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Key Stream Generators

Key part of entire stream cipher system

Driven by initial key (initial state)
Ï Not actual encryption key
Ï Update states by internal logic: Finite state machine

Generate periodic binary sequences correspond to states:
Key stream sequences

Ï Actually encrypt message stream at each clock
Ï Should be shown as random sequence
Ï Should be strong against cryptanalysis

Use linear feedback shift registers (LFSR) for internal logic
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Nonlinear Filter Functions

Basically a Boolean function denoted by f : F2
n → F2

Applied to stages of LFSR to increase linear complexity of output
sequence

Easy to increase linear complexity, hard to have good statistics
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Design Idea

Modified component function of Rijndael S-box (Jin, et. al, 2006)
Ï g(x) = x8 +x4 +x3 +x2 +1, primitive polynomial
Ï h(x) = x8 +x4 +x3 +x+1, irreducible but not primitive polynomial
Ï A component function is obtained from S-box which is defined in
F2[x]/h(x)

Ï The realization of the component function is performed in F2[x]/g(x)
Ï The resultant trace representation has a lot of trace terms
Ï The resultant modified S-box is a permutation

Baek,Jin,Song (Yonsei Univ.) Design of Filter Functions November 4, 2006 6 / 22



Goal

Apply the previous method to design of filter function
→Make the key stream sequence with large linear complexity and
good statistics
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LFSR and Finite Field

Figure: 3-Stage LFSR with g(x)
and Corresponding F2n

For realization of function, we use
LFSRs with Galois configuration

Ï Each states can be considered as a
field element in F[x]/g(x)

Ï Denote a root of g(x) be α
Ï Mapping field elements to vector

elements
F Let {1,α, · · · ,αn−1} be a basis
F αi = x1α

n−1 +x2α
n−2 +·· ·+xn ↔

(x1,x2, · · · ,xn) = x

Only primitive polynomials are used to
achieve maximal period
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Inversion Mapping INV(x)

Key part of Rijndael S-box

Definition

INV(x) ,
{

x−1 if x 6= 0
0 if x = 0

INV(x) is a permutation function on F2n

Take an ith output bit from INV(x): Boolean power function INVi(x)
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Proposed Filter Function

Consider n-stage LFSR, n ≥ 3

Set LFSR connection to primitive polynomial g(x)

Set F2n to be defined by another primitive polynomial h(x), where
h(β) = 0

Define a function P(x), P : F2
n → F2

n

Ï STEP 1: Convert a state vector x ↔αi to a field element βj

Ï STEP 2: Calculate INV(βj)
Ï STEP 3: Convert INV(βj) to output vector P(x)

Take an ith output bit from P(x): Proposed filter function Pi(x)
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Comparing INV(x) and P(x)
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Example: P1(x)

Figure: Applying
P1(x1,x2,x3) = x2 +x1x2 +x1x3

Output sequence (0101011)
Ï Maximal period
Ï Balanced 0’s and 1’s
Ï Increased linear complexity:

Maximum value 6 (7 is achieved by
complement)
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Another Example: P3(x)

Figure: Applying P3(x1,x2,x3) =
x1 +x3 +x1x2 +x1x3 +x2x3

Output sequence (1010011)
Ï Maximal period
Ï Balanced 0’s and 1’s
Ï Not Increased linear

complexity→Degeneracy
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Maximal Period Property

Theorem
Consider an n-stage LFSR with primitive connection polynomial. If an
arbitrary nonlinear filter function f is applied to the LFSR, then the
resultant output key stream sequence has maximal period 2n −1.

Using k-tuple balance property of m-sequences to show all terms in
ANF do not have subperiod

Since the ANF of f can represent all (2n −1)-tuple vector, the result
follows

Corollary
The key stream sequence obtained from Pi(x) has maximal period for all i.
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Balance Property

Theorem
The key stream sequence obtained from Pi(x) satisfies balance property for
all i.

Although INV(x) is performed in different field structure, it is still a
permutation
→The resultant key stream sequence is a bit-permutated m-sequence
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Large Linear Complexity (1)

For some numerical results, we investigate all possible sequences for
n-stage LFSR

Ï Set g(x) and h(x) differently as possible
Ï For each pair

(
g(x),h(x)

)
, generate sequences from Pi(x) for all i

3-Stage LFSR
Ï Primitive polynomials: x3 +x+1 and x3 +x2 +1
Ï For each pair, 3 functions exist

Linear Complexity 3 6
frequency 1 5
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Large Linear Complexity (2)

The portion of maximum linear complexity

n 3* 4** 5* 6 7* 8 9 10 11** 12

% 83 87.5 86 49.4 88.65 54.4 69.3 56.2 91.6 37.8

Maximum linear complexity vs. minimum linear complexity

n 3* 4** 5* 6 7* 8 9 10 11** 12

min 3 12 20 45 98 210 462 950 1969 3960
max 6 14 30 62 126 254 510 1022 2046 4094

ratio 0.5 0.86 0.67 0.73 0.78 0.83 0.91 0.93 0.96 0.97

Ï *: 2n −1 is prime
Ï **: 2n −1 is factorized into two distinct primes
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Large Linear Complexity (3)

Conjecture
There exist Pi(x) which achieve maximum linear complexity
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Summary

New design of filter function
Ï Output sequence has maximal period
Ï Output sequence satisfies balance property due to INV(x)
Ï Guarantees large linear complexity due to set g(x) 6= h(x)

Future Works
Ï Investigation for run distributions
Ï Theoretical analysis for large linear complexity property

F The case of 2n −1 is prime or factorized into two prime
F Proof of the conjecture on maximum linear complexity

Ï More cryptographic analysis
F Correlation attack, algebraic attack, etc.
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