

Joint locality (r_1, r_2) of MacDonald codes

Zhi Jing, Hyojeong Choi, Hong-Yeop Song

Yonsei University 2019년도한국통신학회추계종합학술발표회

In this paper, we calculate the locality r_2 of the MacDonald codes: $r_2 = 3$ if t < k - 1, and $r_2 = 4$ if t = k - 1. The locality r_1 of MacDonald codes is known: $r_1 = 2$ if t < k - 1and $r_1 = 3$ if t = k - 1. Therefore, the MacDonald codes have joint locality $(r_1, r_2) = (2,3)$ if t < k - 1, and $(r_1, r_2) = (3,4)$ if t = k - 1.

Introduction

- The locality r_l of the locally repairable codes (LRCs), which is the number of symbols needed to repair l failed symbols.
- [2] proposed a new concept: *joint locality*, which considers several values of r_l for multiple values of l instead of a single value of l.
- The binary simplex codes are r₁-optimal [1] and have good joint locality (r₁, r₂) = (2,3) [2]. But the problem is its extremely low code rate.

Some results of the Simplex codes and MacDonald codes

• Let S_k be a $k \times (2^k - 1)$ matrix for any $k \in Z^+$, which is obtained by the following recursion. First, initialize $S_1 = (1)$, and then:

Rules of the construction of the repair sets of the Simplex codes:

For any symbol c_i , the t repair sets are:

$$R_{1} = \{c_{\alpha^{1}}, c_{\beta^{1}}\}, R_{2} = \{c_{\alpha^{2}}, c_{\beta^{2}}\}, \dots, R_{t} = \{c_{\alpha^{t}}, c_{\beta^{t}}\}.$$
1) If $i \in [1, 2^{k-1} - 1]$

$$\geqslant g_{\alpha^{j}}, g_{\beta^{j}} \in A, \text{ for } j \in [1, \left\lfloor \frac{t}{2} \right\rfloor]$$

$$\geqslant g_{\alpha^{j}}, g_{\beta^{j}} \in B, \text{ for } j \in [\left\lceil \frac{t}{2} \right\rceil, t]$$
2) If $i \in [2^{k-1}, 2^{k} - 1]$

$$\geqslant g_{\alpha^{j}} \in A \text{ and } g_{\beta^{j}} \in B, \text{ for } j \in [1, t]$$

• Theorem (*r*₂ of the MacDonald codes):

The MacDonald code $M_k(m)$ has locality $r_2 = 3$ if m < k - 1, and $r_2 = 4$ if m = k - 1.

$$S_{k} = \begin{pmatrix} S_{k-1} & 0_{k-1}^{T} & S_{k-1} \\ 0_{2^{k-1}-1} & 1 & 1_{2^{k-1}-1} \end{pmatrix}, \text{ for } k = 2,3,\cdots.$$

• Definition [4]: The code C_s generated by S_k is called a Simplex code. Let $1 \le m \le k - 1$. Delete the first $2^m - 1$ columns from S_k and denote the result as $G_k(m)$, and. The code $M_k(m)$ generated by $G_k(m)$ is called a MacDonald code.

Note: For the convenience, let $G_k(m) = (A B)$, where *B* be the last 2^{k-1} columns of $G_k(m)$ and A be the rest part.

- Lemma 1 [3]: The [n, k] simplex code C_s has the locality $r_1 = 2$ and the availability $t = \frac{n-1}{2}$.
- Lemma 2 [4]: The MacDonald code $M_k(m)$ has the locality $r_1 = 2$ if m < k - 1, and $r_1 = 3$ if m = k - 1.

Conclusion

- From Lemma 2 and Theorem, the MacDonald code $M_k(m)$ has joint locality $(r_1, r_2) = (2,3)$ if m < k - 1, and $(r_1, r_2) = (3,4)$ if m = k - 1.
- In the future, we will verify the availability of the MacDonald codes, and design some LRCs with good joint locality and availability based on the MacDonald codes.

REFERENCES

 P. Huang, E. Yaakobi, H. Uchikawa, and P.H. Siegel, "Binary linearlocally repairable codes," IEEE Trans. Inf. Theory, vol.62, no.11, pp.6268–6283, Nov. 2016.
 J.-H. Kim, M.-Y. Nam, and H.-Y. Song, "Optimal binary locally repairable codes with joint information locality," Proc. IEEE Information Theory Workshop (ITW), pp.54–58, Oct. 2015.

[3] J.-H. Kim, M. K. Song, and H.-Y. Song, "Block-Punctured Binary Simplex Codes for Local and Parallel Repair in Distributed Storage Systems," IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, vol.E101, no.12, pp.2374-2381, Dec. 2018.

[4] Qiang Fu, Ruihu Li, Luob in Guo, and Liangdong Lv. " Locality of optimal binary codes," Finite Fields and Their Applications, vol.48, pp.371-394, Nov. 2017.

