Design of Filter Functions for Key Stream Generators using Boolean Power Functions

Jong-Min Baek, Seok-Yong Jin and Hong-Yeop Song

{jm.baek, sy.jin, hysong}@yonsei.ac.kr Coding and Information Theory Lab. Yonsei University

November 4, 2006

周レイモレイモ

- Proposed Design of Filter Function
- Some Properties of Proposed Filter Function
- 4 Concluding Remarks

-

- **A**

2 Proposed Design of Filter Function

3 Some Properties of Proposed Filter Function

4 Concluding Remarks

- Key part of entire stream cipher system
- Driven by initial key (initial state)
 - Not actual encryption key
 - Update states by internal logic: Finite state machine
- Generate periodic binary sequences correspond to states: **Key stream sequences**
 - Actually encrypt message stream at each clock
 - Should be shown as random sequence
 - Should be strong against cryptanalysis
- Use linear feedback shift registers (LFSR) for internal logic

(4月) とうきょうきょう

- Basically a Boolean function denoted by $f : \mathbb{F}_2^n \to \mathbb{F}_2$
- Applied to stages of LFSR to increase linear complexity of output sequence
- Easy to increase linear complexity, hard to have good statistics

• Modified component function of Rijndael S-box (Jin, et. al, 2006)

- $g(x) = x^8 + x^4 + x^3 + x^2 + 1$, primitive polynomial
- $h(x) = x^8 + x^4 + x^3 + x + 1$, irreducible but not primitive polynomial
- A component function is obtained from S-box which is defined in $\mathbb{F}_2[x]/h(x)$
- The realization of the component function is performed in $\mathbb{F}_2[x]/g(x)$
- The resultant trace representation has a lot of trace terms
- The resultant modified S-box is a permutation

Apply the previous method to design of filter function
→ Make the key stream sequence with large linear complexity and
good statistics

Proposed Design of Filter Function

3 Some Properties of Proposed Filter Function

4 Concluding Remarks

LFSR and Finite Field

Figure: 3-Stage LFSR with g(x) and Corresponding \mathbb{F}_{2^n}

- For realization of function, we use LFSRs with Galois configuration
 - ► Each states can be considered as a field element in F[x]/g(x)
 - Denote a root of g(x) be α
 - Mapping field elements to vector elements

***** Let
$$\{1, \alpha, \dots, \alpha^{n-1}\}$$
 be a basis

★ $\alpha^{i} = x_{1}\alpha^{n-1} + x_{2}\alpha^{n-2} + \dots + x_{n} \leftrightarrow$ $(x_{1}, x_{2}, \dots, x_{n}) = \underline{x}$

• Only primitive polynomials are used to achieve maximal period

- Key part of Rijndael S-box
- Definition

$$INV(x) \triangleq \begin{cases} x^{-1} & \text{if } x \neq 0 \\ 0 & \text{if } x = 0 \end{cases}$$

- INV(*x*) is a permutation function on \mathbb{F}_{2^n}
- Take an *i*th output bit from INV(*x*): Boolean power function INV_{*i*}(*x*)

- Consider *n*-stage LFSR, $n \ge 3$
- Set LFSR connection to primitive polynomial *g*(*x*)
- Set \mathbb{F}_{2^n} to be defined by another primitive polynomial h(x), where $h(\beta) = 0$
- Define a function P(x), $P: \mathbb{F}_2^n \to \mathbb{F}_2^n$
 - ▶ STEP 1: Convert a state vector $\underline{x} \leftrightarrow \alpha^i$ to a field element β^j
 - STEP 2: Calculate INV(β^{j})
 - STEP 3: Convert INV(β^{j}) to output vector P(x)
- Take an *i*th output bit from P(x): Proposed filter function $P_i(x)$

A (10) × A (10) × A (10) ×

Comparing INV(x) and P(x)

Example: $P_1(x)$

1 0

- Output sequence (0101011)
 - Maximal period ►
 - Balanced 0's and 1's ►
 - Increased linear complexity: ► Maximum value 6 (7 is achieved by complement)

Figure: Applying

 $P_1(x_1, x_2, x_3) = x_2 + x_1 x_2 + x_1 x_3$

Baek, Jin, Song (Yonsei Univ.)

Another Example: $P_3(x)$

- Output sequence (1010011)
 - Maximal period
 - Balanced 0's and 1's
 - ► Not Increased linear complexity→Degeneracy

- **4 -**

Figure: Applying $P_3(x_1, x_2, x_3) =$

 $x_1 + x_3 + x_1x_2 + x_1x_3 + x_2x_3$

Baek, Jin, Song (Yonsei Univ.)

2 Proposed Design of Filter Function

Some Properties of Proposed Filter Function

4 Concluding Remarks

A D F A B F A B F A B

Theorem

Consider an *n*-stage LFSR with primitive connection polynomial. If an arbitrary nonlinear filter function *f* is applied to the LFSR, then the resultant output key stream sequence has maximal period $2^n - 1$.

- Using *k*-tuple balance property of m-sequences to show all terms in ANF do not have subperiod
- Since the ANF of f can represent all $(2^n 1)$ -tuple vector, the result follows

Corollary

The key stream sequence obtained from $P_i(x)$ has maximal period for all *i*.

(日)

Theorem

The key stream sequence obtained from $P_i(x)$ satisfies balance property for all *i*.

• Although INV(*x*) is performed in different field structure, it is still a permutation

 \rightarrow The resultant key stream sequence is a bit-permutated m-sequence

- For some numerical results, we investigate all possible sequences for *n*-stage LFSR
 - ► Set *g*(*x*) and *h*(*x*) differently as possible
 - For each pair (g(x), h(x)), generate sequences from $P_i(x)$ for all i
- 3-Stage LFSR
 - Primitive polynomials: $x^3 + x + 1$ and $x^3 + x^2 + 1$
 - For each pair, 3 functions exist

Linear Complexity	3	6
frequency	1	5

Large Linear Complexity (2)

• The portion of maximum linear complexity

n	3*	4**	5*	6	7*	8	9	10	11**	12
%	83	87.5	86	49.4	88.65	54.4	69.3	56.2	91.6	37.8

• Maximum linear complexity vs. minimum linear complexity

n	3*	4**	5*	6	7*	8	9	10	11**	12
min	3	12	20	45	98	210	462	950	1969	3960
max	6	14	30	62	126	254	510	1022	2046	4094
ratio	0.5	0.86	0.67	0.73	0.78	0.83	0.91	0.93	0.96	0.97

- *: $2^n 1$ is prime
- **: $2^n 1$ is factorized into two distinct primes

Conjecture

There exist $P_i(x)$ which achieve maximum linear complexity

Baek, Jin, Song (Yonsei Univ.)

A D F A B F A B F A B

Motivation

- 2 Proposed Design of Filter Function
- 3 Some Properties of Proposed Filter Function

Concluding Remarks

A (10) × A (10) × A (10)

• New design of filter function

- Output sequence has maximal period
- Output sequence satisfies balance property due to INV(*x*)
- Guarantees large linear complexity due to set $g(x) \neq h(x)$
- Future Works
 - Investigation for run distributions
 - Theoretical analysis for large linear complexity property
 - * The case of $2^n 1$ is prime or factorized into two prime
 - * Proof of the conjecture on maximum linear complexity
 - More cryptographic analysis
 - ★ Correlation attack, algebraic attack, etc.