Efficient encoder design of LDPC code using circulant matrix and eIRA codes

Seul-Ki Bae
sk.bae@coding.yonsei.ac.kr

November, 5, 2004
Coding & Information Theory Lab.
Department of Electrical and Electronic Engineering, Yonsei Univ.
Contents

- I. Introduction
- II. Design of Structural Codes
 - IRA codes
 - eIRA codes
- III. Modified Encoder Structure
 - Circulant matrix
 - Permutation matrix
 - Encoding complexity
- IV. Conclude Remarks
Introduction

- **Encoding of LDPC codes**
 - Information bit & Parity bit are computed by matrix multiplication in linear block code.
 - 1’s in generator matrix are more than parity-check matrix.
 - Encoding complexity is much high with matrix multiplication operation.
Design of Structural Codes (1/2)

- **Irregular Repeated-Accumulate (IRA) codes**
 - k: number of variable nodes
 - r: number of checks nodes
 - r: number of parity nodes
 - Each check node is connected to an information node.
 - The value of parity bit is determined uniquely by the condition that the mod-2 sum of the values of the variable nodes connected to each of the check nodes is zero.

![Diagram of IRA codes](image)
Extended Irregular Repeated-Accumulate (eIRA) codes

- Complexity is reduced using differential encoder structure of IRA codes
- \(H = [H_1 | H_2] \)
 - \(H_1: (n-k) \times k \) sparse matrix (using density evolution)
 - \(H_2: (n-k) \times (n-k) \) dual diagonal matrix

\[
H_2 = \begin{pmatrix}
1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 & 1 \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 & 1
\end{pmatrix}
\]

\[
H_2^T = \begin{pmatrix}
1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 & 1 \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 & 1
\end{pmatrix}
\]
Circulant matrix

- \(H_1 \) matrix is constructed by \(p \times q \) matrix blocks which are \(l \times l \) circulant submatrix, where \(p \) is a number of row blocks, \(q \) is a number of column blocks.

- Each weight in each circulant submatrix can be different.

\[
H_1 = \begin{pmatrix}
h_{11} & h_{12} & \cdots & h_{1q} \\
h_{21} & h_{22} & \cdots & h_{2q} \\
\vdots & \vdots & \ddots & \vdots \\
h_{p1} & h_{p2} & \cdots & h_{pq}
\end{pmatrix}
\]

- Proposed \(H_1 \) matrix can be more modified by row permutation matrix.

- Row permutation matrix \(P \) is \((n - k) \times (n - k) \) matrix and each rows and columns has only one 1’s.

- To prevent from performance degradation, modify to \(H_1' = PH_1 \) using row permutation matrix.
Parity-check matrix

\[H = \begin{bmatrix} H_1' & H_2 \end{bmatrix} \]
\[= \begin{bmatrix} PH_1 & H_2 \end{bmatrix} \]
\[= \begin{bmatrix}
1 & h_{11} & h_{12} & \cdots & \cdots & h_{1q} & 1 \\
1 & h_{21} & h_{22} & \cdots & \cdots & h_{2q} & 1 & 1 \\
\vdots & \vdots & \vdots & \ddots & \ddots & \ddots & \vdots & \vdots \\
1 & h_{p1} & h_{p2} & \cdots & \cdots & h_{pq} & 1 & 1 \\
\end{bmatrix} \]
Generator matrix

- \(H = [H_1' \mid H_2] = [H_2^{-1}H_1' \mid I_{n-k}] \rightarrow G= [I_k \mid H_1^{T} H_2^{-T}] \)

\[
G = \begin{bmatrix}
I \mid H_1^{T} P^{T} H_2^{-T} \\
\end{bmatrix}
\]

- Since \(H_1^{T} \) is transposed form of circulant matrix, it can be constructed by shift register and interleaver.
- \(H_2^{-T} \) matrix can be constructed by differential encoder.
Encoder Block Diagram

a) Original Encoder

\[c = \begin{bmatrix} u \\ p \end{bmatrix} \]

\[u \xrightarrow{\text{multi. op.}} H_1^T \xrightarrow{\frac{1}{1 \oplus D}} p \]

b) Modified Encoder

\[c = \begin{bmatrix} u \\ p \end{bmatrix} \]

\[u \xrightarrow{\text{FSR}} H_1^T \xrightarrow{\text{Interleaver}} \xrightarrow{\frac{1}{1 \oplus D}} p \]
Modified Encoder Structure (5/6)

- Encoder Structure
 - Modified encoder structure
 - Example of Shift Register

\[g_1 = 1 + x^3 \]
\[H_1^T \]
\[c = [u \ p] \]
Complexity Comparison

<table>
<thead>
<tr>
<th></th>
<th>δ (general)</th>
<th>Total Computation</th>
<th>Total XOR</th>
<th>Total Memory</th>
<th>Computation comparison</th>
<th>XOR comparison (n=1024, k=768, p=1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Matrix multiplication</td>
<td>≈0.5</td>
<td>δk(n-k)</td>
<td>δk(n-k)</td>
<td>n-k</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Michael Yang</td>
<td>≈0.01</td>
<td>δ(k+1)(n-k)</td>
<td>δk(n-k)</td>
<td>n-k</td>
<td>1/50</td>
<td>1</td>
</tr>
<tr>
<td>Shift Register</td>
<td>≈0.01</td>
<td>δ(k+1)(n-k)</td>
<td>δkp</td>
<td>n-k</td>
<td>1/50</td>
<td>1/256</td>
</tr>
<tr>
<td>Shift Register Interleaver</td>
<td>≈0.01</td>
<td>δ(k+1)(n-k)</td>
<td>δkp</td>
<td>≤ 2(n-k)</td>
<td>1/50</td>
<td>1/256</td>
</tr>
</tbody>
</table>

- δ: density of H_I Matrix
- Complexity is reduced compared with matrix multiplication operation.
- In our simulation, (n, k) = (256, 192), (512, 384), (1024, 768), (2924, 2193), p=1, q=3.
Simulation Environments

<table>
<thead>
<tr>
<th>Decoding Algorithm</th>
<th>Sum-Product Algorithm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum Iteration</td>
<td>50</td>
</tr>
<tr>
<td>Codeword Length</td>
<td>256, 512, 1024, 2924</td>
</tr>
<tr>
<td>Coderate</td>
<td>0.75</td>
</tr>
<tr>
<td>Modulation</td>
<td>BPSK</td>
</tr>
<tr>
<td>Channel Model</td>
<td>AWGN</td>
</tr>
</tbody>
</table>
Simulation Results(2/4)

- Code rate 0.75, length 256, 512

BER of Length 256, Coderate 0.75 LDPC code

BER of Length 512, Coderate 0.75 LDPC code
Simulation Results (3/4)

- Code rate 0.75, length 1024, 2924

BER of Length 1024, Coderate 0.75 LDPC code

- eIRA Circul. Interl.
- eIRA Circul.
- eIRA Random
- Random

BER of Length 2924, Coderate 0.75 LDPC code

- eIRA Circul. Interl.
- eIRA Circul.
- eIRA Random
- Random
Comparison according to lengths

BER of various Length, Coderate 0.75 LDPC code

- len 256
- len 512
- len 1024
- len 2592

Bit Error Rate vs. Eb/No
Concluding Remarks

Conclusion

- Encoder complexity is lower than Yang’s method.
- Applicable to short length, high rate LDPC code

Future Works

- Research on generator polynomial structure to make large girth.
- Research on permutation matrix structure not to make 4-cycle after permutation.