Sequence Design Example for Ultra-Wideband Impulse Radio Using Maximal Length Sequences

June 15, 2004

Seok-Yong Jin, Yun-Pyo Hong, and Hong-Yeop Song

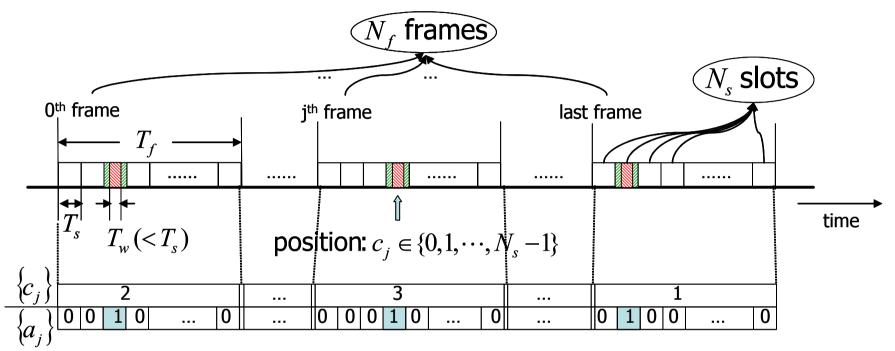
Yonsei University

ITRC Forum 2004, Inha UWB-ITRC

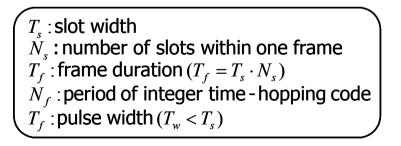
- General signal model for sequence designs suitable for UWB signals using TH-SSMA (Time Hopping Spread Spectrum Multiple Access)
- Sequence **construction**
- Analysis
 - Correlation measure
 - Power Spectral Density (PSD) Consideration

Signal Model

Time-Hopping Signal Models — (1)



[Fig. 1] Illustration of UWB Time-Hopping (Impluse Radio) signal models



 i^{th} (unmodulated) TH-UWB signal

$$s^{(i)}(t) = \sum_{j} p(t - jT_{f} - c_{j}^{(i)}T_{s}) = \sum_{n} a_{n}^{(i)} p(t - nT_{s})$$

 ${c_{j}^{(i)}}_{j=0}^{N_{f}-1}$: N_{s} - ary integer TH code of period N_{f}

$$\{a_n^{(i)}\}_{j=0}^{N_s N_f - 1} = \begin{cases} 1, & \text{if } \exists j \in \mathbb{Z} \text{ s.t } n = jN_s + c_j^{(i)} \\ 0, & O.W \end{cases}$$

: binary representation of $c_i^{(i)}$ of period $N_s N_f$

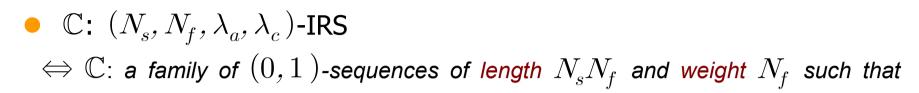
• Normalized periodic crosscorrelation between user i and user k

$$\Lambda_{i,k}(n_{\tau}T_{s}) = \frac{1}{N_{f}} \sum_{n=0}^{N_{s}N_{f}-1} a_{n}^{(i)} a_{n \oplus n_{\tau}}^{(k)}$$

(c.f. divided by N_{f} , NOT $N_{s}N_{f}$)

Inha UWB-ITRC

Impulse Radio Sequence (IRS) - definition



1) Pulse position property: for $\forall x = \{x_t\}_{t=0}^{N_s N_f - 1} \in \mathbb{C}$,

- \blacktriangleright $N_s N_f$ slots are uniformly divided into N_f frames
- \blacktriangleright Each frame has a unique pulse position among its $N_{\!s}$ slots
- ▶ $supp(x) = \{c_j + jN_s | j = 0, 1, \dots, N_f 1, c_j \in \mathbb{Z}_{N_s}\}$

2) Autocorrelation property: for $\forall x = \{x_t\}_{t=0}^{N_s N_f - 1} \in \mathbb{C}$ and $\forall \tau \neq 0 \pmod{N_s N_f}$,

$$\sum_{t=0}^{N_s N_f - 1} x_t x_{t \oplus \tau} \leq \lambda_a$$

3) Crosscorrelation property: for $\forall x = \{x_t\}_{t=0}^{N_s N_f - 1} \in \mathbb{C}, \forall y = \{y_t\}_{t=0}^{N_s N_f - 1} \in \mathbb{C}, x \neq y, \forall \tau, t \in \mathbb{C}$

$$\sum_{t=0}^{N_s N_f - 1} x_t y_{t \oplus \tau} \leq \lambda_c$$

Optimality in view of Correlation

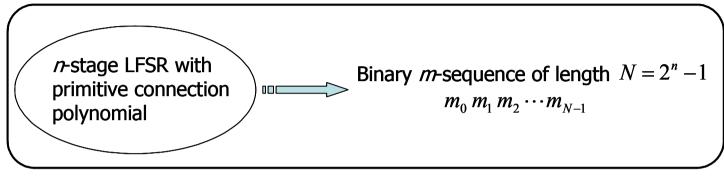
- For given parameters $N_s, N_f, \lambda_a, \lambda_c$
- $\Phi(N_s, N_f, \lambda_a, \lambda_c)$ = the maximum cardinality of $(N_s, N_f, \lambda_a, \lambda_c) IRS$
- Exact value of Φ is difficult to determine
 - \Rightarrow Need some bound (Johnson bound)
- Johnson Bound
- Upper bound for A(n,d;w)
- A(n,d;w): maximum # of bin. vectors of length n, minimum distance $d_{\min} = d$, weight w
- $A(n, 2\delta; w) \leq \left\lfloor \frac{n}{w} \left\lfloor \frac{n-1}{w-1} \cdots \left\lfloor \frac{n-(w-\delta)}{\delta} \right\rfloor \cdots \right\rfloor$

• When
$$\lambda_a = \lambda_c = \lambda$$
:
 $\Phi(N_s, N_f, \lambda) \leq \left\lfloor \frac{1}{N_f} \left\lfloor \frac{N_s N_f - 1}{N_f - 1} \cdots \left\lfloor \frac{N_s N_f - \lambda}{N_f - \lambda} \right\rfloor \cdots \right\rfloor \right\rfloor$

Sequence Construction

Maximal Length Sequences (*m*-sequence)

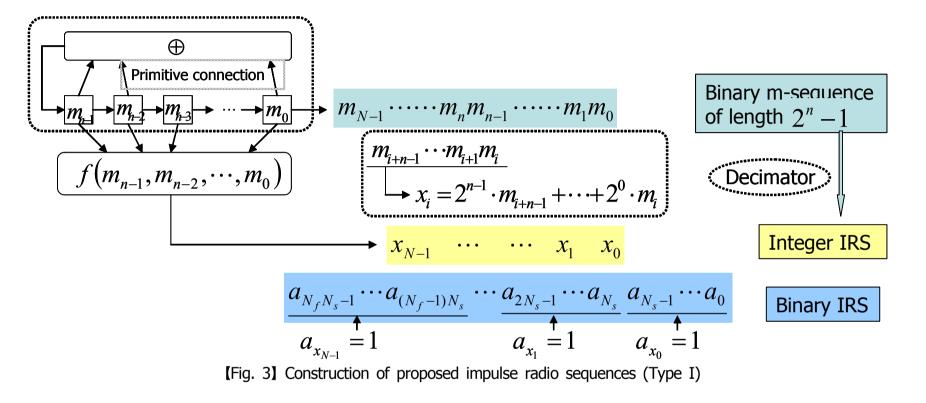
Maximal length LFSR (Linear Feedback Shift Register) sequence (*m*-sequence)



[Fig. 2] Generator of binary maximal length sequences

- Properties of *m*-sequence
- Maximal length (period): $N = 2^n 1$
- Ideal (conventional) autocorrelation: $R(\tau) = \begin{cases} -1, \ \tau \neq 0 \pmod{N} \\ N, \ \tau \equiv 0 \pmod{N} \end{cases}$
- Span property: N consecutive n-bits are all distinct, $m_i \cdots m_{i+n-1} \neq m_j \cdots m_{j+n-1}$
- *Run* property, etc.
- Number of (cyclically) distinct m-sequence: $M_n =$

:
$$M_n = \frac{\phi(2^n - 1)}{n}$$
 ($\phi(\cdot)$ is Euler phi-function)



- There are $M_n = \phi \left(2^n - 1 \right) / n$ cyclically distinct m-sequences.

 $\bullet \ (N_s, N_f, \lambda_a, \lambda_c) = \begin{cases} (2^n, 2^n - 1, \lambda_a, \lambda_c) &, Type \ I \\ (2^n - 1, 2^n - 1, \lambda_a, \lambda_c) &, Type \ I \end{cases} \text{-IRS with } M_n \text{-sequences}$

(Type II; $x_i \neq 0$ for all $i = 0, 1, \dots, N_f - 1$ by span property)

Yonsei University

Analysis

Parameters and Correlation Property

\overline{n}		3	4	5	6	7	8	9	10			
Number of sequences		2	2	6	6	18	16	48	60			
$(N_{\!s},N_{\!f})$	[3] with $l = n - 3$	N/A	N/A	(4, 15)	(8, 21)	(16, 31)	(32, 51)	(64, 85)	(128, 146)			
	Туре І	(8,7)	(16, 15)	(32, 31)	(64, 63)	(128, 127)	(256, 255)	(512, 511)	(1024, 1023)			
	Type II	(7, 7)	(15, 15)	(31, 31)	(63, 63)	(127, 127)	(255, 255)	(511, 511)	(1023, 1023)			
Period of Binary IRS: $(N_s \cdot N_f)$	[3]	N/A	N/A	60	168	496	1,632	5,440	18,688			
	Туре І	56	240	992	4032	16,256	65,280	261,632	1,047,552			
	Type II	49	225	961	3969	16,129	65,025	261,121	1,046,529			

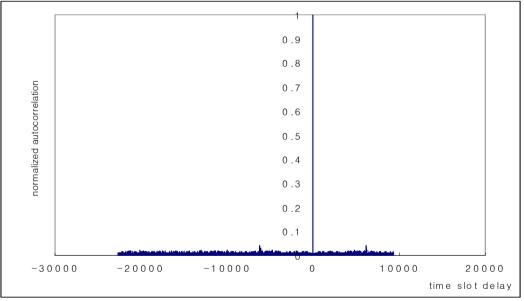
[Table 1] Parameters of proposed IRSs

[Table 2] Correlation Properties of proposed IRS (Type I)

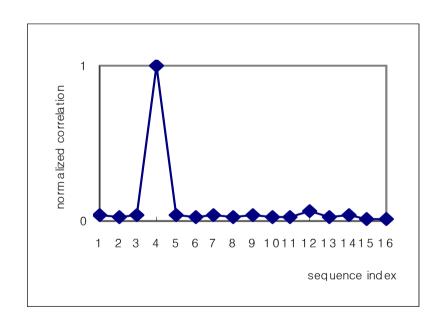
		3	4	5	6	7	8	9	10
n		5	Т	5	0	/	0	9	10
Autocorrelation (λ_a)	unnormalized	3	4	5	6	8	11	16	20
	$\max_{i}\max_{\tau\neq 0}R_{ii}(\tau)$								
	normalized	0.429	0.267	0.161	0.095	0.063	0.043	0.031	0.020
	$\max_{i} \max_{\tau \neq 0} \widetilde{R_{ii}}(\tau)$	0.729							
Crosscorrelation (λ_c)	unnormalized	3	4	6	8	10	15	19	23
	$\max_{i \neq j} \max_{\tau} R_{ij}(\tau)$	5							
	normalized	0.429	0.267	0.193	0.127	0.079	0.059	0.037	0.022
	$\max_{i \neq j} \max_{\tau} \widetilde{R_{ij}}(\tau)$	0.729							

•
$$n = 8$$
: $(256, 255, 11, 15)$ -IRS $\mathbb{C} = \{X^{(1)}, X^{(2)}, \cdots, X^{(16)}\}$
• $\lambda_a = \max_i \max_{\tau \neq 0} R_{i,i}(\tau)$

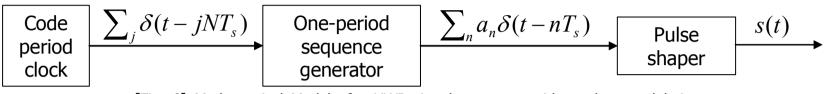
• $\lambda_c = \max_{i \neq j} \max_{\tau} R_{i,j}(\tau)$



[Fig. 4] Autocorrelation profile of $X^{(4)}$ by type I construction (n=8)



[[]Fig. 5] Maximum normalized crosscorrelation between $X^{(4)}$ and other sequences



[Fig. 6] Mathematical Model of a UWB signal generator without data modulation

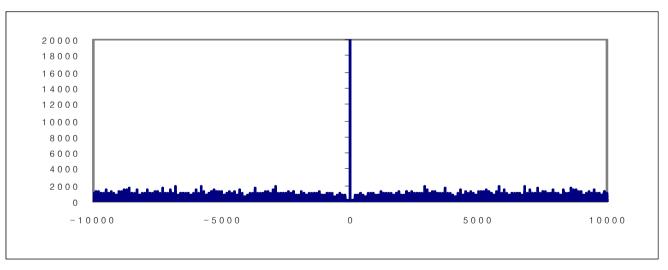
PSD calculation

• UWB carrier in simple form: $s(t) = \sum_{n} a_{n} p(t - nT_{s})$ (*N*=the period of $\{a_{n}\}, N = N_{s}N_{f}$)
• $h_{op}(t) = \sum_{n=0}^{N-1} a_{n} \delta(t - nT_{s}), H_{op}(f) = FT\{h_{op}(t)\} = \sum_{n=0}^{N-1} a_{n} e^{-j2\pi fnT_{s}}$ • $PSD_{cpc}(f) = \frac{1}{(NT_{s})^{2}} \sum_{k} \delta\left(f - \frac{k}{NT_{s}}\right)$ • $PSD_{s}(f) = |P(f)H_{op}(f)|^{2} PSD_{cpc}(f) = \frac{|P(f)|^{2}}{(NT_{s})^{2}} \sum_{k} C_{k} \delta\left(f - \frac{k}{NT_{s}}\right)$ • $C_{k} = \left|\sum_{n=0}^{N-1} a_{n} e^{-j2\pi kn/N}\right|^{2}$: the effect of code design

Power Spectral Density (PSD) - (2)

- Spectral flatness (*Cancelation of Energy Spark*)
- The flatter the PSD of the transmission, the larger the amount of power that can be radiated while still satisfying PSD bounds imposed by regulatory agencies.
- Code for perfectly flat PSD
 - Codes from cyclic difference set
 - ▶ Not applicable to IRS because of "pulse position property"

PSD of proposed IRS



[Fig. 7] $C_k^{(4)}$ of type I construction (with peak value 65280 at k=0)

- Time-hopping signal model and correlation consideration
 - NOT conventional BUT OOC (Optical Orthogonal Code) like correlation
 - Crosscorrelation with arbitrary time delay in slot time units as well as frame duration units
- **Design goal** of time-hopping code for UWB Impulse Radio
 - : to construct a signal set with
 - Low correlation for better performance of multiple access
 - Spectral flatness for efficient radiation of power
 - Long period for low PSD (energy spark cancellation)
 - Easy generation for system implementation
 - Large number of sequences to support as many users as possible
- Proposed design example has the features:
 - Very easy generation
 - $\hfill\blacksquare$ For given parameter $N_{\!s}$, relatively long period
 - Improvement in correlation measure (compared to existing designs)
 - Usually flat PSD, but room for analysis and development

• Code design

- Improvement of proposed design
- $\hfill\blacksquare$ New design using $q\mbox{-ary}$ integer codes having good hamming correlation

Consideration of known IRSs with optimal correlation

- PSD analysis
- Simulation with various modulation schemes