

Introduction

- LDPC codes with finite block length
 - Parameter related to performance :
 - ✓ girth (the shortest cycle)
 - connectivity of graph
 - Construction algorithms
 - ✓ ACE algorithm : connectivity of graph
 - ✓ PEG algorithm : local girth
 - ✓ Improved PEG algorithm (IPEG) algorithm : PEG + ACE
 - One of the best known methods for constructing LDPC codes.

IPEG Algorithm

- A lot of random selection for new edges
 - ✓ About 40~50% of total edges.

→ IPEG algorithm needs **more specific criterion** for selection!!

Stopping sets and EMD (extrinsic message degree)

- ACE (Approximate cycle EMD)
 - ACE of variable node : (degree -2), ACE of check node : 0
 - ACE = \sum (ACE of each node)
- EMD and ACE

- Given parameter
 - the number of variable node (*n*), the number of check node (*m*)
 - variable node degree sequence : density evolution.
- Basic idea
 - make local girth as large as possible whenever placing a new edge.

	PEG	IPEG
Construction method	Tree spreading	Tree spreading
Criterion for selection - 1st	Highest depth	Highest depth
Criterion for selection - 2nd	Lowest degree	Lowest degree
Criterion for selection - 3th	Random	ACE
Criterion for selection - 4th		Random

- Proposed algorithm
 - Φ : the candidate check node classified by IPEG algorithm
 - Select a check node in Φ by calculating the EMD of subgraph.
 - \checkmark Extract subgraph for each check node in Φ
 - By back-tracking from the check node to root (variable) node.
 - ✓ Calculate the EMD of variable nodes in each subgraph
 - Counting the number of 1's in the column sum over the variable nodes in subgraphs
 - ✓ Select a check node that has the maximum EMD
 - If there are more than two check nodes that have the same EMD, select a check node that has more variable node in subgraph.

Simulation results (1)

Simulation results (2)

