001001110 \longrightarrow 089F21E31A30BDC4$
0	18	1	20 Min	01100010101111001
9	10	Т	20 10111	$09F1873AAH6CBCF25D_{+}$
10	20	0	10 Hrs	
11	20	1	51 Hrs	
		_ _	51 113	0182B9K35CFA7LI4E6IDHG
12	24	0	130 davs	NONE
13	26	7	100 0035	
10				

(circular) Vatican arrays [a new frequency-hopping codes]

From the (4,2)-sequences of length 8, we can construct a 4×8 array V of 8 symbols in which the top row is a_1, a_2, \ldots, a_8 and the columns are cyclic shifts of either 0, 1, 2, 3 or 4, 5, 6, 7.

$$V = \begin{bmatrix} 0 & 1 & 4 & 6 & 5 & 3 & 7 & 2 \\ 1 & 2 & 5 & 7 & 6 & 0 & 4 & 3 \\ 2 & 3 & 6 & 4 & 7 & 1 & 5 & 0 \\ 3 & 0 & 7 & 5 & 4 & 2 & 6 & 1 \end{bmatrix}$$

The array V has the two properties that (1) each row is a permutation of $0, 1, 2, \ldots, 7$, and (2) for any two symbols a and b and for any integer m from 1 to 7 there exists at most one row in which b is m steps to the right of a.

■ Vatican array from the (7,2)-sequence

0	1	7	11	2	4	13	5	12	10	3	6	9	8
1	2	8	12	3	5	7	6	13	11	4	0	10	9
2	3	9	13	4	6	8	0	7	12	5	1	11	10
3	4	10	7	5	0	9	1	8	13	6	2	12	11
4	5	11	8	6	1	10	2	9	7	0	3	13	12
5	6	12	9	0	2	11	3	10	8	1	4	7	13
6	0	13	10	1	3	12	4	11	9	2	5	8	7

Open Problems and Concluding Remarks

- 1. Structure of the transformation group of (n, k)-sequences. It has the order at most $2kn\phi(n)k!$.
- 2. In the "prime construction" where nk + 1 = p is a prime, two different primitive roots produce essentailly the same (n, k)-sequences.
- 3. A (p, 2)-sequence exists for every prime p. (confirmed for $p \le 11$)
- 4. There exists at least one (p, k)-sequence for each positive integer k > 1 and for every prime p. (confirmed for (i) p = 3 and $2 \le k \le 10$, (ii) p = 5 and $2 \le k \le 6$, and (iii) p = 7 and $2 \le k \le 4$)
- 5. The only known family of (n, 1)-sequences is from the "Welch construction" for n = p - 1, which is usually called as *Costas sequences by Welch*. The converse is one of the famous open problem: Every (n, 1)-sequence essentially comes from the Welch construction.
- 6. There does not exists a (10, 2)-sequence of length 20.
- 7. Application to designing an $n \times nk$ frequency hopping patterns with **optimal Hamming correlation** from an (n, k)-sequence.