Eigenvalues and eigenvectors of Paley-type Hadamard matrices

Hong-Yeop Song Yonsei university

KICS-NA 2017, Feb. 10-11.

Hadamard Matrix

DEFINITION.

Let *n* be a positive integer. A Hadamard matrix *H* of order *n* (or, size $n \times n$) is an $n \times n$ matrix with all entries +1 or -1 such that

$$H H^T = nI$$
,

where *I* is the $n \times n$ identity matrix.

Some Well-known Types

Special case of **Paley-type**

Only for n=4 ?? True for n up to 548 Million

cyclic type - + - + + + - - - + --+-++---- + - - + - + + + - --+--++++-+ - - + - + + +-+--++ --+-+ + + + - - - + - - + --+++--+ + + - + + + - - - + - -

Cyclic Hadamard Conjecture:

For all n such that

n-1 is either

(2) p(p+2), twin primes, or

(3) 2^t -1.

True for all n-1 (=3 mod 4) up to 10,000, except possibly for 7 cases, smallest of which is 3439.

Paley-type Hadamard matrix

exists for all odd prime power q with size (1) n=q+1 when $q \equiv 3 \pmod{4}$ (2) n=2(q+1) when $q \equiv 1 \pmod{4}$

Williamson type

+	+	+	_	+	+	_	+	+	<u> </u>	+	+
+	+	+	+	_	+	+	_	+	+	_	+
+	+	+	+	+	—	+	+	-	+	+	_
+	_	$\left(- \right)$	+	+	+	+	_	-	-	+	+
_	+	_	+	+	+	_	+	-	+	_	+
_	_	+	+	+	+	—	_	$^+$	+	+	—
+	—	—	—	+	+	+	+	+	+	—	
_	+	—	+	_	+	+	+	+	_	+	_
_	_	+	+	+	—	+	+	+	—	—	+
+	—	=	+	_	_	—	+	+	+	+	+
_	+	_	<u> </u>	+	_	+	_	+	+	+	+
_	_	+	_	—	+	+	+	—	+	+	+

Williamson Conjecture turns out to be false: n=4*35=140.

Notation

- *p* : an odd prime
- $q = p^k$: an odd prime power
- I_n (or 0_n) : the identity matrix (or the all-zero matrix) of order n
- $\underline{1}_n$ (or $\underline{0}_n$) : the all-one vector (or the all-zero vector) of length n
- $j = \sqrt{-1}$: the imaginary unit
- ω_n : a complex primitive *n*-th root of unity
- $\Omega_n = \operatorname{diag}(1, \omega_n, \dots, \omega_n^{n-1})$
- F_n : the Fourier matrix of order n
- Z_q : the set of integers modulo q
- GF(q) : the finite field of size q
 - Jacobsthal matrix Q of order q
 - **Paley matrix** *C* of order q + 1
 - **Paley-type Hadamard matrix** *H* of order q + 1 or 2(q + 1)

Paley-type Hadamard matrices from Paley matrices

• Let *C* be a **Paley matrix** of order q + 1 where $q = p^k$.

• (Type 1) If
$$q \equiv 3 \pmod{4}$$
, then
 $C + I_{q+1}$.

• (Type 2) If
$$q \equiv 1 \pmod{4}$$
, then

$$H = \begin{bmatrix} C + I_{q+1} & C - I_{q+1} \\ C - I_{q+1} & -C - I_{q+1} \end{bmatrix}.$$

Paley matrices from Jacobsthal matrices

• For a given a **Jacobsthal matrix** *Q* of order *q*, a Paley matrix *C* of order *q* + 1 is defined by

$$C = \begin{bmatrix} 0 & \underline{1}_q^T \\ \underline{\pm}\underline{1}_q & Q \end{bmatrix},$$

where the sign of $\pm \underline{1}_q$ is

- +, if $q \equiv 1 \pmod{4}$ so that *C* becomes symmetric
- –, if $q \equiv 3 \pmod{4}$ so that *C* becomes **skew-symmetric**

Jacobsthal matrices

Let Ψ be a **bijective map** from Z_q to GF(q) such that $\Psi(0) = 0$. Then, a **Jacobsthal matrix** $Q_{\Psi} = (\sigma_{s,t})$ is a $q \times q$ matrix with $\sigma_{s,t} = \chi(\Psi(s) - \Psi(t))$ where χ is the **quadratic character** of GF(q) and we use the convention that $\chi(0) = 0$.

Property of Jacobsthal matrices (I)

• (Definition of Jacobsthal matrices) Let Ψ be a bijective map from Z_q to GF(q) such that $\Psi(0) = 0$. Then, a Jacobsthal matrix $Q_{\Psi} = (\sigma_{s,t})$ is a $q \times q$ matrix with

 $\sigma_{s,t} = \chi \big(\Psi(s) - \Psi(t) \big)$

where χ is the quadratic character of GF(q) and we use the convention that $\chi(0) = 0$.

• There are $\frac{q-1}{2}$ quadratic residues and $\frac{q-1}{2}$ quadratic non-residues. Therefore,

 $Q_{\Psi} \underline{1}_q = \underline{0}_q$ for any bijective map Ψ .

Property of Jacobsthal matrices (II)

- Let Ψ and Φ be two **bijective maps** from Z_q to GF(q). Then, there exists a **permutation** f on GF(q) such that $f(\Psi(x)) = \Phi(x)$, for all $x \in Z_q$ since Ψ and Φ are bijective.
- Therefore, any two **Jacobsthal matrices** Q_{Ψ} and Q_{Φ} corresponding to Ψ and Φ , respectively, are related by

$$Q_{\Phi} = P_f Q_{\Psi} P_f^T$$

where P_f is the permutation matrix of the permutation f on GF(q).

• If $Q_{\Psi} = S\Lambda S^{H}$ is the diagonalization of Q_{Ψ} by *S*, then, $Q_{\Phi} = P_{f}Q_{\Psi}P_{f}^{T} = P_{f}S\Lambda S^{H}P_{f}^{T} = P_{f}S\Lambda (P_{f}S)^{H}$

is the diagonalization of Q_{Φ} by $P_f S$.

• Therefore, it is enough to find eigenvalue decomposition of any one Jacobsthal matrix for the same order.

The Jacobsthal matrix

 b_{-1}

Let α be a primitive element of GF(q).
 We define a map Ψ from Z_q to GF(q) as

$$\Psi(i) = c_0 + c_1 \alpha + \cdots + c_{k-1} \alpha^{k-1} = \sum_{z=0}^{k-1} c_z \alpha^z,$$

where $i = \sum_{z=0}^{k-1} c_z p^z$ is the unique representation with $0 \le c_z < p$, for z = 0, 1, ..., k - 1.

- In the remaining, we denote **the Jacobsthal matrix**, which constructed by using the bijective function Ψ , by Q.
- This map Ψ gives Q an interesting structure, called multi-level circulancy, which we will use.

※ Notation

Circulant when we regard the 3×3 block as elements. \Rightarrow 'Block circulant'

Each block is circulant.

 \Rightarrow 'Block circulant with circulant blocks'

Hong-Yeop Song

Multi-level circulancy

(Multi-level circulant matrix of order p^k)
 A square matrix of order q = p^k is a k-level circulant if, for any integers t = 1, 2, ..., k, all the partitioned p^{2(k-t)} square blocks of order p^t are block circulant with blocks of order p^{t-1}.

• (Fact)

The Jacobsthal matrix Q of order $q = p^k$ is a k-level circulant matrix.

15

A visualization of k-level circulant matrix of order p^k

Multi-level circulant

Eigenvalue decomposition of Q

• (Lemma – well-known: ED of ANY *k*-level circulant matrix) Let *Q* be the Jacobsthal matrix of order $q = p^k$ and

$$\beta = \left(\beta_0, \beta_1, \dots, \beta_{p^k - 1}\right)$$

be the first row of Q.

• Then,

 $Q = S_Q \Lambda_Q S_Q^H$

where

$$\mathbf{S}_{\mathbf{Q}} = \underbrace{F_p \otimes F_p \otimes \cdots \otimes F_p}_{p} \coloneqq \bigotimes F_p,$$

k

k times

$$\boldsymbol{\Lambda}_{\boldsymbol{Q}} = \sum_{l_0=0}^{p-1} \cdots \sum_{l_{k-1}}^{p-1} \beta_{\boldsymbol{\Psi}^{-1}(\boldsymbol{\theta})} (\Omega_p^{l_0} \otimes \cdots \otimes \Omega_p^{l_{k-1}}),$$

and

$$\boldsymbol{\theta} = \sum_{e=0}^{k-1} l_e \alpha^e \text{ and } \boldsymbol{\Omega}_p = \text{diag}(1, \omega_p, \dots, \omega_p^{p-1})$$
Hong-Yeop Song

when k = 1, p = 7

- $GF(q) = GF(p) = Z_p$ and $\Psi(i) = c_0 = i$ for all $i \in Z_p$
- $\sigma_{s,t} = \chi(\Psi(s) \Psi(t)) = \chi(s-t)$ for $s, t = 0, 1, \dots, p-1$
- The top row of the Jacobsthal matrix Q of order 7 become

$$\beta = (\beta_0, \beta_1, \dots, \beta_6)$$

= $(\chi(0), \chi(-1), \dots, \chi(-6))$
= $(\chi(0), \chi(6), \chi(5), \chi(4), \chi(3), \chi(2), \chi(1))$
= $(0, -1, -1, +1, -1, +1, +1)$

• Next row becomes

$$(\chi(1), \chi(0), \dots, \chi(-5))$$

= $(\chi(1), \chi(0), \chi(6), \chi(5), \chi(4), \chi(3), \chi(2))$
= $(+1, 0, -1, -1, +1, -1, +1, +1)$

etc. Therefore,

$$Q = \begin{bmatrix} \mathbf{0}, -, -, +, -, +, + \\ +, \mathbf{0}, -, -, +, -, + \\ +, +, \mathbf{0}, -, -, +, - \\ -, +, +, \mathbf{0}, -, -, + \\ +, -, +, +, \mathbf{0}, -, - \\ -, +, -, +, +, \mathbf{0}, - \\ -, -, +, -, +, +, \mathbf{0} \end{bmatrix}$$

• $S_Q = F_p$ is the Fourier matrix of order p = 7, where

$$F_{p}^{H} = \frac{1}{\sqrt{p}} \begin{bmatrix} 1, & 1, & 1, \dots, & 1 \\ 1, & \omega^{1}, & \omega^{2}, \dots, & \omega^{6} \\ 1, & \omega^{2}, & \omega^{4}, \dots, & \omega^{12} \\ 1, & \omega^{3}, & \omega^{6}, \dots, & \omega^{18} \\ 1, & \omega^{4}, & \omega^{8}, \dots, & \omega^{24} \\ 1, & \omega^{5}, & \omega^{10}, \dots, & \omega^{30} \\ 1, & \omega^{6}, & \omega^{12}, \dots, & \omega^{36} \end{bmatrix}$$

$$S_Q = \underbrace{F_p \otimes F_p \otimes \cdots \otimes F_p}_{k} := \bigotimes^k F_p,$$

•
$$\Lambda_{\boldsymbol{Q}} = \sum_{l_0=0}^{6} \beta_{\boldsymbol{\Psi}^{-1}(\boldsymbol{\theta})} \Omega_7^{l_0} = \sum_{l=0}^{6} \beta_{\boldsymbol{\theta}} \Omega_7^{l} = \sum_{l=0}^{6} \beta_l \Omega_7^{l},$$
where

$$\mathbf{\Omega}_{\mathbf{7}} = \operatorname{diag}(1, \omega, \omega^2, \dots, \omega^6)$$

and

$$\theta = \sum_{e=0}^{k-1} l_e \alpha^e = l_0 \alpha^0 = l_0 = l$$

$$\begin{split} \mathbf{\Lambda}_{\boldsymbol{Q}} &= \sum_{l_0=0}^{p-1} \cdots \sum_{l_{k-1}}^{p-1} \beta_{\Psi^{-1}(\theta)} \big(\Omega_p^{l_0} \otimes \cdots \otimes \Omega_p^{l_{k-1}} \big), \\ \theta &= \sum_{e=0}^{k-1} l_e \alpha^e \text{ and } \mathbf{\Omega}_{\boldsymbol{p}} = \text{diag}(1, \omega_p, \dots, \omega_p^{p-1}) \end{split}$$

$$\boldsymbol{\beta} = (\boldsymbol{\beta}_0, \boldsymbol{\beta}_1, \dots, \boldsymbol{\beta}_6) = (0, -1, -1, +1, -1, +1, +1)$$
$$\boldsymbol{\Omega}_7 = \begin{bmatrix} 1, & 0, & 0, & \dots & , & 0 \\ 0, & \omega^1, & 0, & \dots & , & 0 \\ 0, & 0, & \omega^2, & \dots & , & 0 \\ 0, & 0, & 0, & \dots & , & 0 \\ 0, & 0, & 0, & \dots & , & 0 \\ 0, & 0, & 0, & \dots & , & 0 \\ 0, & 0, & 0, & \dots & , & \omega^6 \end{bmatrix}$$

Therefore, *i*-th eigenvalue λ_i becomes (for i = 0, 1, ..., 6)

$$\lambda_i = \sum_{l=0}^{\infty} \beta_l \omega^{li} = -\omega^i - \omega^{2i} + \omega^{3i} - \omega^{4i} + \omega^{5i} + \omega^{6i}$$

$$\lambda_{0} = 0$$

$$\lambda_{1} = -2j \operatorname{Im} \{\omega^{1} + \omega^{2} + \omega^{4}\}$$

$$= -2j \left\{ \sin\left(\frac{2\pi}{7}\right) + \sin\left(\frac{4\pi}{7}\right) + \sin\left(\frac{8\pi}{7}\right) \right\} \cong -j (2.6458)$$

$$\lambda_{2} = \lambda_{1}$$

$$\lambda_{3} = -\lambda_{1}$$

$$\lambda_{4} = \lambda_{1}$$

$$\lambda_{5} = -\lambda_{1}$$

$$\lambda_{6} = -\lambda_{1}$$

$$\lambda_{7} = \lambda_{1}$$

$$\lambda_{7} = -\lambda_{1}$$

$$\lambda_{7} = -\lambda_{1$$

Eigenvalue decomposition of Paley matrices

• Let \tilde{S}_Q and $\tilde{\Lambda}_Q$ be the $(q-1) \times (q-1)$ right-bottom sub-matrices of S_Q and Λ_Q , respectively. Then

$$C = S_C \Lambda_C S_C^H$$

where

for $q \equiv 3 \pmod{4}$ for $q \equiv 1 \pmod{4}$ $S_{C} = \begin{vmatrix} \sqrt{q} & -\sqrt{q} & \underline{0}_{q-1}^{T} \\ 1 & 1 & \sqrt{2}\underline{1}_{q-1}^{T} \\ 1_{q-1} & 1_{q-1} & \sqrt{2}q\widetilde{\mathbf{S}}_{q} \end{vmatrix}$ $S_{C} = \begin{vmatrix} J\sqrt{q} & -J\sqrt{q} & \underline{\upsilon}_{q-1} \\ 1 & 1 & \sqrt{2}\underline{1}_{q-1}^{T} \\ 1 & 1 & \sqrt{2}q\widetilde{\mathbf{S}}_{0} \end{vmatrix}$ $\Lambda_C = \begin{bmatrix} \sqrt{q} & 0 & \underline{0}_{q-1}^{T} \\ 0 & -\sqrt{q} & \underline{0}_{q-1}^{T} \\ 0_{q-1} & 0_{q-1} & \widetilde{A}_{0} \end{bmatrix}$ $\Lambda_{C} = \begin{vmatrix} -J\sqrt{q} & 0 & \underline{0}_{q-1} \\ 0 & J\sqrt{q} & \underline{0}_{q-1}^{T} \\ 0_{q-1} & 0_{q-1} & \widetilde{\Lambda}_{Q} \end{vmatrix}$

Some remarks for the proof

• Jacobsthal matrix Q is diagonalized by its eigenvector matrix

$$S_Q = \bigotimes^{\kappa} F_p$$
.

- (Fact1) The left-most column of S_Q is a constant vector.
- (Fact2) The others are not constant vectors.
- (Fact3) All the columns of S_Q are orthonormal with each other.
- Paley matrix is of the form,

$$C = \begin{bmatrix} 0 & \underline{1}_{q}^{T} \\ \underline{\pm}\underline{1}_{q} & Q \end{bmatrix}.$$
 border
circulant core

- We can guess that eigenvectors and eigenvalues of *C* are related to those of the circulant core *Q*.
- We will show that it is true by deriving the eigenvectors of C from those of Q.

Proof: when $q \equiv 3 \pmod{4}$

Let λ be an eigenvalue of Q corresponding to a not all-one eigenvector \underline{v} . Since $\underline{1}_q$ and \underline{v} are orthogonal, we have

$$C\begin{bmatrix} 0\\ \underline{\nu} \end{bmatrix} = \begin{bmatrix} 0 & \underline{1}_q^T\\ -\underline{1}_q & Q \end{bmatrix} \begin{bmatrix} 0\\ \underline{\nu} \end{bmatrix} = \lambda \begin{bmatrix} 0\\ \underline{\nu} \end{bmatrix}.$$

Therefore, $\begin{bmatrix} 0 \\ \frac{v}{2} \end{bmatrix}$ is the eigenvector of *C* and its corresponding eigenvalue is λ . $\Rightarrow q - 1$ eigenvalues & eigenvectors are found.

For the remaining two, consider

$$C\begin{bmatrix} x\\\underline{1}_q \end{bmatrix} = \begin{bmatrix} 0 & \underline{1}_q^T\\-\underline{1}_q & Q \end{bmatrix} \begin{bmatrix} x\\\underline{1}_q \end{bmatrix} = \lambda \begin{bmatrix} x\\\underline{1}_q \end{bmatrix},$$

for some λ .

This gives $q = x\lambda$ and $-x = \lambda$.

Solving these two equations gives

$$(x,\lambda) = (j\sqrt{q}, -j\sqrt{q})$$
 or $(-j\sqrt{q}, j\sqrt{q})$.

These two solutions give two remaining eigenvectors and their corresponding eigenvalues.

Eigenvalue decomposition of Paley-type Hadamard matrices

• Recall the definition of **Paley-type Hadamard matrix** of order q + 1, where $q = p^k$

• (Type 1) If
$$q \equiv 3 \pmod{4}$$
, then
 $C + I_{q+1}$.

• (Type 2) If
$$q \equiv 1 \pmod{4}$$
, then

$$H = \begin{bmatrix} C + I_{q+1} & C - I_{q+1} \\ C - I_{q+1} & -C - I_{q+1} \end{bmatrix}$$
Column
permutation

$$H = \begin{bmatrix} C - I_{q+1} & C + I_{q+1} \\ -C - I_{q+1} & C - I_{q+1} \end{bmatrix}$$

Skew block circulant

Eigenvalue decomposition Paley-type 1

• (Type 1) If
$$q \equiv 3 \pmod{4}$$
, then

$$H = C + I_{q+1} = S_C \left(\Lambda_C + I_{q+1} \right) S_C^H.$$

All the eigenvectors are orthonormal with each other.

Proof) Obvious since $I_{q+1} = S_C S_C^H$.

Eigenvalue decomposition Paley-type 2

• (Type 2) If $q \equiv 1 \pmod{4}$, then

$$H = \begin{bmatrix} C - I_{q+1} & C + I_{q+1} \\ -C - I_{q+1} & C - I_{q+1} \end{bmatrix} = S_h \Lambda_h S_h^H$$

where

$$S_{h} = \frac{1}{\sqrt{2}} \begin{bmatrix} S_{C} & S_{C} \\ -jS_{C} & jS_{C} \end{bmatrix},$$
$$\Lambda_{h} = \begin{bmatrix} \Lambda_{C} - I_{q+1} + j(\Lambda_{C} + I_{q+1}) & 0_{q+1} \\ 0_{q+1} & \Lambda_{C} - I_{q+1} - j(\Lambda_{C} + I_{q+1}) \end{bmatrix}.$$

All the eigenvectors are orthonormal with each other.

The proof Paley-type 2

Proof) For simplicity, denote I_{q+1} by I.

$$H = \begin{bmatrix} C - I & C + I \\ -C - I & C - I \end{bmatrix} \coloneqq \begin{bmatrix} B_0 & B_1 \\ -B_1 & B_0 \end{bmatrix}$$
Skew block circulant
$$AHA^H = \begin{bmatrix} I & 0 \\ 0 & jI \end{bmatrix} \begin{bmatrix} B_0 & B_1 \\ -B_1 & B_0 \end{bmatrix} \begin{bmatrix} I & 0 \\ 0 & jI \end{bmatrix}^H = \begin{bmatrix} B_0 & -jB_1 \\ -jB_1 & B_0 \end{bmatrix}$$
block circulant
(more friendly)

Since both B_0 and B_1 are diagonalizable by the orthogonal matrix S_C ,

$$\begin{bmatrix} B_0 & -jB_1 \\ -jB_1 & B_0 \end{bmatrix} \begin{bmatrix} S_C \\ S_C \end{bmatrix} = \begin{bmatrix} S_C \\ S_C \end{bmatrix} \{(\Lambda_C - I) - j(\Lambda_C + I)\}$$
$$\begin{bmatrix} B_0 & -jB_1 \\ -jB_1 & B_0 \end{bmatrix} \begin{bmatrix} S_C \\ -S_C \end{bmatrix} = \begin{bmatrix} S_C \\ -S_C \end{bmatrix} \{(\Lambda_C - I) + j(\Lambda_C + I)\}$$

The proof Paley-type 2

Therefore, we conclude that

 $AHA^{H} = S\Lambda S^{H}$ $\implies H = A^{H}S \Lambda (A^{H}S)^{H}$

where

$$S_h \coloneqq A^H S = \frac{1}{\sqrt{2}} \begin{bmatrix} S_C & S_C \\ -jS_C & jS_C \end{bmatrix},$$

$$\Lambda_h \coloneqq \Lambda = \begin{bmatrix} \Lambda_C - I_{q+1} + j(\Lambda_C + I_{q+1}) & 0_{q+1} \\ 0_{q+1} & \Lambda_C - I_{q+1} - j(\Lambda_C + I_{q+1}) \end{bmatrix}.$$

It is easy to check that all the eigenvectors of H are orthonormal with each other.

Cyclic type Hadamard matrices

- A binary sequence of length n 1 is called cyclic Hadamard sequence when
 - -1 occurs (n+1)/2 and +1 occurs (n-1)/2.
 - Out-of-phase autocorrelation is always -1.
- A cyclic type Hadamard matrix of order *n*, constructed by a cyclic Hadamard sequence $\gamma = (\gamma_0, \gamma_1, \dots, \gamma_{n-2})$, is defined by $H = \begin{bmatrix} 1 & \underline{1}_{n-1}^T \\ \underline{1}_{n-1} & \underline{\operatorname{circ}}(\gamma) \end{bmatrix}.$
- Well-known cyclic Hadamard sequences:
 - binary m-sequence
 - binary GMW sequences
 - Hall's sextic residue sequences
 - Quadratic residue sequence (or Legendre sequence)
 - Twin prime sequences

Circulant core

Cyclic type Hadamard matrices

• When $q = p = 3 \pmod{4}$, a Paley-type Hadamard matrix is

$$H = \begin{bmatrix} 0 & \underline{1}_q^T \\ -\underline{1}_q & Q \end{bmatrix} + I_{q+1} = \begin{bmatrix} 1 & \underline{1}_q^T \\ -\underline{1}_q & Q + I_q \end{bmatrix}.$$

Here, note that $Q + I_q$ is the circulant core of H.

• Then,

$$\begin{bmatrix} 1 & \underline{1}_{q}^{T} \\ \underline{1}_{q} & -Q - I_{q} \end{bmatrix}$$
 is of cyclic-type

• Previous method for Paley matrices can be similarly used.

Eigenvalue decomposition cyclic type

Let *H* be a cyclic-type Hadamard matrix of order *n* constructed by a cyclic Hadamard sequence γ of length n - 1. Then,

 $H = S_h \Lambda_h (S_h)^H$

where

$$S_{h} = \begin{bmatrix} \frac{1+\sqrt{n}}{\sqrt{2n+2\sqrt{n}}} & \frac{1-\sqrt{n}}{\sqrt{2n-2\sqrt{n}}} & \underline{0}_{n-2}^{T} \\ \frac{1}{\sqrt{2n+2\sqrt{n}}} & \frac{1}{\sqrt{2n-2\sqrt{n}}} & \frac{1}{\sqrt{n-1}} \underline{1}_{n-2}^{T} \\ \frac{1}{\sqrt{2n+2\sqrt{n}}} \underline{1}_{n-2} & \frac{1}{\sqrt{2n-2\sqrt{n}}} & \widetilde{F}_{n-1} \end{bmatrix}$$

and

with

$$\Lambda_{h} = \operatorname{diag}(\lambda_{0} = +\sqrt{n}, \ \lambda_{1} = -\sqrt{n}, \ \lambda_{2}, \lambda_{3}, \dots, \lambda_{n-1})$$
$$\lambda_{i+1} = \sum_{z=0}^{n-2} \gamma_{z} \omega_{n-1}^{iz} \quad \text{for} \quad i = 1, 2, 3, \dots, n-2.$$

 $\overline{z=0}$

- All the cyclic-type Hadamard matrices of order n have
 - the same eigenvector matrix S_h
 - closely related with the Fourier matrix of order n 1.
 - (complex) unitary
 - $\pm \sqrt{n}$ as common eigenvalues, and
 - remaining n 2 eigenvalues

$$\lambda_{i+1} = \sum_{z=0}^{n-2} \gamma_z \omega_{n-1}^{iz}$$
 for $i = 1, 2, 3, ..., n-2$,

where

$$\boldsymbol{\gamma} = (\gamma_0, \gamma_1, \dots, \gamma_{n-2})$$

is the top-row of the circulant core

(cyclic Hadamard sequence of length n - 1)

Summary

- The eigenvalue decomposition of a Paley-type Hadamard matrix is obtained explicitly, by using the multi-level circulant structure of some Jacobsthal matrices.
- By using similar method, the eigenvalue decomposition of cyclictype Hadamard matrix is also obtained.
- The eigenvalues of Paley-type and cyclic-type Hadamard matrices are closely related to their multi-level circulant cores.
- FAST Paley-Hadamard Transform algorithm?? Or, fast cyclic-Hadamard Transform algorithm??