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Polyphase sequences

Equivalent representations

0

1

2

3

4

Real

Imaginary

+1=𝑒𝑒𝑗𝑗
2𝜋𝜋
5 𝟎𝟎

𝑒𝑒𝑗𝑗
2𝜋𝜋
5 𝟏𝟏

𝑒𝑒𝑗𝑗
2𝜋𝜋
5 𝟐𝟐

𝑒𝑒𝑗𝑗
2𝜋𝜋
5 𝟑𝟑

𝑒𝑒𝑗𝑗
2𝜋𝜋
5 𝟒𝟒

A complex-valued polyphase sequence

𝒆𝒆𝒋𝒋
𝟐𝟐𝝅𝝅
𝟓𝟓 𝟏𝟏, 𝒆𝒆𝒋𝒋

𝟐𝟐𝝅𝝅
𝟓𝟓 𝟑𝟑, 𝒆𝒆𝒋𝒋

𝟐𝟐𝝅𝝅
𝟓𝟓 𝟎𝟎, 𝒆𝒆𝒋𝒋

𝟐𝟐𝝅𝝅
𝟓𝟓 𝟐𝟐, 𝒆𝒆𝒋𝒋

𝟐𝟐𝝅𝝅
𝟓𝟓 𝟒𝟒,…

𝟏𝟏,𝟑𝟑,𝟎𝟎,𝟐𝟐,𝟒𝟒, …

Corresponding phase sequence 
over the integers modulo 𝟓𝟓

Alphabet of  a polyphase sequence
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𝑥𝑥 𝑛𝑛 𝑛𝑛=0
𝐿𝐿−1 be 𝒌𝒌-ary polyphase 

sequences of length 𝐿𝐿

𝑥𝑥 𝑛𝑛 belongs to the integers mod 𝒌𝒌
for each 𝑛𝑛 = 0,1, …



Correlation of  sequences

• Let 𝒙𝒙 = 𝑥𝑥 𝑛𝑛 𝑛𝑛=0
𝐿𝐿−1 and 𝒚𝒚 = 𝑦𝑦 𝑛𝑛 𝑛𝑛=0

𝐿𝐿−1 be two 𝒌𝒌-ary 
polyphase sequences of length 𝐿𝐿. (over the integers mod 𝒌𝒌)

• The (periodic) correlation between 𝒙𝒙 and 𝒚𝒚 at time shift 𝜏𝜏 is 
computed over the complex:

C𝒙𝒙,𝒚𝒚 𝜏𝜏 = �
𝑛𝑛=0

𝐿𝐿−1

𝜔𝜔𝑥𝑥 𝑛𝑛 𝜔𝜔𝑦𝑦 𝑛𝑛+𝜏𝜏 ∗
= �

𝑛𝑛=0

𝐿𝐿−1

𝜔𝜔𝑥𝑥 𝑛𝑛 −𝑦𝑦 𝑛𝑛+𝜏𝜏

where 𝜔𝜔 = 𝑒𝑒−𝑗𝑗
2𝜋𝜋
𝑘𝑘 is a complex primitive 𝑘𝑘-th root of unity.  

 It is called autocorrelation if 𝒚𝒚 = 𝒙𝒙.
 It is called cross-correlation otherwise.
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In the beginning
• (Sidelnikov-69) Sidelnikov introduced two different types of  

non-binary (k-ary polyphase) sequences with 

very good non-trivial autocorrelation (ONLY)
 Power Residue sequences (PRS in short) of period 𝒑𝒑
 Sidelnikov sequences of period 𝒒𝒒 − 𝟏𝟏

 V. M. Sidelnikov, “Some k-valued pseudo-random sequences and nearly equidistant 
codes,” Probl. Inf. Transm., vol. 5, pp. 12-16, 1969.

• (Lempel-Cohn-Eastman-77) re-discovered binary “Sidelnikov 
sequences” of  period 𝑞𝑞 − 1
 A. Lempel, M. Cohn, and W.L. Eastman, "A class of binary sequences with optimal 

autocorrelation properties," IEEE Trans. Inform. Theory, vol. 23, No. 1, pp. 38-42, Jan. 
1977.
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Cosets of  𝑘𝑘-th powers in 𝐹𝐹𝑞𝑞∗
• 𝑝𝑝 = odd prime, 𝑞𝑞 = 𝑝𝑝𝑚𝑚 and 𝐹𝐹𝑞𝑞 = finite field of size 𝑞𝑞
• 𝜇𝜇 = primitive element of 𝐹𝐹𝑞𝑞
• 𝑘𝑘 is a divisor of 𝑞𝑞 − 1 so that 𝑞𝑞 = 𝑘𝑘𝑘𝑘 + 1 for some 𝑓𝑓
• Coset Partition

 D0 = set of 𝑘𝑘-th powers in 𝐹𝐹𝑞𝑞∗

= 𝜇𝜇𝑘𝑘𝑘 = 1, 𝜇𝜇2𝑘𝑘 , 𝜇𝜇3𝑘𝑘 , … , 𝜇𝜇(𝑓𝑓−1)𝑘𝑘

 Di = 𝜇𝜇𝑖𝑖D0 for   𝑖𝑖 = 0,1, … , 𝑘𝑘 − 1
= 𝜇𝜇𝑘𝑘𝑘+𝑖𝑖 = 𝜇𝜇𝑖𝑖 , 𝜇𝜇2𝑘𝑘+𝑖𝑖 ,𝜇𝜇3𝑘𝑘+𝑖𝑖 , … , 𝜇𝜇 𝑓𝑓−1 𝑘𝑘+𝑖𝑖

• Well-known that

𝐹𝐹𝑞𝑞∗ = �
𝑖𝑖=0

𝑘𝑘−1

𝐷𝐷𝑖𝑖 is a disjoint union

and 
𝐷𝐷𝑖𝑖 = 𝑓𝑓 for all 𝑖𝑖 = 0,1, … , 𝑘𝑘 − 1.
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Example
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 Let 𝑞𝑞 = 13 and the finite field 𝐹𝐹𝑞𝑞 = 𝐹𝐹13 has 𝜇𝜇 = 2 (primitive) since 
𝜇𝜇𝑛𝑛|𝑛𝑛 = 1,2, … , 11,12

= 𝜇𝜇1, 𝜇𝜇2, 𝜇𝜇3, 𝜇𝜇4, … , 𝜇𝜇12

= 2,4,8,3,6,12,11,9,5,10,7,1 = 𝐹𝐹13∗

 A divisor 𝑘𝑘 = 3 of 𝑞𝑞 − 1 = 12 = 3 × 4 with 𝑓𝑓 = 4 = (𝑞𝑞 − 1)/𝑘𝑘

and D0= 23, 23�2, 23�3, 23�4 = 8, 12, 5, 1

is the set of all the 𝑘𝑘-th (3rd) powers of 𝐹𝐹13∗ .

 All its cosets are

D0 = 20D0  = {8, 12,   5,  1}

D1 = 21D0  = {3, 11, 10,  2}

D2 = 22D0  = {6,   9,   7,   4}
each of size 𝑓𝑓 = 4, and 

𝐹𝐹13∗ = 𝐷𝐷0 ∪ 𝐷𝐷1 ∪ 𝐷𝐷2 is a disjoint union



Two sequences from Sidelnikov
 Let 𝑝𝑝 must be an odd prime and 𝑞𝑞 = 𝑝𝑝𝑚𝑚

 Let 𝑘𝑘 ≥ 2 be a divisor of 𝑞𝑞 − 1
 Let 𝜇𝜇 be a primitive element of  𝐹𝐹𝑞𝑞∗

 D0 = set of all the 𝑘𝑘-th powers of  𝐹𝐹𝑞𝑞∗ (for Sidel S)
 Di = 𝜇𝜇𝑖𝑖D0  = coset of D0 for 𝑖𝑖 = 0,1, … , 𝑘𝑘 − 1

 A k-ary power residue sequence (PRS) of  period 𝒒𝒒 = 𝒑𝒑
(𝒒𝒒 = 𝒑𝒑 =prime):

𝑠𝑠 𝑛𝑛 = � 0, if 𝑛𝑛 = 0
𝑖𝑖, if 𝑛𝑛 ∈ 𝐷𝐷𝑖𝑖

 A 𝑘𝑘-ary sidelnikov sequence of  period 𝒒𝒒 − 𝟏𝟏
(𝒒𝒒 − 𝟏𝟏 = 𝒑𝒑𝒎𝒎 − 𝟏𝟏 = one less than a prime or a power of  a prime)

𝑠𝑠 𝑛𝑛 = � 0, if 𝜇𝜇𝑛𝑛 + 1 = 0
𝑖𝑖, if 𝜇𝜇𝑛𝑛 + 1 ∈ 𝐷𝐷𝑖𝑖



𝑝𝑝 = 𝑞𝑞 = 13 and 𝒌𝒌 = 𝟑𝟑
 D0 = 20D0  = {8, 12,   5,  1}
 D1 = 21D0  = {3, 11, 10,  2}
 D2 = 22D0  = {6,   9,   7,   4}

n 0 1 2 3 4 5 6 7 8 9 10 11 12

PRS 0 0 1 1 2 0 2 2 0 2 1 1 0

𝜇𝜇n 1 2 4 8 3 6 12 11 9 5 10 7

𝜇𝜇n+1 2 3 5 9 4 7 0 12 10 6 11 8

Sidel S 1 1 0 2 2 2 0 0 1 2 1 0 X
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 A k-ary PR S of  period 𝑝𝑝:

𝑠𝑠 𝑛𝑛 = �0, if 𝑛𝑛 = 0
𝑖𝑖, if 𝑛𝑛 ∈ 𝐷𝐷𝑖𝑖

 A 𝑘𝑘-ary Sidel. sequence of  period 𝑞𝑞 − 1:

𝑠𝑠 𝑛𝑛 = � 0, if 𝜇𝜇𝑛𝑛 + 1 = 0
𝑖𝑖, if 𝜇𝜇𝑛𝑛 + 1 ∈ 𝐷𝐷𝑖𝑖

log𝜇𝜇 (𝜇𝜇n+1) 1 4 9 8 2 11 * 11 10 5 7 3 X

log𝜇𝜇 (𝜇𝜇n+1) 
mod 3

1 1 0 2 2 2 0 0 1 2 1 0 X

equivalent presentation: 𝑠𝑠 𝑛𝑛 = log𝜇𝜇 (𝜇𝜇n+1) mod 𝒌𝒌 - GONG-10



QUESTIONs
Can we construct a set of  sequences with 

GOOD cross-correlation 
as well as 

GOOD non-trivial autocorrelation
from any of  these sequences?

Up until 2006, only the autocorrelation properties of  these 
sequences are known (original paper Sidelnikov-69):

The non-trivial autocorrelation magnitude is upper bounded 
by 3 (for PRS) or 4 (for Sidel. sequences).
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First Attempt (2006-2007)
• Construct a family from a given sequence by changing the 

primitive element in the definition.

• It turned out that the same family can be obtained by 
multiplying a constant term-by-term.

• Results are
 PRS (period p): Song-06 (ISIT)   

• Max ≤ 𝑝𝑝 + 2

 SS (period q-1): Song-07 (IT Trans.)
• Max ≤ 𝑞𝑞 + 3

• Note that the size of  the family is 𝒌𝒌 − 𝟏𝟏 for 𝒌𝒌-ary sequences. 
It is only 𝝋𝝋(𝒌𝒌) when we need to maintain 𝑘𝑘 distinct values.

Crosscorrelation of q-ary power residue sequences 
of period p

Crosscorrelation of Sidel'nikov Sequences and Their 
Constant Multiples
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An improvement begins by some 
observations and a conjecture

• Z. Guohua and Z. Quan, “Pseudonoise codes 
constructed by Legendre sequence,” IEE 
Electronic Letters, vol. 38, no. 8, pp. 376-377, 
2002.

• The technique of  shift-and-add (as in 
the construction of  GOLD sequences 
using an m-sequence) is introduced.

• They used a Legendre sequence and 
the technique of  shift-and-add to 
construct a family with good 
crosscorrelation, where the 
crosscorrelation is (conjectured to be)
upper bounded by 𝟒𝟒 𝟐𝟐 𝒑𝒑/𝟒𝟒 + 𝟏𝟏
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It is proved by Rushanan at ISIT-06
• J. Rushanan, “Weil Sequences: A Family of  Binary Sequences with Good 

orrelation Properties,” Proc. of  IEEE Int. Symp. Information 
Theory(ISIT2006), Seattle, WA, USA, July 2006.

• Crosscorrelation of  the sequence family containing 
a Legendre sequence and its shift-and-add 
sequences is upper bounded by 𝟐𝟐 𝒑𝒑 + 𝟓𝟓. 

• Major Technique:

�
𝑥𝑥=0

𝑝𝑝−1
𝑥𝑥 + 𝑎𝑎1 ⋯ 𝑥𝑥 + 𝑎𝑎4

𝑝𝑝
≤ 2 𝑝𝑝 + 1

quartic polynomial (product of 4 linear polynomials)

quadratic character
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Results of  No-Chung/Yang/Gong (2008-2010)

• Y.-S. Kim, J.-S. Chung, J.-S. No, and H. Chung, “New families of  M-ary 
sequences with low correlation constructed from Sidel’nikov sequences,” IEEE 
Trans. Inf. Theory, vol. 54, no. 8, pp. 3768–3774, Aug. 2008.

• Y. K. Han and K. Yang, New M-ary sequence families with low correlation and 
large size, IEEE Trans. Inf. Theory, vol. 55, no. 4, pp. 1815-1823, Apr. 2009.

• N. Y. Yu and G. Gong, Multiplicative Characters, the Weil Bound, and Polyphase 
Sequence Families With Low Correlation, IEEE Trans. Inf. Theory, vol. 56, no. 
12, pp. 6376-6387, Dec. 2010.
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Weil Bound on character 
sums 

to prove crosscorrelation bound of 
the family constructed

Shift-and-add techniques 
to construct larger family of 

sequences from a Sidelnikov 
sequence or a power-residue 

sequence

Note that the size of the family becomes ≈ 𝒌𝒌𝒌𝒌/𝟐𝟐
for 𝒌𝒌-ary sequences of period 𝒒𝒒 − 𝟏𝟏. 

Both Sidelnikov sequences and PRS

Sidelnikov sequences only



Array structure of  Sidelnikov sequences

Sidelnikov 
69

Song-06/07

No-08, Yang-09, 
Gong-10

Gong-10-array

Song-15

For a 𝑘𝑘-ary Sidelnikov sequence 𝑠𝑠(𝑡𝑡) of period 𝒒𝒒𝒅𝒅 − 𝟏𝟏, 
make an array as

and choose some columns to construct a set of 𝑘𝑘-ary
sequences of period 𝒒𝒒 − 𝟏𝟏.

(Gong 10) when 𝒅𝒅 = 𝟐𝟐
(Song 15) when 𝟑𝟑 ≤ 𝒅𝒅 < 𝒒𝒒/𝟐𝟐 with 𝑞𝑞 ≥ 27

The family size now becomes ≈ 𝒌𝒌𝒒𝒒𝒅𝒅/𝒅𝒅
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Array structure of  Sidelnikov sequences

Sidelnikov 
69

Song-06/07

No-08, Yang-09, 
Gong-10

Gong-10-array

Song-15

(Song 19) Combine 𝒅𝒅 = 𝟐𝟐,𝟑𝟑, … ,𝒅𝒅𝒎𝒎𝒎𝒎𝒎𝒎, 

The family size now becomes ≈ 𝒌𝒌∑𝒒𝒒𝒅𝒅/𝒅𝒅

16

Song-19
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