Geometric Analysis for the Cell Coverage Extension with Wireless Relay

연세대학교 부호 및 암호 연구실
박선영, 김정현, 송홍엽
{sy.park, jh.kim, hysong} @yonsei.ac.kr
Contents

- Motivation
- Geometric Model and Relaying Strategy
- Capacity Theorem over the Geometric Model
- Cell Coverage Extension with Multiple Relays
- Concluding Remarks
Motivation

- Cell coverage problem of 4G system
 - High data rate service – high required power
 - 3.5~5GHz band

Cell coverage of 2G or 3G system

Cell coverage by 3.5~5Ghz band

Cell coverage by high required power and 3.5~5Ghz band
Geometric Model and Relaying Strategy

- Degraded Gaussian relay channel[5]

- Simple path loss model
- Transmission power assignment:
 - proportional to the square of coverage, i.e. $P \propto d^2$ [13]

[5] T. Cover and A. El Gamal (1979) , [13] A. Agarwal and P. R. Kumar (2004)
Geometric Model and Relaying Strategy

- **CRIS scheme**[6]
 - Consider the interference due to signal from source to relay
 - Cooperation ratio $0.5 < a \leq 1$: represent the dependence on relaying

$$R = \max_{0 \leq a \leq 1} \min \left\{ S \left(\frac{\alpha_{sr}^2 a P_s}{N_1} \right), S \left(\frac{\alpha_{sd}^2 P_s + \alpha_{rd}^2 P_r + 2\alpha_{sd}\alpha_{rd}(1-a)P_sP_r}{N_1 + N_2} \right) \right\}$$

where $S(x) = \frac{1}{2} \log_2 (1 + x)$.

Geometric Model and Relaying Strategy

- If \(SNR_{rd} \geq SNR_{sr} \), \(a = 1 \), no cooperation (only repetition).
 \[
 R = S \left(\frac{\alpha_{sr}^2 P_s}{N_1} \right), \quad (a = 1)
 \]

- If \(SNR_{rd} < SNR_{sr} \), \(a \) is strictly less than 1.
 - For optimal \(a^* \),
 \[
 R = S \left(\frac{\alpha_{sr}^2 a^* P_s}{N_1} \right)
 \]
Geometric Model and Relaying Strategy

- **CRIS scheme**
 - Optimal value of $a (= a^*)$ can be determined from:
 \[
 \frac{\alpha_{sr}^2 a^* P_s}{N_1} = \frac{\alpha_{sd}^2 P_s + \alpha_{rd}^2 P_r + 2\alpha_{sd} \alpha_{rd} \sqrt{1-a^*} P_s P_r}{N_1 + N_2}
 \]
 - For simplicity let $N_1 = N_2 = N$:
 \[
 a^* = \frac{2AB - 1 + \sqrt{(2AB - 1)^2 - A^2 (B^2 - 1)}}{2A^2}
 \]
 where $A = \frac{2\alpha_{sr}^2 P_s}{2\alpha_{sd} \alpha_{rd} \sqrt{P_s P_r}}$, $B = \frac{\alpha_{sd}^2 P_s + \alpha_{rd}^2 P_r}{2\alpha_{sd} \alpha_{rd} \sqrt{P_s P_r}}$.

Geometric Model and Relaying Strategy

\[d_{rd} = kd_{sr} \quad (0 < k \leq 1) \]
\[d_{sd} = \sqrt{d_{sr}^2 + (kd_{sr})^2 - 2kd_{sr}^2 \cos(\pi - \theta)} \]
\[0 \leq \theta \leq \pi - \arccos \frac{k}{2} \]

\[\alpha_{sr}^2 = Kd_{sr}^{-\gamma} \]
\[\alpha_{sd}^2 = Kd_{sd}^{-\gamma} \]
\[\alpha_{rd}^2 = Kd_{rd}^{-\gamma} \]
\[P_r = k^2 P_s \]

\[k: \text{distance ratio} \]
\[K: \text{constant related to attenuation normalized to 1} \]
Capacity Theorem over Geometric Model

- Descriptions of Optimized parameters

\[\frac{A - AB + B \pm \sqrt{AB(A - 2)(B - 2)}}{2} = 1, \]

where \(A = \sqrt{1 + k^2 - 2k \cos(\pi - \theta)^{-\gamma}} \) and \(B = k^{-\gamma}k^2 \).

<table>
<thead>
<tr>
<th></th>
<th>(\gamma = 4)</th>
<th>(\gamma = 3)</th>
<th>(\gamma = 2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(k)</td>
<td>(k > 0.7)</td>
<td>(k \geq 0.5)</td>
<td>(k > 0)</td>
</tr>
<tr>
<td>(a^*)</td>
<td>0.6~1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>strategy</td>
<td>Cooperation depending on (k) and (\theta)</td>
<td>Low cooperation, repetition</td>
<td></td>
</tr>
</tbody>
</table>
Capacity Theorem over Geometric Model

- θ' (= maximum value of θ) of relay that guarantees maximum achievable rate for the given value of k and γ

 - Example

 $\gamma = 4$

 $k = 0.8$

 $\theta' = 1.65$

 s

 r

 $a^* = 1, \theta' = 95^\circ$
Cell Coverage Extension with Multiple Relays

- Coverage angle (α) and coverage range (r_2)\[^{[4]}\]

Coverage range:

$$r_2 = \sqrt{d_{sr}^2 + (kd_{sr})^2 - 2d_{sr}(kd_{sr})\cos(\pi - \theta')}$$

Coverage angle:

$$\alpha = 2\arccos\left(\frac{d_{sr}^2 + r_2^2 - (kd_{sr})^2}{2d_{sr}r_2}\right)$$

Required number of relays:

$$N_R = \lceil 360^\circ / \alpha \rceil$$

- For large coverage:
 - Decrease θ' (lower the power level) → more relays are needed

Cell Coverage Extension with Multiple Relays

- $\gamma = 4$

r_2 is extended reciprocally to the increase of k. Extend cell coverage up to $r_2=1.6$ with $N_R \leq 15$
Cell Coverage Extension with Multiple Relays

- $\gamma = 2$

$2N_R$ relays are used to cover circular cell shape. r_2 is extended in proportion to the increase of k.
Cell Coverage Extension with Multiple Relays

- For maximum coverage range r_2

<table>
<thead>
<tr>
<th></th>
<th>$\gamma = 4$</th>
<th>$\gamma = 3$</th>
<th>$\gamma = 2$</th>
</tr>
</thead>
<tbody>
<tr>
<td>r_2 / r_1</td>
<td>1.6</td>
<td>1.5</td>
<td>1.7</td>
</tr>
<tr>
<td>P_r / P_s [dB]</td>
<td>-2.22</td>
<td>-5.23</td>
<td>0</td>
</tr>
<tr>
<td>N_R</td>
<td>15</td>
<td>16</td>
<td>6</td>
</tr>
</tbody>
</table>
Concluding Remarks

- Geometric analysis
 - Relation of cooperation ratio a, distance ratio k, and θ
 - Relation of required number of relays N_R, distance ratio k, and effective coverage angle θ' to guarantee maximum achievable rate ($a^*=1$)
 - Condition to achieve maximum coverage range for $a^*=1$
 - Low attenuation regime: increase $P_r \rightarrow$ decrease N_R
 - High attenuation regime: decrease $P_r \rightarrow$ increase N_R

- Future Directions
 - Specific deploying scheme for the case of $\gamma = 2$
 - How about $k > 1$? (rural area)
Thank you!

{sy.park, jh.kim, hysong} @yonsei.ac.kr