Correlation Properties of Fermat-quotient Sequences and related Families

BASED ON
Optimal Families of Perfect Polyphase Sequences from the Array Structure of Fermat-quotient Sequences
IEEE Transactions on Information Theory (2016년 출간예정)

송홍엽
연세대학교 공과대학 전기전자공학부
Communication Signal Design Lab.
Yonsei University

Main Results in this Talk:

- We propose NEW families of
>p-ary polyphase sequences of period $\mathrm{N}=p^{2}$ with
(1) perfect autocorrelation, zero, for all out-of-phases
(2) optimal cross-correlation property $p=\sqrt{N}$, for all phases
- To do this, we introduce:
> The Fermat-quotient sequence, in $p \times p$ square array form
$>$ Perfectness from the properties in the array form
> Generator: representing the structure of associated sequences
> Conditions on the generators for perfectness and optimality
> Construction of generators that directly indicates optimal families

Autocorrelation of a Sequence

N is the period of the sequences

Correlation of \boldsymbol{s} and \boldsymbol{m} at τ :
 Both are p-ary sequences

$$
C(\boldsymbol{s}, \boldsymbol{m}, \tau)=\sum_{i=0}^{N-1} \omega^{s(i+\tau)-\overline{m(i)}}
$$

- If $\boldsymbol{s}=\boldsymbol{m}$, we call $C(\boldsymbol{s}, \boldsymbol{m}, \tau)=C(\boldsymbol{s}, \tau)$ as autocorrelation of \boldsymbol{s} at τ
- Perfectness of periodic autocorrelation
$>$ If a binary sequence $\boldsymbol{s}=(0,0,0,1)$ is periodic with period $N=4$, then

$$
C(s, 1)=\omega^{0-0}+\omega^{0-0}+\omega^{1-0}+\omega^{0-1}=1+1-1-1=0
$$

> Also, $C(s, 2)=C(s, 3)=0$

- If $C(\boldsymbol{s}, \tau)=0$ for all $0<\tau<N$, we call \boldsymbol{s} as a

Perfect Sequence

Correlation of Two Sequences

- Sarwate bound for perfect sequences
> If \boldsymbol{u} and \boldsymbol{v} are both perfect sequences of period N, then

$$
\max _{0 \leq \tau<N}|C(\boldsymbol{u}, \boldsymbol{v}, \tau)| \geq \sqrt{N}
$$

- Sequence pair $\boldsymbol{u}, \boldsymbol{v}$
$>$ If $\boldsymbol{u}, \boldsymbol{v}$ are perfect sequences of period N for all i and satisfies

$$
\max _{0 \leq \tau<N}|C(\boldsymbol{u}, \boldsymbol{v}, \tau)|=\sqrt{N}
$$

then we call $\boldsymbol{u}, \boldsymbol{v}$ as an

Optimal Pair

Optimal:

achieves the lower bound

- Sequence family $\mathcal{F}=\left\{\boldsymbol{s}_{1}, \boldsymbol{s}_{2}, \boldsymbol{s}_{3}, \ldots, \boldsymbol{s}_{M}\right\}$
$>$ If $\boldsymbol{s}_{i}, \boldsymbol{s}_{j}$ are optimal pairs for all i and $j \neq i$, then we call \mathcal{F} as an

Optimal Family

Previous Result: Frank-Zadoff

- Frank-Zadoff sequence: $z(t)=\left(t-n\left\lfloor\frac{t}{n}\right\rfloor+1\right)\left\lfloor\frac{t}{n}+1\right\rfloor$
> n-ary sequence of period $N=n^{2}$
> $n \times n$ array form of sequence
$\mathbf{z}=\left[\begin{array}{ccccc}z(0) & z(1) & z(2) & \cdots & z(n-1) \\ z(n) & z(n+1) & z(n+2) & \cdots & z(2 n-1) \\ z(2 n) & z(2 n+1) & z(2 n+1) & \cdots & z(3 n-1) \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ z((n-1) n) & z((n-1) n+1) & z((n-1) n+2) & \cdots & z\left(n^{2}-1\right)\end{array}\right]=\left[\begin{array}{ccccc}1 & 2 & 3 & \cdots & n \\ 2 & 4 & 6 & \cdots & 2 n \\ 3 & 6 & 9 & \cdots & 3 n \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ n & 2 n & 3 n & \cdots & n^{2}\end{array}\right](\bmod n)$
$>$ Perfect sequence (Frank and Zadoff, 1962)
$>\mathcal{F}=\{\mathbf{z}, 2 \mathbf{z}, 3 \mathbf{z}, \ldots,(n-1) \mathbf{z}\}$ where n is a prime is an optimal family (Suehiro, 1988)

Fermat-quotient Sequence

- Fermat Little Theorem
> If p is a prime, for any nonzero integer $a<p$,

$$
a^{p-1} \equiv 1 \bmod p
$$

- Fermat-quotient

$$
Q(t) \triangleq \frac{t^{p-1}-1}{p}
$$

$>$ is always an integer for $t \neq 0 \bmod p$

- Fermat-quotient sequence $\boldsymbol{q}=\{q(0), q(1), \ldots\}$

$$
q(t) \triangleq \begin{cases}Q(t) \bmod p & \text { if } t \neq 0 \bmod p \\ 0 & \text { otherwise }\end{cases}
$$

Examples of FQS

- $p=5, \boldsymbol{q}=0,0,3,1,10,4,0,4,20,3,2,2,3,0,2,4,0,4,0,1,1,3,0\}$

$$
\boldsymbol{q}=\left[\begin{array}{lllll}
0 & 0 & 3 & 1 & 1 \\
0 & 4 & 0 & 4 & 2 \\
0 & 3 & 2 & 2 & 3 \\
\hline 0 & 2 & 4 & 0 & 4 \\
0 & 1 & 1 & 3 & 0
\end{array}\right]
$$

$p \times p$ Array form

Examples of FQS

- $p=7$
- $\boldsymbol{q}=\{\mathbf{0}, 0,2,6,4,6,1,0,6,5,1,2,3,2,0,5,1,3,0,0,3,0,4,4,5$,

$$
5,4,4,0,3,0,0,3,1,5,0,2,3,2,1,5,6,0,1,6,4,6,2,0\}
$$

$$
\boldsymbol{q}=\left[\begin{array}{lllllll}
\mathbf{0} & 0 & 2 & 6 & 4 & 6 & 1 \\
0 & 6 & 5 & 1 & 2 & 3 & 2 \\
0 & 5 & 1 & 3 & 0 & 0 & 3 \\
0 & 4 & 4 & 5 & 5 & 4 & 4 \\
0 & 3 & 0 & 0 & 3 & 1 & 5 \\
0 & 2 & 3 & 2 & 1 & 5 & 6 \\
0 & 1 & 6 & 4 & 6 & 2 & 0
\end{array}\right]
$$

1. $q(t)=q\left(p^{2} \pm t\right)$ for all $t=0,1,2, \ldots$

$$
\text { 2. } q(t u \pm 1)=q(t) \pm q(u) \text { for all } t, u \neq 0(\bmod p)
$$

$$
q(t)=q\left(p^{2} \pm t\right) \text { for all } t=0,1,2, \ldots
$$

When $t \equiv 0(\bmod p), \quad t=p k$ some k

$$
\text { RH }=q\left(p^{2} \pm p k\right)=q(p(p \pm k))=0=q(p k)=L H S .
$$

when $t \neq 0(\bmod p)$,

$$
\begin{aligned}
& t \neq 0(\bmod p), \\
& \text { RHS }=\frac{1}{p}\left(\left(p^{2} \pm t\right)^{p-1}-1\right)=\frac{1}{p}\left[\sum_{i=0}^{p-1}\binom{p-1}{i} \cdot\left(p^{2}\right)^{i}(\pm t)^{p-1-i}-1\right] \\
&=\frac{1}{p}\left[(\pm t)^{p-1}-1+\sum_{i=1}^{p-1}\binom{p-1}{i} p^{2 i}(\pm t)^{p-1-i}\right] \\
&=\frac{1}{p}\left[t^{p-1}-1\right] \quad(\text { since } p \text { is odd }) \\
&=q(t)=\text { CHS } .
\end{aligned}
$$

$$
q(t)=q\left(p^{2} \pm t\right) \text { for all } t=0,1,2, \ldots
$$

- $p=7$

$$
\boldsymbol{q}=\left[\begin{array}{lllllll}
\mathbf{0} & 0 & 2 & 6 & 4 & 6 & 1 \\
0 & 6 & 5 & 1 & 2 & 3 & 2 \\
0 & 5 & 1 & 3 & 0 & 0 & 3 \\
0 & 4 & 4 & 5 & 5 & 4 & 4 \\
0 & 3 & 0 & 0 & 3 & 1 & 5 \\
0 & 2 & 3 & 2 & 1 & 5 & 6 \\
0 & 1 & 6 & 4 & 6 & 2 & 0
\end{array}\right]
$$

$$
q\left(t u^{ \pm 1}\right)=q(t) \pm q(u) \text { for all } t, u \neq 0(\bmod p)
$$

First, observe that, for $u \neq 0 \bmod p$

$$
q\left(u^{-1}\right)=\frac{1}{p}\left[\left(\frac{1}{u}\right)^{p-1}-1\right]=\frac{1-u^{p-1}}{p \cdot u^{p-1}}=-\frac{u^{p-1}-1}{p}=-q(u)(\bmod p) .
$$

Therefore,

$$
\begin{aligned}
\text { LHS }=q\left(t u^{ \pm 1}\right) & =\frac{1}{p}\left[\left(t \cdot u^{ \pm 1}\right)^{p-1}-1\right]=\frac{1}{p}\left[t^{p-1} \cdot\left(u^{ \pm 1}\right)^{p-1}-1\right] \\
& =\frac{1}{p}\left[t^{p-1} \cdot\left(u^{ \pm 1}\right)^{p-1}-t^{p-1}-\left(u^{ \pm 1}\right)^{p-1}+1+t^{p-1}+\left(u^{ \pm}\right)^{p-1}-2\right] \\
& =\frac{1}{p}[\left(t^{p-1}-1\right) \cdot(\underbrace{}_{\left.u^{ \pm 1}\right)^{p-1}-1})+\left(t^{p-1}-1\right)+\left(\left(u^{ \pm 1}\right)^{p-1}-1\right)] \\
& =q(t) \pm q(u)(\operatorname{mad} d p)
\end{aligned}
$$

$$
q\left(t u^{ \pm 1}\right)=q(t) \pm q(u) \text { for all } t=0,1,2, \ldots \text { and } u \neq 0(\bmod p)
$$

- $p=7$

$$
\boldsymbol{q}=\left[\begin{array}{lllllll}
\mathbf{0} & 0 & 2 & 6 & 4 & 6 & 1 \\
0 & 6 & 5 & 1 & 2 & 3 & 2 \\
0 & 5 & 1 & 3 & 0 & 0 & 3 \\
\mathbf{0} & 4 & 4 & 5 & 5 & 4 & 4 \\
0 & 3 & 0 & 0 & 3 & 1 & 5 \\
0 & 2 & 3 & 2 & 1 & 5 & 6 \\
\mathbf{0} & 1 & 6 & 4 & 6 & 2 & 0
\end{array}\right]
$$

$u=3$
$q(3)=6=-1$. Therefore,

$$
\begin{array}{rlrr}
t & =1,2,3,4,5,6, & 8,9,10,11,12,13, & 15,16, \ldots \\
q(t) & =026461 & 651232 & 51 \ldots \\
q(3 t) & =615350 & 540121 & 40 \ldots
\end{array}
$$

Examples of FQS

- $p=11$

$$
\boldsymbol{q}=\left[\begin{array}{ccccccccccc}
0 & 0 & 5 & 0 & 10 & 7 & 5 & 2 & 4 & 0 & 1 \\
0 & 10 & 10 & 7 & 7 & 9 & 3 & 5 & 8 & 6 & 2 \\
0 & 9 & 4 & 3 & 4 & 0 & 1 & 8 & 1 & 1 & 3 \\
0 & 8 & 9 & 10 & 1 & 2 & 10 & 0 & 5 & 7 & 4 \\
0 & 7 & 3 & 6 & 9 & 4 & 8 & 3 & 9 & 2 & 5 \\
0 & 6 & 8 & 2 & 6 & 6 & 6 & 6 & 2 & 8 & 6 \\
0 & 5 & 2 & 9 & 3 & 8 & 4 & 9 & 6 & 3 & 7 \\
0 & 4 & 7 & 5 & 0 & 10 & 2 & 1 & 10 & 9 & 8 \\
0 & 3 & 1 & 1 & 8 & 1 & 0 & 4 & 3 & 4 & 9 \\
0 & 2 & 6 & 8 & 5 & 3 & 9 & 7 & 7 & 10 & 10 \\
0 & 1 & 0 & 4 & 2 & 5 & 7 & 10 & 0 & 5 & 0
\end{array}\right]
$$

Third Property of FQS

$$
\begin{aligned}
& \text { } q(t+k p)=q(t)-\frac{k}{t} \text { for } t \neq 0 \bmod p \\
& \boldsymbol{q}=\left[\begin{array}{cc|cc}
0 & q(1) \\
0 & q(1)-1 & q(2) & \cdots \\
0(2)-\frac{1}{2} & \cdots & q(p-1)-\frac{1}{p-1} \\
0 & q(1)-2 \\
\vdots & \vdots & q(2)-\frac{2}{2} & \cdots \\
0 & q(p-1)-\frac{2}{p-1} \\
0 & q(1)-(p-1) & \ddots & \vdots \\
q(2)-\frac{(p-1)}{2} & \cdots & q(p-1)-\frac{(p-1)}{p-1}
\end{array}\right]
\end{aligned}
$$

> Each column (except for the left-most) is balanced
Every symbol appears exactly the same time in each column except for the left-most column

First Theorem

Theorem 1-1: \boldsymbol{q} is perfect
$>p$-ary sequence of period p^{2}

Theorem 1-2: $\mathcal{F}(\boldsymbol{q})=\{\boldsymbol{q}, 2 \boldsymbol{q}, 3 \boldsymbol{q}, \ldots,(p-1) \boldsymbol{q}\}$ is optimal
$>m \boldsymbol{q}$ is a sequence from \boldsymbol{q} with all the symbols are multiplied by m

- Example: $p=5, \mathcal{F}(\boldsymbol{q})=\{\boldsymbol{q}, 2 \boldsymbol{q}, 3 \boldsymbol{q}, 4 \boldsymbol{q}\}$

$$
\begin{aligned}
\boldsymbol{q} & =(0,0,3,1,1,0,4,0,4,2,0,3,2,2,3,0,2,4,0,4,0,1,1,3,0) \\
2 \boldsymbol{q} & =(0,0,1,2,2,0,3,0,3,4,0,1,4,4,1,0,4,3,0,3,0,2,2,1,0) \\
3 \boldsymbol{q} & =(0,0,4,3,3,0,2,0,2,1,0,4,1,1,4,0,1,2,0,2,0,3,3,4,0) \\
4 \boldsymbol{q} & =(0,0,2,4,4,0,1,0,1,3,0,2,3,3,2,0,3,1,0,1,0,4,4,2,0)
\end{aligned}
$$

Difference Sequence

- Define $\boldsymbol{d}_{\boldsymbol{s}, \tau}$ as a difference sequence of \boldsymbol{s} by τ as:

$$
d_{s, \tau}(t)=s(t+\tau)-s(t)
$$

- If $\boldsymbol{d}_{\boldsymbol{s}, \tau}$ is balanced for all $\tau \neq 0 \bmod N$, then \boldsymbol{s} is perfect
$>C(\boldsymbol{s}, \tau)=\sum \omega^{s(t+\tau)-s(t)}=\sum \omega^{d_{s, \tau}(t)}$
> Sum of all vertex vectors of a regular polygon

RC-Balancedness

- $p \times p$ array form of $\boldsymbol{d}_{\boldsymbol{s}, \tau}$ for p-ary sequence \boldsymbol{s} of period p^{2}

	$d_{s, \tau}(0)$	$d_{s, \tau}(1)$	$d_{s, \tau}(2)$	$\cdots d_{s, \tau}(p-1)$	
	$d_{s, \tau}(p)$	$d_{s, \tau}(p+1)$	$d_{s, \tau}(p+2)$	\cdots	
$d_{s, \tau}=$	$\begin{gathered} d_{\boldsymbol{s}, \tau}(2 p) \\ \vdots \\ \left.d_{\boldsymbol{s}, \tau}(p-1) p\right) \end{gathered}$		$\begin{gathered} d_{s, \tau}(2 p+2) \\ \vdots \\ d_{s, \tau}((p-1) p+2) \end{gathered}$	$\begin{array}{cc} \cdots & d_{s, \tau}(3 p-1) \\ \ddots & \vdots \\ \cdots & d_{s, \tau}\left(p^{2}-1\right) \end{array}$	$(\bmod n)$

- If (1) each column of $\boldsymbol{d}_{\boldsymbol{s}, \tau}$ is balanced for all $\tau \neq 0 \bmod p$ and (2) each row of $\boldsymbol{d}_{\boldsymbol{s}, \tau}$ is balanced for all $\tau \equiv 0 \bmod p$, then we say

\boldsymbol{s} has RC-balanced difference sequences

- If \boldsymbol{s} has RC-balanced difference sequences, then \boldsymbol{s} is perfect
> Not conversely in general we guess.
> No proof and no counterexample for the converse.

Theorem 2: \boldsymbol{q} has RC-balanced difference sequences

Example of RC-Balancedness

Transformations of Sequences Preserving RC-Balancedness

- Lemma: If \boldsymbol{s} has RC-balanced difference sequences, then
(1) Constant Multiple: $s^{\prime}=m s$
(2) Constant Column Addition: $s^{\prime}=\mathcal{A}_{i}(s)$
(3) Column Permutation: $s^{\prime}=\mathcal{P}_{\sigma}(s)$
are also have RC-balanced difference sequences

Examples:

$$
\begin{aligned}
& \boldsymbol{s}=\boldsymbol{q}=\left[\begin{array}{lllll}
0 & 0 & 3 & 1 & 1 \\
0 & 4 & 0 & 4 & 2 \\
0 & 3 & 2 & 2 & 3 \\
0 & 2 & 4 & 0 & 4 \\
0 & 1 & 1 & 3 & 0
\end{array}\right] \\
& \mathcal{A}_{2}(\boldsymbol{s})=\left[\begin{array}{lllll}
0 & 0 & 4 & 1 & 1 \\
0 & 4 & 1 & 4 & 2 \\
0 & 3 & 3 & 2 & 3 \\
0 & 2 & 0 & 0 & 4 \\
0 & 1 & 2 & 3 & 0
\end{array}\right] \\
& \mathcal{P}_{\sigma}(\boldsymbol{s})=\left[\begin{array}{lllll}
0 & 1 & 3 & 0 & 1 \\
0 & 4 & 0 & 4 & 2 \\
0 & 2 & 2 & 3 & 3 \\
0 & 0 & 4 & 2 & 4 \\
0 & 3 & 1 & 1 & 0
\end{array}\right]
\end{aligned}
$$

Optimal Families from FQS

- General form of constant column additions
> Let \boldsymbol{a} be an integer sequence of period p
$>$ We denote $\boldsymbol{s}^{\prime}=\mathcal{A}^{\boldsymbol{a}}(\boldsymbol{s})$ if

$$
s^{\prime}(t) \equiv s(t)+a(t) \bmod p
$$

Theorem 3:

$$
\mathcal{F}_{A}(\boldsymbol{q})=\left\{\mathcal{A}^{a_{1}}(\boldsymbol{q}), \mathcal{A}^{\boldsymbol{a}_{2}}(2 \boldsymbol{q}), \mathcal{A}^{\boldsymbol{a}_{3}}(3 \boldsymbol{q}), \ldots, \mathcal{A}^{\boldsymbol{a}_{p-1}}((p-1) \boldsymbol{q})\right\}
$$

is optimal for any integer sequences \boldsymbol{a}_{i}

Examples ($\mathrm{p}=3$)

Group 1
Group 2

Relation with Frank-Zadoff Sequence

- $\mathcal{F}_{A}(z)=\left\{\mathcal{A}^{a_{1}}(z), \mathcal{A}^{a_{2}}(2 z), \mathcal{A}^{a_{3}}(3 z), \ldots, \mathcal{A}^{a_{p-1}}((p-1) z)\right\}$ is also optimal for any integer sequences $\boldsymbol{a}_{i}{ }^{\prime}$ s
$>$ What is the relation of \boldsymbol{q} and \boldsymbol{z} ?
- Question: Is there any other sequence \boldsymbol{s} such that $\mathcal{F}_{A}(\boldsymbol{s})$ becomes optimal for any integer sequences \boldsymbol{a}_{i} ?
> Most perfect sequences does not satisfy,
> except for $\boldsymbol{q}, \boldsymbol{z}$ and their
(1) Constant multiples
(2) Constant column additions
(3) Cyclic shifts and
(4) Decimations

$$
\begin{aligned}
& * s^{\prime}=\mathcal{D}_{d}(\boldsymbol{s}) \rightarrow s^{\prime}(t)=s(d t) \quad \text { Ex: }(0,1,2,4,3) \rightarrow(0,2,3,1,4): d=2 \\
& * d \neq 0 \bmod p
\end{aligned}
$$

- \boldsymbol{q} never goes to \boldsymbol{z} by (1)~(4) and vice versa either

Generator

- Let \boldsymbol{s} be a p-ary sequence of period p^{2}. If $\boldsymbol{d}_{\boldsymbol{s}, p}$ has period p, we let $\boldsymbol{g}=\boldsymbol{d}_{\boldsymbol{s}, p}$ and call \boldsymbol{g} as the generator of \boldsymbol{s}. Then,

$$
\begin{aligned}
& \text { Common Differences } \\
& \boldsymbol{s}=\left[\begin{array}{ccccc}
s(0) & s(1) & \uparrow & \cdots & s(p-1) \\
s(0)+g(0) & s(1)+g(1) & \cdots & s(p-1)+g(p-1) \\
s(0)+2 g(0) & s(1)+2 g(1) & \cdots & s(p-1)+2 g(p-1) \\
\vdots & \vdots & \ddots & \vdots \\
s(0)+(p-1) g(0) & s(1)+(p-1) g(1) & \cdots & s(p-1)+(p-1) g(p-1)
\end{array}\right] \\
& =\left[\begin{array}{c}
1 \\
1 \\
1 \\
\vdots \\
1
\end{array}\right]\left[\begin{array}{llll}
s(0) & s(1) & \cdots & s(p-1)
\end{array}\right]+\left[\begin{array}{c}
1 \\
2 \\
3 \\
\vdots \\
p-1
\end{array}\right]\left[\begin{array}{llll}
g(0) & g(1) & \cdots & g(p-1)
\end{array}\right] \\
& =\underline{\mathbf{1}}^{T} \underline{\boldsymbol{s}}^{+} \underline{\boldsymbol{\delta}}^{T} \underline{\boldsymbol{g}}
\end{aligned}
$$

$>$ Also, we say that \boldsymbol{s} has a generator $\boldsymbol{g}=\boldsymbol{d}_{\boldsymbol{s}, p}$ if $\boldsymbol{d}_{\boldsymbol{s}, p}$ has period p

Example

- Generate a 7 -ary sequence of period 49 having

$$
\boldsymbol{g}=(0,1,2,3,4,5,6)
$$

$\underline{s} \rightarrow \quad$| 0 | 4 | 3 | 6 | 5 | 1 | 3 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 1 | 2 | 3 | 4 | 5 | 6 |
| 0 | 5 | 5 | 2 | 2 | 6 | 2 |
| 0 | 1 | 2 | 3 | 4 | 5 | 6 |
| 0 | 6 | 0 | 5 | 6 | 4 | 1 |
| 0 | 0 | 2 | 1 | 3 | 2 | 0 |
| | 0 | 1 | 4 | 4 | 0 | 0 |

When we write $t=p i+j$ for $i, j=0,1, \ldots, p-1$, we can write this also as

$$
s(t)=s(p i+j)=g(j) i+s(j)
$$

Associated Family

- Denote $\mathcal{S}(\boldsymbol{g})$ be the set of all the sequences having the generator \boldsymbol{g}
- For any pair $\boldsymbol{s}_{1}, \boldsymbol{s}_{2} \in \mathcal{S}(\boldsymbol{g})$, there exists an integer sequence \boldsymbol{a} of period p that satisfies

$$
s_{1}=\mathcal{A}^{a}\left(s_{2}\right)
$$

- We call $\boldsymbol{\mathcal { S }}(\boldsymbol{g})$ as the associated family of \boldsymbol{g}
- The size of $\mathcal{S}(\boldsymbol{g})$ is p^{p}
> The number of different choices for \boldsymbol{a}
$>$ Some of them are cyclically equivalent: the cyclic shift by \boldsymbol{p} of a member is always cyclically equivalent to itself.

$$
\begin{aligned}
& \boldsymbol{q}=\left[\begin{array}{lllll}
0 & 0 & 3 & 1 & 1 \\
0 & 4 & 0 & 4 & 2 \\
0 & 3 & 2 & 2 & 3 \\
0 & 2 & 4 & 0 & 4 \\
0 & 1 & 1 & 3 & 0
\end{array}\right] \text {--> cyclic shift by } p=5 \text { gives }\left[\begin{array}{lllll}
0 & 4 & 0 & 4 & 2 \\
0 & 3 & 2 & 2 & 3 \\
0 & 2 & 4 & 0 & 4 \\
0 & 1 & 1 & 3 & 0 \\
0 & 0 & 3 & 1 & 1
\end{array}\right] \\
& \mathbf{g}=0
\end{aligned} 4 \begin{array}{llllllll}
& 4 & 3 & 1
\end{array} \quad \mathrm{~g}=0 \begin{array}{lllll}
4 & 2 & 3 & 1
\end{array}
$$

Perfect Generator

- We call \boldsymbol{g} as a perfect generator if \boldsymbol{s} is perfect for all $\boldsymbol{s} \in \mathcal{S}(\boldsymbol{g})$

Theorem 5: The followings are equivalent:
(1) \boldsymbol{g} is a perfect generator
(2) \boldsymbol{g} is balanced (in a period) ($=\boldsymbol{g}$ is a permutation)
(3) Every $\boldsymbol{s} \in \mathcal{S}(\boldsymbol{g})$ has RC-balanced differentials

- The theorem indicates the construction of perfect generator
- The number of p-ary perfect sequences of period p^{2} :

The number of perfect generators $\begin{aligned} & \text { The number of members in an } \\ & \text { associated family }\end{aligned}$
= Number of whole p-ary perfect sequences of period p^{2}
in Mow's conjecture (1996)

Optimal Generator

- [Another definition] We call \boldsymbol{g} as an optimal generator if for any $s \in \mathcal{S}(g)$,

$$
\mathcal{F}_{A}(\boldsymbol{s})=\left\{\mathcal{A}^{a_{1}}(\boldsymbol{s}), \mathcal{A}^{a_{2}}(2 \boldsymbol{s}), \mathcal{A}^{a_{3}}(3 s), \ldots, \mathcal{A}^{a_{p-1}}((p-1) \boldsymbol{s})\right\}
$$

is optimal for any integer sequences \boldsymbol{a}_{i}

Theorem 4: If \boldsymbol{g} is an optimal generator of period p, then

$$
\mathcal{F}_{G}(\boldsymbol{g})=\left\{\boldsymbol{s}_{1}, \boldsymbol{s}_{2}, \boldsymbol{s}_{3}, \ldots, \boldsymbol{s}_{p-1}\right\}
$$

with $s_{i} \in \mathcal{S}(i g)$ is an optimal family

Properties of Optimal Generators

Theorem 6 [A Sufficient Condition for Optimal Generators]:

\boldsymbol{g} is an optimal generator if

$$
H(m \boldsymbol{g}, n \boldsymbol{g}, \tau)=1
$$

$H(\boldsymbol{a}, \boldsymbol{b}, \tau)$ is a
Hamming correlation of \boldsymbol{a} and \boldsymbol{b} at τ
for all $\tau=0,1,2, \ldots, p-1$, and
for any $m, n \neq 0(\bmod p)$ and $m \neq n(\bmod p)$

- Hamming correlation represents the number of hits:

$$
\begin{gathered}
\boldsymbol{a}=(0,1,2,3,4,5,6) \\
\boldsymbol{b}=(2,1,6,3,5,4,0) \\
H(\boldsymbol{a}, \boldsymbol{b}, 0)=2 \\
H(\boldsymbol{a}, \boldsymbol{b}, 1)=1
\end{gathered}
$$

$$
\begin{aligned}
& \boldsymbol{q}=\left[\begin{array}{lllll}
0 & 0 & 3 & 1 & 1 \\
0 & 4 & 0 & 4 & 2 \\
0 & 3 & 2 & 2 & 3 \\
0 & 2 & 4 & 0 & 4 \\
0 & 1 & 1 & 3 & 0
\end{array}\right] \text { where } g(j)=\left(\begin{array}{ll}
0 & 4
\end{array} 231\right) \\
& 2 g=0341203: 412 \\
& \boldsymbol{g}=04231 \\
& \mathcal{T}_{4}(\boldsymbol{g})=04231 \\
& \mathcal{T}_{3}(\boldsymbol{g})=04231 \\
& \mathcal{T}_{2}(g)= \\
& \mathcal{J}_{1}(g)= \\
& 04231 \\
& 04231
\end{aligned}
$$

Properties of Optimal Generators

Theorem 7: If \boldsymbol{g} is an optimal generator, then
(1) Cyclic Shifts: $\boldsymbol{g}^{\prime}=\mathcal{T}_{\tau}(\boldsymbol{g})$
(2) Constant Multiples: $\boldsymbol{g}^{\prime}=m \boldsymbol{g}$
(3) Decimations: $\boldsymbol{g}^{\prime}=\mathcal{D}_{d}(\boldsymbol{g})$
are also optimal generators.

- Example of operations:
> Cyclic shift: $\mathcal{T}_{1}(\{0,1,2,3,4\})=\{1,2,3,4,0\}$
> Constant multiple: $2\{0,1,2,3,4\}=\{0,2,4,1,3\}$
> Decimations: $\mathcal{D}_{2}(\{0,1,2,3,4\})=\{0,2,4,1,3\}$

Equivalence of Optimal Generators

We say they are equivalent if one can be reached from another by (1) and (2).

Decimation and Equivalence

- Decimation is not considered to build the equivalence set of an optimal generator
> $\mathcal{D}_{2}(\mathbf{0}, \mathbf{1}, \mathbf{2}, \mathbf{3}, \mathbf{4})=(0,2,4,1,3)=2(0,1,2,3,4)$
$>\mathcal{D}_{3}(\mathbf{0}, \mathbf{1}, \mathbf{2}, \mathbf{3}, 4)=(0,3,1,4,2)=3(0,1,2,3,4)$
$>\mathcal{D}_{4}(\mathbf{0}, \mathbf{1}, \mathbf{2}, \mathbf{3}, \mathbf{4})=(0,4,3,2,1)=4(0,1,2,3,4)$
$>\rightarrow$ Equivalent already!

Theorem 8 [A Sufficient Condition for Theorem 6]:

If \boldsymbol{g} is balanced and all its decimations are equivalent with \boldsymbol{g}, then it satisfies the Hamming correlation property in Theorem 6. Hence, it is an optimal generator

Construction of Optimal Generators

Theorem 9 [Main Contribution]:

[The Necessary and Sufficient Condition for Theorem 8]:
Let $\boldsymbol{g}(\kappa, m, \tau)$ be a p-ary sequence with

$$
g(t ; \kappa, m, \tau) \equiv m(t+\tau)^{\kappa} \bmod p
$$

for any

- integer κ that is relatively prime to $p-1$
- integer $m \neq 0 \bmod p \quad$ (constant-multiples, one may fix $m=1$)
- integer $\tau \quad$ (cyclic-shifts, one may fix $\tau=0$)

Then, $\boldsymbol{g}(\kappa, m, \tau)$ is a perfect generator and is equivalent with all its decimated sequences, and conversely.
Hence, it is an optimal generator.

All the OGs of $p \leq 13(m=1, \tau=0)$

p	Optimum Generator	κ	FQ/FZ
3	\{ 0,1,2 \}	1	FQ and FZ
5	\{ 0,1,2,3,4\}	1	FZ
	\{ 0,1,3,2,4 \}	3	FQ
7	\{ 0,1,2,3,4,5,6\}	1	FZ
	\{ 0,1,4,5,2,3,6\}	5	FQ
11	$\{0,1,2,3,4,5,6,7,8,9,10\}$	1	FZ
	\{ 0,1,8,5,9,4,7,2,6,3,10 \}	3	New
	\{ 0,1,7,9,5,3,8,6,2,4,10 \}	7	New
	\{ 0,1,6,4,3,9,2,8,7,5,10 \}	9	FQ
13	\{ 0,1,2,3,4,5,6,7,8,9,10,11,12 \}	1	FZ
	$\{0,1,6,9,10,5,2,11,8,3,4,7,12\}$	5	New
	$\{0,1,11,3,4,8,7,6,5,9,10,2,12\}$	7	New
	\{ 0,1,7,9,10,8,11,2,5,3,4,6,12 \}	11	FQ

[^0]
Hierarchy of p-ary Perfect Sequences of period \boldsymbol{p}^{2}

Perfect Sequences

Sequences having

Mow's Conjecture (96)

RC-balanced differentials

Theorem 5
Sequences having perfect generator

Our Conjecture; verified for $p \leq 13$

Sequences having optimum generator constructed by
Theorem 9 [main]

Selected References

- D. C. Chu, "Polyphase codes with good periodic correlation properties," IEEE Trans IT, pp. 531-532, July 1972.
- P. Z. Fan, and M. Darnell, Sequence Design for communications applications, Research Studies Press, 1996.
- R. L. Frank, "Polyphase codes with good non-periodic correlation properties," IEEE Trans IT, pp. 43-45, 1963.
- R. L. Frank and S. A. Zadoff, "Phase shift pulse codes with good periodic correlation properties," IRE Trans IT(Corresp.), vol. IT-S, pp. 381-382, Oct. 1962.
- G. Gong and H.-Y. Song, "Two-tuple balance of non-binary sequences with ideal two-level autocorrelation," Discrete Applied Mathematics, vol. 154, pp. 2590-2598, 2006.
- R. C. Heimiller, "Phase shift codes with good periodic correlation propertles," IRE Trans IT, vol. IT-7, pp. 254-257, Oct. 1961.
- D. S. Kim, H.-J. Chae, H.-Y. Song, "A generalization of the Family of p-ary Decimated Sequences with Low Correlation," IEEE Trans IT, vol.57, no.11, pp. 7614-7617, November 2011.
- P. V. Kumar, R. A. Scholtz, and L. R. Welch, "Generalized bent functions and their properties," Journal of Combinatorial Theory, Series A 40, pp. 90-107, 1985.
- N. Levanon and E. Mozeson, Radar Signals, John Wiley \& Sons, Inc., 2004.
- W. H. Mow, "A new unified construction of perfect root-of-unity sequences," Proc. IEEE 4th Int. Symp. Spread Spectrum Tech. Appl., Mainz, Germany, vol. 3, pp. 955-959, Sep. 1996.
- W. H. Mow, "Unified perfect roots-of-unity sequences construction, and its use for designing better preambles than Zadoff-Chu sequences," Proceedings of the Seventh International Workshop on Signal Design and Its Applications in Communications (IWSDA 2015), Bengaluru, India, September 13-18, 2015.
- A. Ostafe and I. E. Shparlinski, "Pseudorandomness and dynamics of Fermat quotients," SIAM J. Discrete Math., vol. 25, pp. 50-71, 2011.
- K. -H. Park, H. -Y. Song, and D. S. Kim, "Families of perfect polyphase sequences from the array structure of Fermat-quotient sequences and Frank-Zadoff sequences," Proceedings of the 2015 IEEE International Symposium on Information Theory (ISIT2015), Hong-Kong, June 14-19, 2015.
- B. M. Popovi\'\{c\}, "Generalized chirp-like polyphase sequences with optimum correlation properties," IEEE Trans IT, vol. 38, no. 4, pp. 1406-1409, July 1992.
- D. V. Sarwate, "Bounds on the crosscorrelation and autocorrelation of sequences," IEEE Trans IT, vol. IT-25, pp. 720-724, 1979.
- M. Soltanalian and P. Stoica, "On prime root-of-unity sequences with perfect periodic correlation ," IEEE Trans SP, vol. 62, 2014.
- N. Suehiro and M. Hatori, "Modulatable orthogonal sequences and their application to SSMA systems," IEEE Trans IT, vol. 34, pp. 93100, 1988.
- N. Zhang, and S. W. Golomb, "Polyphase sequences with low autocorrelation," IEEE Trans IT, vol. 39, no. 3, pp. 1085-1089, May 1993.

[^0]: * FZ: equivalent generator of Frank-Zadoff's FQ: equivalent generator of Fermat-quotient's

