Design of MBLT code with decreased maximum of degree at the low overhead

Zhi Jing, Inseon Kim, and Hong-Yeop Song
Yonsei University

Contents

* Preliminaries
- LT code
- MBLT code
* Motivation
* α-MBLT code
* Simulation result

LT code

$\mu(x)$: the right degree distribution (RDD)

Decoding

degree 1

Decoding

2. Cover

Encoded
symbol

Decoding

3. Process

Decoding

3. Process

Encoded
symbol

- The decoding process continues by iterating the above three step.

Memory-based LT code

- $i^{\text {th }}$-order MBLT encoder

$\mathbf{1}^{\text {st }}$-order MBLT code

$\mathbf{1}^{\text {st }}$-order MBLT code

$\mathbf{1}^{\text {st }}$-order MBLT code

$\mathbf{1}^{\text {st }}$-order MBLT code

Information symbol

$\mathbf{1}^{\text {st }}$-order MBLT code

Information Encoded symbol	No. symbol -th encoding process	1	2	3	4	5	6	$\begin{aligned} & \text { Picked } \\ & \text { symbol } \\ & \text { at } d_{r}=1 \end{aligned}$
10	1	1	0	1	0	0	0	
2	2	1	0	2	0	0	0	3
$3 \bigcirc$	3	1	1	2	0	1	1	
	4	1	1	2	0	2	1	2
	!							

$\mathbf{1}^{\text {st }}$-order MBLT code

Encoding algorithm:

1. Randomly sample a degree d_{r};
2. If $d_{r}=1$, pick the information symbol with the highest instantaneous degree without replacement; If $d_{r} \neq 1$, pick d_{r} different information symbols among K information symbols at random with replacement;
3. Generate the encoded symbol by bitwise XOR operation of the d_{r} picked information symbols;
4. Repeat until generating the N encoded symbols.

- instantaneous degree (of left degree distribution (LRR)),
\checkmark which is the degree of the information symbols at the current encoding process

Motivation

The value of λ	large	small
	Good performance	Poor performance
The probability		
of		

For LT code:

- the K information symbols can be recovered from any $\mathrm{N}(N=K+$ $O\left(\sqrt{K} I n^{2}\left(\frac{K}{\delta}\right)\right)$) encoded symbols with probability $1-\delta$.
the encoded symbol with low degree:
- get started and keep going the decoding process.
the encoded symbol with high degree:

α-MBLT code

- decrease the maximal degree $D_{\max }$ of the encoded symbol.
- α : determine the $D_{\text {max }}$, and $0<\alpha \leq 1$,

$$
\sum_{x=1}^{D_{\max }^{-1}} \mu(x)<\alpha \leq \sum_{x=1}^{D_{\max }} \mu(x)
$$

where $\mu(x)$ is the robust degree distribution of LT code.

α-MBLT code

- The new right degree distribution $\lambda(\mathrm{x})$ is:

$$
\lambda(\mathrm{x})=\left\{\begin{array}{c}
\mu(x), \quad x=1,3,4, \ldots, D_{\max } \\
\mu(\mathrm{x})+\sum_{i=D_{\max }+1}^{K} \mu(i), \quad x=2 \\
0, \quad x=D_{\max }+1, \ldots, K
\end{array}\right.
$$

where $\mu(x)$ is the robust Soliton distribution (RSD).

Simulation result ($\alpha=0.95$)

Degree distribution:

Simulation result ($\alpha=0.95$)

Question?

