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Hadamard Matrix
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DEFINITION.

Let n be a positive integer. A Hadamard matrix H of order n (or,
size nXn) is an nXn matrix with all entries +1 or -1 such that

HH"=nl,
where [ is the nXn identity matrix.




2 Some Well-known Types

Special case of Paley-type
circulant cycllc type Williamson type
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.. .. .... Cyclic Hadamard Conjecture: | Williamson Conjecture

. . For all n such that turns out to be false:
.I: .. n-1 is either n=4*35=140.

(1) p=3mod 4, or

(2) p(p+2), twin primes, or
(3) 2t -1.

True for all n-1 (=3 mod 4) up to 10,000, except possibly for 7 cases,
smallest of which is 3439.
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. .. Paley-type Hadamard matrix

.E.. exists for all odd prime power q with size

(1) n=g+1 when g = 3 (mod 4)
(2) n=2(g+1) when g = 1 (mod 4)




“' Notation

e p:anodd prime

e g = p”® : an odd prime power

e [, (or 0,,) : the identity matrix (or the all-zero matrix) of order n
* 1, (or 0,) : the all-one vector (or the all-zero vector) of length n
e j =+/—1 : the imaginary unit

° w, . acomplex primitive n-th root of unity

e O, =diag(1, w,, ..., w7 1)

e F, : the Fourier matrix of order n

* Zg . the set of integers modulo g

* GF(q) : the finite field of size g

« Jacobsthal matrix Q of order q
e Paley matrix C of order g + 1
» Paley-type Hadamard matrix H of orderg+ 1or2(q + 1)



Ce Paley-type Hadamard matrices
0@ from Paley matrices
- Let C be a Paley matrix of order g + 1 where g = p*.

» (Type 1) If ¢ = 3 (mod 4), then

» (Type 2) If g = 1 (mod 4), then
C + Iq_|_1 C - Iq+1

H = _
C—lgs1 —C—lg4q



o Paley matrices

CsDL

oo from Jacobsthal matrices

e For a given a Jacobsthal matrix Q of order g,
a Paley matrix C of order g + 1 is defined by

l 0 17
C = —,
+1, Q
where the sign of +1, Is
+,1f g = 1 (mod 4) so that C becomes symmetric
—, if g = 3 (mod 4) so that C becomes skew-symmetric
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Jacobsthal matrices

Let W be a bijective map from Z, to GF(g) such that ¥(0) = 0.

Then, a Jacobsthal matrix Qg = (05, ) is a ¢ X g matrix with
Ost = )((lIJ(S) - ‘P(t))

where y is the quadratic character of GF(g) and we use the

convention that y(0) = 0.



C3SDL

Property of Jacobsthal matrices ()

 (Definition of Jacobsthal matrices)
Let ¥ be a bijective map from Z, to GF(q) such that ¥(0) = 0.

Then, a Jacobsthal matrix Qyu = (05, ) is a g X g matrix with

Ost = X('I”(S) — q’(t))
where y is the quadratic character of GF(g) and we use the
convention that y(0) = 0.

 There are = quadratlc residues and 1= quadratlc non-
residues. Therefore

Q‘qu — Qq
for any bijective map W.
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Property of Jacobsthal matrices (ll)

Let ¥ and @ be two bijective maps from Z, to GF(q).
Then, there exists a permutation f on GF(q) such that

f(\IJ(x)) = d(x), forall x € Z,
since ¥ and & are bijective.

Therefore, any two Jacobsthal matrices Qg and Q4 corresponding
to W and @, respectively, are related by

Qo = PrQuP/
where P; Is the permutation matrix of the permutation f on GF(q).
If Qw = SAS" is the diagonalization of Qg by S, then,
Qo = PrQuPl = P,SASHPT = P.SA(P,S)"
Is the diagonalization of Q¢ by P¢S.

Therefore, it is enough to find eigenvalue decomposition of any
one Jacobsthal matrix for the same order.



= The Jacobsthal matrix

e Let a be a primitive element of GF(q).
We define a map ¥ from Z, to GF(q) as

k—1
W) =co+cia+ - cp_qa®t = z c,a?,
Zz=0
where i = 2’5;3 c,p? 1s the unique representation with

0<c,<p, forz=0,1,..,k—1.

 In the remaining, we denote the Jacobsthal matrix, which
constructed by using the bijective function ¥, by Q.

e This map W gives Q an interesting structure, called multi-level
circulancy, which we will use.
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Example

> Notation
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Example

Circulant when we regard the 3 X 3 block as elements.

= “‘Block circulant’
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s Example

N
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Each block is circulant.
= “‘Block circulant with circulant blocks’

2
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oS Property of Jacobsthal matrices (ll1)

Multi-level circulancy

« (Multi-level circulant matrix of order p*)
A square matrix of order g = p* is a k-level circulant if, for any
integers t = 1,2, ..., k, all the partitioned p?*=% square blocks of
order pt are block circulant with blocks of order pt~1.

* (Fact)

The Jacobsthal matrix Q of order g = p* is a k-level circulant
matrix.
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&y Multi-level circulant

- Avisualization of k-level circulant matrix of order p*

A square matrix of order p* A square block of order p*~* A square block of order p
BECIE
000
LI
o OEE --- E0O ool -
. OC& OB 000
Block circulant with Block circulant with Block circulant with
square blocks of order p*~1 square blocks of order p*—2 square blocks of order p® = 1
k times
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o5 Eigenvalue decomposition of Q

e (Lemma — well-known: ED of ANY k-level circulant matrix)
Let Q be the Jacobsthal matrix of order g = p* and

B = (Bo Bu e By )
be the first row of Q.

e Then,
Q = SoAqSY
where k
SQ :FP®FP®"'®FR:: ®F )
k times
p—1 p—1
l L
AQ — 2 2 ,Btp—l(g)(ﬂpo R R ka 1),
lO=O lk—l
and

g = 2’;;3 lea® and Q, = diag(1, wp, ...,w,’i‘l)
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e Whenk=1,p=7

° GF(q) =GF(p) =Z,and ¥(i) = co = iforall i € Z,
° O5¢ = )((‘P(s) — ‘P(t)) =y(s—t)fors,t =01,...,p—1
e The top row of the Jacobsthal matrix Q of order 7 become
B = (Bo, b1, - Bs)
= (x(0), x(=1), ..., x(—6))

= (x(0), x(6), x(5), x(4), x(3), x(2), x(1))
=(0,-1,-1,+1,-1,+1,+1)
» Next row becomes

= (x(D), x(0), x(6), x(5), x(4), x(3), x(2))
=(+1,0,—-1,-1,+1,—-1,+1,+1)

etc. Therefore,

- 0,—, —,+,—+,+ ]
+,0,— — +,—, +
+,+,0,—, —, +, —

Q=| - ++0,—,—,+

+,—,+,+,0,—, —

- +,—+,+,0,—

| - —,+,—+,+,0 _
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‘e Q = SQAQSg

* 8¢ = E, is the Fourier matrix of order p = 7, where

r1, 01, 1,0, 1 7
1, (1)1, (,()2,...,(1)6 k
2 4 12
1,02 w*,..,w Se=F ®F @ ®F, = ®Fp,

1, w3, ws,...,w'e
1, w*, ws,...,w*
1, w5 w°,...,w3°
L1, w8,w?2,...,w36

<
3~

l
} AQ = Zl6o=0 ﬁ‘P‘l(H)Q7O = 216=0 ﬁeﬂl = Zl6=0 ,Blﬂl:

where
— Ai 2 6 p-1 p-1
O, = diag(1l, w, w?, ..., w°) Mo= Y Y Busio(@ ® - @),
and =0l

6 = T¥3 La® and @, = diag(L, wp, .., w7 ")

6 = Zle(;(]j leae — loao — lO = [

18



o: AQ — Z?=o 51917

B = (Lo, L1, Ps) = (0,—-1,-1,+1,—-1,41,+1)

1, 0, O, .. ,017
0, w0, .. ,0
0, 0, w*, .. ,0
97 - O, O, O, cee 0

0, 0, 0 , 0

0, 0, 0O, .. ,0

0, 0, 0, .. ,w®

Therefore, i-th eigenvalue A; becomes (fori = 0,1, ..., 6)
6
A = Zﬁlwli ol — w2 4 w3 — ot @S+ @b
=0
and hence,
AO == 0
A = =2jIm{w! + w? + w*} 0
= —2j{sin () + sin (T) + sin (T)} = —j (2.6458) 1 ’ O

/12 == /11 — _
Ay =—X4 AQ Al ' 1
/14_ == /11 _1
As = =4
/16 = _/11 B _1_




Eigenvalue decomposition of
oe Paley matrices

e Let §Q and T\Q be the (q — 1) X (g — 1) right-bottom sub-matrices
of Sy and Ay, respectively. Then

C =ScA:SE
where
for g = 3 (mod 4) forg = 1 (mod 4)
VT NG 04 VT VT g
Se=1| 1 1 V21l Sce=1 1 1 V217
lq—l lq_l \/ SQ _lq—l lq—l V ZqSQ_
_ - i T 7
-jyg 0 0%, v 0 Do
— T
Ac=1| 0 j\Va 95—1 Ac=1 0 VA Og-1
_Qq—l Qq—l ZQ | Qq—l Qq—l AQ
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<y  Some remarks for the proof

 Jacobsthal matrix Q is diagonalized by its eigenvector matrix

k
0= @)

(Factl) The left-most column of S, is a constant vector.
(Fact2) The others are not constant vectors.
(Fact3) All the columns of S, are orthonormal with each other.

 Paley matrix is of the form,

v

0 T border

— - =q
¢= Lrlq o]l

v

circulant core

We can guess that eigenvectors and eigenvalues of C are related to those of
the circulant core Q.

We will show that it is true by deriving the eigenvectors of C from those of

0.

21



Proof: when g = 3 (mod 4)

Let A be an eigenvalue of Q corresponding to a not all-one eigenvector v.
Since 1, and v are orthogonal, we have

M HE !

01. _ : L :
Therefore, [ v ] IS the eigenvector of C and its corresponding eigenvalue is A.

= g — 1 eigenvalues & eigenvectors are found.
For the remaining two, consider

C[lxq] N [_(iq %“fq} =A[lxq]'
for some A.

This gives g = xA and —x = A.
Solving these two equations gives
(x, D) = VT, —jvD) or (=j\GjVa)-
These two solutions give two remaining eigenvectors and their corresponding
eigenvalues.

22



o Eigenvalue decomposition of
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oo Paley-type Hadamard matrices

« Recall the definition of Paley-type Hadamard matrix
of order ¢ + 1, where g = p*

» (Type 1) If ¢ = 3 (mod 4), then

 (Type 2) If g = 1 (mod 4), then
. [C + Iq_|_1 C - Iq+1 ]
- |C -1 —C —1 '
Column q+1 q+1
permutation

—C - Iq+1 C— Iq+1

Skew block circulant

23



‘e Eigenvalue decomposition
&8

» (Type 1) If ¢ = 3 (mod 4), then
H=C+lg41 = Sc(Ac + Iq41)SE.

All the eigenvectors are orthonormal with each other.

Proof) Obvious since I41 = S¢S¢.
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‘e Eigenvalue decomposition
&e

e (Type 2) If g = 1 (mod 4), then

C_I+1 C+I+1
H = q T = SpAnSH
[_C_Iq+1 C_Iq+1 R

where
Sh = \/_ [_]SC ]5(:]
_— [AC o Iq+1 +j(AC + Iq+1) Oq+1
h — . .
Oq+1 AC _ Iq+1 _](AC + Iq+1)

All the eigenvectors are orthonormal with each other.
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The proof
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Proof) For simplicity, denote 1, by I.

Skew block circulant

$

B{1[I O H_ By —JjB; block circulant
0 jIl |—-jB;y By (more friendly)

= [c C+1 By 31]
C—1 C-—1 —B; B,

I 0 B
H __ 0
AHA ‘[o jl] [—B

Since both B, and B, are diagonalizable by the orthogonal matrix S,

By —jBi][Sc] _[S .
b, By Jlse] = lsc] e =D —ithe + 1)

e e

26



The proof

C3SDL

Therefore, we conclude that
AHAH = SASH
= H = A"S A (AP S)H

where
Sy = AlS = [ ]
n \/_ —jS¢  JScl’
A= [Re o +j(Ac + 1541) 0g+1 ]
ni=A= _ ,
Oq+1 Ac — Iq+1 _](AC + Iq+1)

It is easy to check that all the eigenvectors of H are orthonormal with each other.
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o Cyclic type Hadamard matrices

« A binary sequence of length n — 1 is called cyclic Hadamard

sequence when
—1 occurs (n+ 1)/2 and +1 occurs (n — 1)/2.
Out-of-phase autocorrelation is always —1.

« Acyclic type Hadamard matrix of order n, constructed by a cyclic
Hadamard sequence y = (Yo, Y1, ---»¥n-2), IS defined by
N I
1,4 circ(y)]

Circulant core

v

* Well-known cyclic Hadamard sequences:
binary m-sequence
binary GMW sequences
Hall’s sextic residue sequences
Quadratic residue sequence (or Legendre sequence)

Twin prime sequences
28



o Cyclic type Hadamard matrices

« When g = p = 3 (mod 4), a Paley-type Hadamard matrix is
0 17 1 17
H = M+ lgyr = [ —1 ]
[_lq Q 7+l _lq Q T Iq
Here, note that Q + I, Is the circulant core of H.
e Then,

—q

[1 17
1 Q-1

] Is of cyclic-type

 Previous method for Paley matrices can be similarly used.

29



2 Eigenvalue decomposition
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Let H be a cyclic-type Hadamard matrix of order n constructed by a
cyclic Hadamard sequence y of lengthn — 1.

Then,
H = SpAp(Sp)"
where
1++n 1—+/n or
Jant2zyn -2 T
1 1 1
| Vnram Vv i
1 1 _
| mln—z N n-1
and
Ay, = diag(ly = +n, A = —n, 1,43, ..., 1,_1)
with

n—2
Aiy1 = z yzwff_l for i =1,2,3,..,n— 2.
z=0

30
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‘oo Eigenvalues/eigenvectors of

 All the cyclic-type Hadamard matrices of order n have
the same eigenvector matrix Sj,

- closely related with the Fourier matrix of order n — 1.
* (complex) unitary

++/n as common eigenvalues, and

remaining n — 2 eigenvalues

n-—2
A1 = Z yza),if_l for i=123,..,n—2,
z=0

where

Y = o V1 -r Yn-2)
is the top-row of the circulant core

(cyclic Hadamard sequence of lengthn — 1)

31



Summary

The eigenvalue decomposition of a Paley-type Hadamard matrix iIs
obtained explicitly, by using the multi-level circulant structure of
some Jacobsthal matrices.

By using similar method, the eigenvalue decomposition of cyclic-
type Hadamard matrix is also obtained.

The eigenvalues of Paley-type and cyclic-type Hadamard matrices
are closely related to their multi-level circulant cores.

FAST Paley-Hadamard Transform algorithm??
Or, fast cyclic-Hadamard Transform algorithm??

32
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