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Hadamard Matrix

DEFINITION.  
Let n be a positive integer. A Hadamard matrix H of order n (or, 

size n×n) is an n×n matrix with all entries +1 or -1 such that

H HT = nI,
where I is the n×n identity matrix.
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Some Well-known Types 
circulant

Walsh-Hadamard
(Sylvester)

(Kronecker Product)

Only for n=4 ??
True for n up to
548 Million

Williamson typecyclic type

Cyclic Hadamard Conjecture:
For all n such that
n-1 is either
(1) p = 3 mod 4, or
(2) p(p+2), twin primes, or
(3) 2t  -1.
True for all n-1 (=3 mod 4) up to 10,000, except possibly for 7 cases, 
smallest of which is 3439.

For all 
n=2t

Williamson Conjecture
turns out to be false:
n=4*35=140.

Special case of Paley-type

Paley-type Hadamard matrix 
exists for all odd prime power q with size
(1) n=q+1 when q ≡ 3 (mod 4)
(2) n=2(q+1) when q ≡ 1 (mod 4)
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Notation
• 𝑝𝑝 : an odd prime
• 𝑞𝑞 = 𝑝𝑝𝑘𝑘 : an odd prime power
• 𝐼𝐼𝑛𝑛 (or 0𝑛𝑛) : the identity matrix (or the all-zero matrix) of order 𝑛𝑛
• 1𝑛𝑛 (or 0𝑛𝑛) : the all-one vector (or the all-zero vector) of length 𝑛𝑛
• 𝑗𝑗 = −1 : the imaginary unit
• 𝜔𝜔𝑛𝑛 : a complex primitive 𝑛𝑛-th root of unity
• Ω𝑛𝑛 = diag(1,𝜔𝜔𝑛𝑛, … ,𝜔𝜔𝑛𝑛𝑛𝑛−1)
• 𝐹𝐹𝑛𝑛 : the Fourier matrix of order 𝑛𝑛
• 𝑍𝑍𝑞𝑞 : the set of integers modulo 𝑞𝑞
• GF(𝑞𝑞) : the finite field of size 𝑞𝑞
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• Jacobsthal matrix 𝑄𝑄 of order 𝑞𝑞
• Paley matrix 𝐶𝐶 of order 𝑞𝑞 + 1
• Paley-type Hadamard matrix  𝐻𝐻 of order 𝑞𝑞 + 1 or 2(𝑞𝑞 + 1)
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Paley-type Hadamard matrices
from Paley matrices

• Let 𝐶𝐶 be a Paley matrix of order 𝑞𝑞 + 1 where 𝑞𝑞 = 𝑝𝑝𝑘𝑘.

• (Type 1) If 𝑞𝑞 ≡ 3 mod 4 , then
𝐶𝐶 + 𝐼𝐼𝑞𝑞+1.

• (Type 2) If 𝑞𝑞 ≡ 1 mod 4 , then

𝐻𝐻 =
𝐶𝐶 + 𝐼𝐼𝑞𝑞+1 𝐶𝐶 − 𝐼𝐼𝑞𝑞+1
𝐶𝐶 − 𝐼𝐼𝑞𝑞+1 −𝐶𝐶 − 𝐼𝐼𝑞𝑞+1

.
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Paley matrices
from Jacobsthal matrices

• For a given a Jacobsthal matrix 𝑄𝑄 of order 𝑞𝑞, 
a Paley matrix 𝐶𝐶 of order 𝑞𝑞 + 1 is defined by

𝐶𝐶 =
0 1𝑞𝑞𝑇𝑇

±1𝑞𝑞 𝑄𝑄 ,

where the sign of ±1𝑞𝑞 is 
▫ +, if 𝑞𝑞 ≡ 1 mod 4 so that 𝐶𝐶 becomes symmetric
▫ −, if 𝑞𝑞 ≡ 3 mod 4 so that 𝐶𝐶 becomes skew-symmetric
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Jacobsthal matrices

Let Ψ be a bijective map from 𝑍𝑍𝑞𝑞 to GF(𝑞𝑞) such that Ψ 0 = 0. 
Then, a Jacobsthal matrix 𝑄𝑄Ψ = 𝜎𝜎𝑠𝑠,𝑡𝑡 is a 𝑞𝑞 × 𝑞𝑞 matrix with 

𝜎𝜎𝑠𝑠,𝑡𝑡 = 𝜒𝜒 Ψ 𝑠𝑠 − Ψ 𝑡𝑡
where 𝜒𝜒 is the quadratic character of GF(𝑞𝑞) and we use the 
convention that 𝜒𝜒 0 = 0.
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Property of Jacobsthal matrices (I)

• (Definition of Jacobsthal matrices) 
Let 𝛹𝛹 be a bijective map from 𝑍𝑍𝑞𝑞 to GF(𝑞𝑞) such that 𝛹𝛹 0 = 0. 
Then, a Jacobsthal matrix 𝑄𝑄𝛹𝛹 = 𝜎𝜎𝑠𝑠,𝑡𝑡 is a 𝑞𝑞 × 𝑞𝑞 matrix with 

𝜎𝜎𝑠𝑠,𝑡𝑡 = 𝜒𝜒 𝛹𝛹 𝑠𝑠 − 𝛹𝛹 𝑡𝑡
where 𝜒𝜒 is the quadratic character of GF(𝑞𝑞) and we use the 
convention that 𝝌𝝌 𝟎𝟎 = 𝟎𝟎.

• There are 𝒒𝒒−𝟏𝟏
𝟐𝟐

quadratic residues and 𝒒𝒒−𝟏𝟏
𝟐𝟐

quadratic non-
residues. Therefore,

𝑸𝑸𝚿𝚿𝟏𝟏𝒒𝒒 = 𝟎𝟎𝒒𝒒
for any bijective map 𝚿𝚿.
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Property of Jacobsthal matrices (II)

• Let Ψ and Φ be two bijective maps from 𝑍𝑍𝑞𝑞 to GF(𝑞𝑞).
Then, there exists a permutation 𝑓𝑓 on GF(𝑞𝑞) such that

𝑓𝑓 Ψ 𝑥𝑥 = Φ 𝑥𝑥 , for all 𝑥𝑥 ∈ 𝑍𝑍𝑞𝑞
since Ψ and Φ are bijective.

• Therefore, any two Jacobsthal matrices 𝑄𝑄Ψ and 𝑄𝑄Φ corresponding 
to Ψ and Φ, respectively, are related by

𝑄𝑄Φ = 𝑃𝑃𝑓𝑓𝑄𝑄Ψ𝑃𝑃𝑓𝑓𝑇𝑇

where 𝑃𝑃𝑓𝑓 is the permutation matrix of the permutation 𝑓𝑓 on GF(𝑞𝑞).
• If  𝑄𝑄Ψ = 𝑆𝑆Λ𝑆𝑆𝐻𝐻 is the diagonalization of 𝑄𝑄Ψ by 𝑆𝑆, then,

𝑄𝑄Φ = 𝑃𝑃𝑓𝑓𝑄𝑄Ψ𝑃𝑃𝑓𝑓𝑇𝑇 = 𝑃𝑃𝑓𝑓𝑆𝑆Λ𝑆𝑆𝐻𝐻𝑃𝑃𝑓𝑓𝑇𝑇 = 𝑃𝑃𝑓𝑓𝑆𝑆Λ 𝑃𝑃𝑓𝑓𝑆𝑆
𝐻𝐻

is the diagonalization  of 𝑄𝑄Φ by 𝑃𝑃𝑓𝑓𝑆𝑆.
• Therefore, it is enough to find eigenvalue decomposition of any 

one Jacobsthal matrix for the same order.
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The Jacobsthal matrix

• Let 𝛼𝛼 be a primitive element of GF(𝑞𝑞).
We define a map Ψ from 𝑍𝑍𝑞𝑞 to GF(𝑞𝑞) as

Ψ 𝑖𝑖 = 𝑐𝑐0 + 𝑐𝑐1𝛼𝛼 + ⋯𝑐𝑐𝑘𝑘−1𝛼𝛼𝑘𝑘−1 = �
𝑧𝑧=0

𝑘𝑘−1

𝑐𝑐𝑧𝑧𝛼𝛼𝑧𝑧 ,

where 𝑖𝑖 = ∑𝑧𝑧=0𝑘𝑘−1 𝑐𝑐𝑧𝑧𝑝𝑝𝑧𝑧 is the unique representation with 
0 ≤ 𝑐𝑐𝑧𝑧 < 𝑝𝑝, for 𝑧𝑧 = 0,1, … , 𝑘𝑘 − 1.

• In the remaining, we denote the Jacobsthal matrix, which 
constructed by using the bijective function Ψ, by 𝑄𝑄.

• This map Ψ gives 𝑄𝑄 an interesting structure, called multi-level 
circulancy, which we will use.
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Example

𝑄𝑄 =

0 = 0
= −
= +

※ Notation
0

0

0

0

0

0

0

0

0
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Example

Circulant when we regard the 3 × 3 block as elements.
⇒ ‘Block circulant’

0

0

0

0

0

0

0

0

0
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0

0

0

0

0

0

0

0

0

Example

Each block is circulant.
⇒‘Block circulant with circulant blocks’
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Property of Jacobsthal matrices (III)

• (Multi-level circulant matrix of order 𝑝𝑝𝑘𝑘)
A square matrix of order 𝑞𝑞 = 𝑝𝑝𝑘𝑘 is a 𝑘𝑘-level circulant if, for any 
integers 𝑡𝑡 = 1, 2, … , 𝑘𝑘, all the partitioned 𝑝𝑝2(𝑘𝑘−𝑡𝑡) square blocks of 
order 𝑝𝑝𝑡𝑡 are block circulant with blocks of order 𝑝𝑝𝑡𝑡−1.

• (Fact)
The Jacobsthal matrix 𝑸𝑸 of order 𝒒𝒒 = 𝒑𝒑𝒌𝒌 is a 𝒌𝒌-level circulant 
matrix.

14
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Multi-level circulant

⋱

⋯

⋯

⋮ ⋮

A square matrix of order 𝑝𝑝𝑘𝑘

Block circulant with 
square blocks of order 𝑝𝑝𝑘𝑘−1

⋱

⋯

⋯

⋮ ⋮

Block circulant with 
square blocks of order 𝑝𝑝𝑘𝑘−2

A square block of order 𝑝𝑝𝑘𝑘−1

⋯
⋱

⋯

⋯

⋮ ⋮

Block circulant with 
square blocks of order 𝑝𝑝0 = 1

A square block of order 𝑝𝑝

• A visualization of 𝑘𝑘-level circulant matrix of order 𝑝𝑝𝑘𝑘

𝑘𝑘 times
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Eigenvalue decomposition of 𝑸𝑸
• (Lemma – well-known: ED of ANY 𝑘𝑘-level circulant matrix) 

Let 𝑄𝑄 be the Jacobsthal matrix of order 𝑞𝑞 = 𝑝𝑝𝑘𝑘 and 
𝛽𝛽 = 𝛽𝛽0,𝛽𝛽1, … ,𝛽𝛽𝑝𝑝𝑘𝑘−1

be the first row of 𝑄𝑄. 
• Then,

where

and
𝜃𝜃 = ∑𝑒𝑒=0𝑘𝑘−1 𝑙𝑙𝑒𝑒𝛼𝛼𝑒𝑒 and 𝛀𝛀𝒑𝒑 = diag(1,𝜔𝜔𝑝𝑝, … ,𝜔𝜔𝑝𝑝

𝑝𝑝−1)

𝑺𝑺𝑸𝑸 = 𝐹𝐹𝑝𝑝 ⊗ 𝐹𝐹𝑝𝑝 ⊗⋯⊗𝐹𝐹𝑝𝑝 ≔ �
𝑘𝑘

𝐹𝐹𝑝𝑝 ,

𝑸𝑸 = 𝑺𝑺𝑸𝑸𝜦𝜦𝑸𝑸𝑺𝑺𝑸𝑸𝑯𝑯

𝚲𝚲𝑸𝑸 = �
𝑙𝑙0=0

𝑝𝑝−1

⋯�
𝑙𝑙𝑘𝑘−1

𝑝𝑝−1

𝛽𝛽Ψ−1 𝜃𝜃 Ω𝑝𝑝
𝑙𝑙0 ⊗⋯⊗Ω𝑝𝑝

𝑙𝑙𝑘𝑘−1 ,

𝑘𝑘 times

16
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when 𝑘𝑘 = 1, 𝑝𝑝 = 7
• 𝐺𝐺𝐺𝐺(𝑞𝑞) = 𝐺𝐺𝐺𝐺(𝑝𝑝) = 𝑍𝑍𝑝𝑝 and Ψ 𝑖𝑖 = 𝑐𝑐0 = 𝑖𝑖 for all 𝑖𝑖 ∈ 𝑍𝑍𝑝𝑝
• 𝜎𝜎𝑠𝑠,𝑡𝑡 = 𝜒𝜒 𝛹𝛹 𝑠𝑠 − 𝛹𝛹 𝑡𝑡 = 𝜒𝜒 𝑠𝑠 − 𝑡𝑡 for 𝑠𝑠, 𝑡𝑡 = 0,1, … ,𝑝𝑝 − 1
• The top row of the Jacobsthal matrix 𝑄𝑄 of order 7 become 

𝛽𝛽 = 𝛽𝛽0,𝛽𝛽1, … ,𝛽𝛽6
= 𝜒𝜒 0 ,𝜒𝜒 −1 , … ,𝜒𝜒 −6
= 𝜒𝜒 0 ,𝜒𝜒 6 ,𝜒𝜒 5 ,𝜒𝜒 4 ,𝜒𝜒 3 ,𝜒𝜒 2 ,𝜒𝜒 1
= 𝟎𝟎,−𝟏𝟏,−𝟏𝟏, +𝟏𝟏,−𝟏𝟏, +𝟏𝟏, +𝟏𝟏

• Next row becomes
𝜒𝜒 1 ,𝜒𝜒 0 , … ,𝜒𝜒 −5

= 𝜒𝜒 1 ,𝜒𝜒 0 ,𝜒𝜒 6 ,𝜒𝜒 5 ,𝜒𝜒 4 ,𝜒𝜒 3 ,𝜒𝜒 2
= +𝟏𝟏,𝟎𝟎,−𝟏𝟏,−𝟏𝟏, +𝟏𝟏,−𝟏𝟏, +𝟏𝟏, +𝟏𝟏

etc. Therefore,
𝟎𝟎,−,−, +,−, +, +
+,𝟎𝟎,−,−, +,−, +
+, +,𝟎𝟎,−,−, +,−
−, +, +,𝟎𝟎,−,−, +
+,−, +, +,𝟎𝟎,−,−
−, +,−, +, +,𝟎𝟎,−
−,−, +,−, +, +,𝟎𝟎

17
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𝑸𝑸 = 𝑺𝑺𝑸𝑸𝜦𝜦𝑸𝑸𝑺𝑺𝑸𝑸𝑯𝑯

• 𝑺𝑺𝑸𝑸 = 𝐹𝐹𝑝𝑝 is the Fourier matrix of order 𝑝𝑝 = 7, where
1,  1,   1,… , 1
1, 𝜔𝜔1, 𝜔𝜔2,…,𝜔𝜔6

1,𝜔𝜔2, 𝜔𝜔4,…,𝜔𝜔12

1,𝜔𝜔3, 𝜔𝜔6,…,𝜔𝜔18

1,𝜔𝜔4, 𝜔𝜔8,…,𝜔𝜔24

1,𝜔𝜔5,𝜔𝜔10,…,𝜔𝜔30

1,𝜔𝜔6,𝜔𝜔12,…,𝜔𝜔36

• 𝚲𝚲𝑸𝑸 = ∑𝑙𝑙0=0
6 𝛽𝛽Ψ−1 𝜃𝜃 Ω7

𝑙𝑙0 = ∑𝑙𝑙=06 𝛽𝛽𝜃𝜃Ω7𝑙𝑙 = ∑𝑙𝑙=06 𝛽𝛽𝑙𝑙Ω7𝑙𝑙 , 
where

𝛀𝛀𝟕𝟕 = diag(1,𝜔𝜔,𝜔𝜔2, … ,𝜔𝜔6)
and

𝜃𝜃 = ∑𝑒𝑒=0𝑘𝑘−1 𝑙𝑙𝑒𝑒𝛼𝛼𝑒𝑒 = 𝑙𝑙0𝛼𝛼0 = 𝑙𝑙0 = 𝑙𝑙

18

𝑺𝑺𝑸𝑸 = 𝐹𝐹𝑝𝑝 ⊗ 𝐹𝐹𝑝𝑝 ⊗⋯⊗𝐹𝐹𝑝𝑝 ≔ �
𝑘𝑘

𝐹𝐹𝑝𝑝 ,

𝜃𝜃 = ∑𝑒𝑒=0𝑘𝑘−1 𝑙𝑙𝑒𝑒𝛼𝛼𝑒𝑒 and 𝛀𝛀𝒑𝒑 = diag(1,𝜔𝜔𝑝𝑝, … ,𝜔𝜔𝑝𝑝
𝑝𝑝−1)

𝚲𝚲𝑸𝑸 = �
𝑙𝑙0=0

𝑝𝑝−1

⋯�
𝑙𝑙𝑘𝑘−1

𝑝𝑝−1

𝛽𝛽Ψ−1 𝜃𝜃 Ω𝑝𝑝
𝑙𝑙0 ⊗⋯⊗Ω𝑝𝑝

𝑙𝑙𝑘𝑘−1 ,

F𝑝𝑝𝐻𝐻 =
1
𝑝𝑝
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𝚲𝚲𝑸𝑸 = ∑𝑙𝑙=06 𝛽𝛽𝑙𝑙Ω7𝑙𝑙
𝛽𝛽 = 𝛽𝛽0,𝛽𝛽1, … ,𝛽𝛽6 = 0,−1,−1, +1,−1, +1, +1

1,  0,   0,     …   , 0
0, 𝜔𝜔1, 0,      …   , 0
0,  0, 𝜔𝜔2,     …   , 0
0,  0,  0,      …   , 0
0,  0, 0,      …   , 0
0,  0, 0, …   , 0
0,  0, 0,     …   ,𝜔𝜔6

Therefore, 𝑖𝑖-th eigenvalue 𝜆𝜆𝑖𝑖 becomes (for 𝑖𝑖 = 0,1, … , 6)

𝜆𝜆𝑖𝑖 = �
𝑙𝑙=0

6

𝛽𝛽𝑙𝑙𝜔𝜔𝑙𝑙𝑙𝑙 = −𝜔𝜔𝑖𝑖 − 𝜔𝜔2𝑖𝑖 + 𝜔𝜔3𝑖𝑖 − 𝜔𝜔4𝑖𝑖 + 𝜔𝜔5𝑖𝑖 + 𝜔𝜔6𝑖𝑖

and hence,
𝜆𝜆0 = 0
𝜆𝜆1 = −2𝑗𝑗Im 𝜔𝜔1 + 𝜔𝜔2 + 𝜔𝜔4

= −2𝑗𝑗 sin 2𝜋𝜋
7

+ sin 4𝜋𝜋
7

+ sin 8𝜋𝜋
7

≅ −𝑗𝑗 (2.6458)

𝜆𝜆2 = 𝜆𝜆1
𝜆𝜆3 = −𝜆𝜆1
𝜆𝜆4 = 𝜆𝜆1
𝜆𝜆5 = −𝜆𝜆1
𝜆𝜆6 = −𝜆𝜆1

19

𝛀𝛀𝟕𝟕 =

𝚲𝚲𝑸𝑸 = 𝜆𝜆1

0
1

1
−1

1
−1

−1

0
0    
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Eigenvalue decomposition of 
Paley matrices

• Let �𝑺𝑺𝑸𝑸 and �𝚲𝚲𝑸𝑸 be the  𝑞𝑞 − 1 × (𝑞𝑞 − 1) right-bottom sub-matrices 
of 𝑆𝑆𝑄𝑄 and Λ𝑄𝑄, respectively. Then

𝐶𝐶 = 𝑆𝑆𝐶𝐶Λ𝐶𝐶𝑆𝑆𝐶𝐶𝐻𝐻

where
for 𝑞𝑞 ≡ 3 (mod 4)

𝑆𝑆𝐶𝐶 =

𝑗𝑗 𝑞𝑞 −𝑗𝑗 𝑞𝑞 0𝑞𝑞−1𝑇𝑇

1 1 21𝑞𝑞−1𝑇𝑇

1𝑞𝑞−1 1𝑞𝑞−1 2𝑞𝑞�𝑺𝑺𝑸𝑸

Λ𝐶𝐶 =
−𝑗𝑗 𝑞𝑞 0 0𝑞𝑞−1𝑇𝑇

0 𝑗𝑗 𝑞𝑞 0𝑞𝑞−1𝑇𝑇

0𝑞𝑞−1 0𝑞𝑞−1 �𝜦𝜦𝑸𝑸

20

for 𝑞𝑞 ≡ 1 (mod 4)

𝑆𝑆𝐶𝐶 =

𝑞𝑞 − 𝑞𝑞 0𝑞𝑞−1𝑇𝑇

1 1 21𝑞𝑞−1𝑇𝑇

1𝑞𝑞−1 1𝑞𝑞−1 2𝑞𝑞�𝑺𝑺𝑸𝑸

Λ𝐶𝐶 =
𝑞𝑞 0 0𝑞𝑞−1𝑇𝑇

0 − 𝑞𝑞 0𝑞𝑞−1𝑇𝑇

0𝑞𝑞−1 0𝑞𝑞−1 �𝜦𝜦𝑸𝑸
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Some remarks for the proof
• Jacobsthal matrix 𝑄𝑄 is diagonalized by its eigenvector matrix

𝑆𝑆𝑄𝑄 = �
𝑘𝑘

𝐹𝐹𝑝𝑝 .

▫ (Fact1) The left-most column of 𝑆𝑆𝑄𝑄 is a constant vector.
▫ (Fact2) The others are not constant vectors.
▫ (Fact3) All the columns of 𝑆𝑆𝑄𝑄 are orthonormal with each other.

• Paley matrix is of the form,

▫ We can guess that eigenvectors and eigenvalues of 𝐶𝐶 are related to those of 
the circulant core 𝑄𝑄.

▫ We will show that it is true by deriving the eigenvectors of 𝐶𝐶 from those of 
𝑄𝑄.

21

𝐶𝐶 =
0 1𝑞𝑞𝑇𝑇

±1𝑞𝑞 𝑄𝑄 .
border

circulant core
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Proof:  when  𝑞𝑞 ≡ 3 (mod 4)

22

Let 𝜆𝜆 be an eigenvalue of 𝑄𝑄 corresponding to a not all-one eigenvector 𝑣𝑣. 
Since 1𝑞𝑞 and 𝑣𝑣 are orthogonal, we have

𝐶𝐶
0
𝑣𝑣 =

0 1𝑞𝑞𝑇𝑇

−1𝑞𝑞 𝑄𝑄
0
𝑣𝑣 = 𝜆𝜆

0
𝑣𝑣 .

Therefore, 
0
𝑣𝑣 is the eigenvector of 𝐶𝐶 and its corresponding eigenvalue is 𝜆𝜆.

⇒ 𝑞𝑞 − 1 eigenvalues & eigenvectors are found.
For the remaining two, consider 

𝐶𝐶
𝑥𝑥

1𝑞𝑞 =
0 1𝑞𝑞𝑇𝑇

−1𝑞𝑞 𝑄𝑄
𝑥𝑥

1𝑞𝑞 = 𝜆𝜆
𝑥𝑥

1𝑞𝑞 ,

for some 𝜆𝜆.
This gives 𝑞𝑞 = 𝑥𝑥𝑥𝑥 and −𝑥𝑥 = 𝜆𝜆.
Solving these two equations gives 

𝑥𝑥, 𝜆𝜆 = 𝑗𝑗 𝑞𝑞,−𝑗𝑗 𝑞𝑞 or −𝑗𝑗 𝑞𝑞, 𝑗𝑗 𝑞𝑞 .
These two solutions give two remaining eigenvectors and their corresponding 
eigenvalues.
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Eigenvalue decomposition of 
Paley-type Hadamard matrices

• Recall the definition of Paley-type Hadamard matrix 
of order 𝑞𝑞 + 1,   where 𝑞𝑞 = 𝑝𝑝𝑘𝑘

• (Type 1) If 𝑞𝑞 ≡ 3 mod 4 , then
𝐶𝐶 + 𝐼𝐼𝑞𝑞+1.

• (Type 2) If 𝑞𝑞 ≡ 1 mod 4 , then

𝐻𝐻 =
𝐶𝐶 + 𝐼𝐼𝑞𝑞+1 𝐶𝐶 − 𝐼𝐼𝑞𝑞+1
𝐶𝐶 − 𝐼𝐼𝑞𝑞+1 −𝐶𝐶 − 𝐼𝐼𝑞𝑞+1

.

𝐻𝐻 =
𝐶𝐶 − 𝐼𝐼𝑞𝑞+1 𝐶𝐶 + 𝐼𝐼𝑞𝑞+1
−𝐶𝐶 − 𝐼𝐼𝑞𝑞+1 𝐶𝐶 − 𝐼𝐼𝑞𝑞+1

Column
permutation

Skew block circulant

23
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Eigenvalue decomposition 
Paley-type 1

• (Type 1) If 𝑞𝑞 ≡ 3 mod 4 , then
𝐻𝐻 = 𝐶𝐶 + 𝐼𝐼𝑞𝑞+1 = 𝑆𝑆𝐶𝐶 Λ𝐶𝐶 + 𝐼𝐼𝑞𝑞+1 𝑆𝑆𝐶𝐶𝐻𝐻 .

All the eigenvectors are orthonormal with each other.

Proof) Obvious since 𝐼𝐼𝑞𝑞+1 = 𝑆𝑆𝐶𝐶𝑆𝑆𝐶𝐶𝐻𝐻.

24
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Eigenvalue decomposition 
Paley-type 2

• (Type 2) If 𝑞𝑞 ≡ 1 mod 4 , then

where

All the eigenvectors are orthonormal with each other.

𝐻𝐻 =
𝐶𝐶 − 𝐼𝐼𝑞𝑞+1 𝐶𝐶 + 𝐼𝐼𝑞𝑞+1
−𝐶𝐶 − 𝐼𝐼𝑞𝑞+1 𝐶𝐶 − 𝐼𝐼𝑞𝑞+1

= 𝑆𝑆ℎΛℎ𝑆𝑆ℎ𝐻𝐻

25

𝑆𝑆ℎ =
1
2

𝑆𝑆𝐶𝐶 𝑆𝑆𝐶𝐶
−𝑗𝑗𝑆𝑆𝐶𝐶 𝑗𝑗𝑆𝑆𝐶𝐶

,

Λℎ =
Λ𝐶𝐶 − 𝐼𝐼𝑞𝑞+1 + 𝑗𝑗 Λ𝐶𝐶 + 𝐼𝐼𝑞𝑞+1 0𝑞𝑞+1

0𝑞𝑞+1 Λ𝐶𝐶 − 𝐼𝐼𝑞𝑞+1 − 𝑗𝑗 Λ𝐶𝐶 + 𝐼𝐼𝑞𝑞+1
.
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The proof 
Paley-type 2

26

𝐻𝐻 = 𝐶𝐶 − 𝐼𝐼 𝐶𝐶 + 𝐼𝐼
−𝐶𝐶 − 𝐼𝐼 𝐶𝐶 − 𝐼𝐼 ≔ 𝐵𝐵0 𝐵𝐵1

−𝐵𝐵1 𝐵𝐵0
Skew block circulant

𝐴𝐴𝐴𝐴𝐴𝐴𝐻𝐻 = 𝐼𝐼 0
0 𝑗𝑗𝑗𝑗

𝐵𝐵0 𝐵𝐵1
−𝐵𝐵1 𝐵𝐵0

𝐼𝐼 0
0 𝑗𝑗𝑗𝑗

𝐻𝐻
= 𝐵𝐵0 −𝑗𝑗𝐵𝐵1

−𝑗𝑗𝐵𝐵1 𝐵𝐵0
block circulant

(more friendly)

𝐵𝐵0 −𝑗𝑗𝐵𝐵1
−𝑗𝑗𝐵𝐵1 𝐵𝐵0

𝑆𝑆𝐶𝐶
𝑆𝑆𝐶𝐶

= 𝑆𝑆𝐶𝐶
𝑆𝑆𝐶𝐶

Λ𝐶𝐶 − 𝐼𝐼 − 𝑗𝑗 Λ𝐶𝐶 + 𝐼𝐼

𝐵𝐵0 −𝑗𝑗𝐵𝐵1
−𝑗𝑗𝐵𝐵1 𝐵𝐵0

𝑆𝑆𝐶𝐶
−𝑆𝑆𝐶𝐶

= 𝑆𝑆𝐶𝐶
−𝑆𝑆𝐶𝐶

Λ𝐶𝐶 − 𝐼𝐼 + 𝑗𝑗 Λ𝐶𝐶 + 𝐼𝐼

Proof) For simplicity, denote 𝐼𝐼𝑞𝑞+1 by 𝐼𝐼.

Since both 𝐵𝐵0 and 𝐵𝐵1 are diagonalizable by the orthogonal matrix 𝑆𝑆𝐶𝐶 ,
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The proof 
Paley-type 2

27

It is easy to check that all the eigenvectors of 𝐻𝐻 are orthonormal with each other.

Therefore, we conclude that 

𝐴𝐴𝐴𝐴𝐴𝐴𝐻𝐻 = 𝑆𝑆Λ𝑆𝑆𝐻𝐻

⟹ 𝐻𝐻 = 𝐴𝐴𝐻𝐻𝑆𝑆 Λ 𝐴𝐴𝐻𝐻𝑆𝑆 𝐻𝐻

𝑆𝑆ℎ ≔ 𝐴𝐴𝐻𝐻𝑆𝑆 =
1
2

𝑆𝑆𝐶𝐶 𝑆𝑆𝐶𝐶
−𝑗𝑗𝑆𝑆𝐶𝐶 𝑗𝑗𝑆𝑆𝐶𝐶

,

Λℎ ≔ Λ =
Λ𝐶𝐶 − 𝐼𝐼𝑞𝑞+1 + 𝑗𝑗 Λ𝐶𝐶 + 𝐼𝐼𝑞𝑞+1 0𝑞𝑞+1

0𝑞𝑞+1 Λ𝐶𝐶 − 𝐼𝐼𝑞𝑞+1 − 𝑗𝑗 Λ𝐶𝐶 + 𝐼𝐼𝑞𝑞+1
.

where
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Cyclic type Hadamard matrices
• A binary sequence of length 𝑛𝑛 − 1 is called cyclic Hadamard 

sequence when
▫ −1 occurs (𝑛𝑛 + 1)/2 and +1 occurs (𝑛𝑛 − 1)/2.
▫ Out-of-phase autocorrelation is always −1.

• A cyclic type Hadamard matrix of order 𝑛𝑛, constructed by a cyclic 
Hadamard sequence 𝛾𝛾 = (𝛾𝛾0, 𝛾𝛾1, … , 𝛾𝛾𝑛𝑛−2), is defined by

𝐻𝐻 =
1 1𝑛𝑛−1𝑇𝑇

1𝑛𝑛−1 circ(𝛾𝛾) .

• Well-known cyclic Hadamard sequences:
▫ binary m-sequence
▫ binary GMW sequences
▫ Hall’s sextic residue sequences
▫ Quadratic residue sequence (or Legendre sequence)
▫ Twin prime sequences

28

Circulant core
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Cyclic type Hadamard matrices

• When 𝑞𝑞 = 𝑝𝑝 = 3 (mod 4), a Paley-type Hadamard matrix is

𝐻𝐻 =
0 1𝑞𝑞𝑇𝑇

−1𝑞𝑞 𝑄𝑄 + 𝐼𝐼𝑞𝑞+1 =
1 1𝑞𝑞𝑇𝑇

−1𝑞𝑞 𝑄𝑄 + 𝐼𝐼𝑞𝑞
.

Here, note that 𝑄𝑄 + 𝐼𝐼𝑞𝑞 is the circulant core of 𝐻𝐻.
• Then, 

1 1𝑞𝑞𝑇𝑇

1𝑞𝑞 −𝑄𝑄 − 𝐼𝐼𝑞𝑞
is of cyclic-type

• Previous method for Paley matrices can be similarly used.

29
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Eigenvalue decomposition
cyclic type

Let 𝐻𝐻 be a cyclic-type Hadamard matrix of order 𝑛𝑛 constructed by a 
cyclic Hadamard sequence 𝛾𝛾 of length 𝑛𝑛 − 1.
Then, 

𝐻𝐻 = 𝑆𝑆ℎΛℎ 𝑆𝑆ℎ 𝐻𝐻

where

and 
Λℎ = diag 𝜆𝜆0 = + 𝑛𝑛, 𝜆𝜆1 = − 𝑛𝑛, 𝜆𝜆2, 𝜆𝜆3, … , 𝜆𝜆𝑛𝑛−1

with 

30

𝑆𝑆ℎ =

1 + 𝑛𝑛

2𝑛𝑛 + 2 𝑛𝑛

1 − 𝑛𝑛

2𝑛𝑛 − 2 𝑛𝑛
0𝑛𝑛−2𝑇𝑇

1

2𝑛𝑛 + 2 𝑛𝑛

1

2𝑛𝑛 − 2 𝑛𝑛

1
𝑛𝑛 − 1

1𝑛𝑛−2𝑇𝑇

1

2𝑛𝑛 + 2 𝑛𝑛
1𝑛𝑛−2

1

2𝑛𝑛 − 2 𝑛𝑛
�𝑭𝑭𝒏𝒏−𝟏𝟏

𝜆𝜆𝑖𝑖+1 = �
𝑧𝑧=0

𝑛𝑛−2

𝛾𝛾𝑧𝑧𝜔𝜔𝑛𝑛−1𝑖𝑖𝑖𝑖 for 𝑖𝑖 = 1,2, 3, … ,𝑛𝑛 − 2.
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Eigenvalues/eigenvectors of
cyclic type Hadamard matrices

• All the cyclic-type Hadamard matrices of order 𝑛𝑛 have 
▫ the same eigenvector matrix  𝑆𝑆ℎ
 closely related with the Fourier matrix of order 𝒏𝒏 − 𝟏𝟏.
 (complex) unitary

▫ ± 𝑛𝑛 as common eigenvalues, and
▫ remaining 𝑛𝑛 − 2 eigenvalues 

𝝀𝝀𝒊𝒊+𝟏𝟏 = �
𝑧𝑧=0

𝑛𝑛−2

𝛾𝛾𝑧𝑧𝜔𝜔𝑛𝑛−1𝑖𝑖𝑧𝑧 for 𝑖𝑖 = 1,2, 3, … ,𝑛𝑛 − 2,

where
𝛾𝛾 = 𝛾𝛾0, 𝛾𝛾1, … , 𝛾𝛾𝑛𝑛−2

is the top-row of the circulant core 
(cyclic Hadamard sequence of length 𝑛𝑛 − 1)

31
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Summary

• The eigenvalue decomposition of a Paley-type Hadamard matrix is 
obtained explicitly, by using the multi-level circulant structure of 
some Jacobsthal matrices.

• By using similar method, the eigenvalue decomposition of cyclic-
type Hadamard matrix is also obtained.

• The eigenvalues of Paley-type and cyclic-type Hadamard matrices 
are closely related to their multi-level circulant cores.

• FAST Paley-Hadamard Transform algorithm?? 
Or, fast cyclic-Hadamard Transform algorithm??

32
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