A Research on Improvement of Error Floor of ARA codes

2006. 11. 18 Tae Ui, Kim Coding and Information Theory Lab.

Motivation

Introduction

- Protograph and ARA codes
- Construction of parity check matrix of ARA codes
- Some theoretical bases

Proposal to improve error floor of ARA codes

- Analysis of cycles
- Proposed algorithms
- Simulation result
- Conclusion

Motivation

ARA codes

- Linear time encoding
- Variable code length
- Rate compatible code
- Low threshold

High error floor of ARA codes

• Small minimum distance of ARA results in high error floor

Goal of the paper

• Achieve improvement of error floor without loss of performance in waterfall and with a slight burden of complexity

Introduction

RA codes

- Repetition + Accumulation
- Contrsuction based on protograph
- Decoded using BP algorithm as a subclass of LDPC codes

Protograph and Encoder of ARA code

Parity check matrix

- Erasure bits due to intermediate bits and puncturing
- Reducing erasrue bits for decoding convergnece

Stopping set

- A set of variable nodes whose neighbors are connected to the set at least twice
- No smaller size of stopping set than t ensures that minimum distance $d_{\min} \ge t$

EMD (Extrinsic message degree)

- Number of extrinsic check nodes
- A variable node set with large EMD requires additional nodes to be a stopping set

StopspingisetEMADze 6

Consecutive parities cycle L_d

- EMD of L_d
 - $EMD(L_d) = Degree(b_k) 2$
 - Likely to be a small size of stopping set

Proposal : Union EMD

• Union of L_d 's

- Some unions of L_d 's have interconnection
- Small size and small EMD for size
- Consider union of 2 consecutive cycle sets

EMD of union

• Deficient EMD of union $E_{Def}(i, j) \quad EMD(L_d^i) + EMD(L_d^j) - EMD(L_d^i \cup L_{d'}^j)$

Union of 2 consecutive cycle sets with size 7 and EMD 3

Proposal : Self return distance

Self return distance l_s

- Smallest number of edges from L_d to L_d
- Large l_s will make more bit nodes involved when L_d and other bits node make up stopping set
- New edge does not decrease l_s

Proposal : Edge connection

Criterion for new connection

- Selection of a parity bit
 - ✓ Erasure and information connectivity
- Selection of a check node
 - ✓ Erasure and information connectivity
 - ✓ Self return distance
 - ✓ EMD
 - ✓ Maximize resulting cycle length

Proposal : Summary of algorithm

- 1. Identify all the consecutive parity cycles, index from small size cycles
- **2. Evaluate initial** $E_{Def}(i, j)$ and l_s^{ini}
- 3. Add new edge
 - For consecutive cycle sets with $E_{Def}(i, j) > 0$ until $E_{Def}(i, j) \le 0$
 - Add new edge to an every loop except already added loop

Interleaver construction using PEG algorithm

• Local girth distribution (K=510, Rate=0.5)

Local girth	4	6	8	10
ARA code (1)	23	247	602	147
ARA code (2)	8	111	456	444

• Consecutive parity cycle set distribution

	ARA code (1)	ARA code (2)
L_2	4	0
L_3	8	5
L_4	7	2
L_5	2	8

Simulation results(2)

ARA code (1)

Performance of proposed scheme

19 edges are added and maximum 1 for each cycle

At FER 10⁻⁴, 0.35 dB gain

Coding and Information Theory Lab.

Simulation results(3)

ARA code (2)

- 15 edges are added and maximum 1 for each cycle
- At FER 10⁻⁴, 0.15 dB gain

Coding and Information Theory Lab.

Conclusion

Improvement of Error floor

- Analysis of cycles with some part of the dual diagonal of ARA codes
- Supplement EMD's with the consecutive parities cycles

Some limits

- Need enough number of short consecutive parity cycles
- Cannot provide improvement when appying to a RA codes.

Further work

• Modification for RA codes and ARA codes with small number of short consecutive parity cycles.

Thank you

Coding and Information Theory Lab.