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Definition of Correlation

a = (a0, · · · ,av−1) and b = (b0, · · · ,bv−1): binary (0,1)-sequences
of length v

Periodic correlation function

θa,b(τ) =
v−1∑
i=0

(−1)ai+bi+τ
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Ideal 2-level Correlation: Single Sequence

2-level (auto)-correlation of a sequence (⇔ cyclic difference
set)

θa,a(τ) =
{

v ,τ= 0

γ(6= v) ,otherwise.

Ideal 2-level (auto)-correlation
Ï Small |γ| is desirable for various applications
Ï γ= 0: currently no such example found, except for v = 4
Ï γ=−1: called ideal 2-level autocorrelation (m-sequences, GMW

sequences, 3-term and 5-term sequences, etc.)
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Ideal 2-level Correlation: Sequence Pair

Generalization to pair of binary sequences

Binary sequence pair (a,b) has 2-level correlation if

θa,b(τ) =
{
Γ1 ,τ= 0

Γ2( 6= Γ1) ,τ 6= 0 (mod v),

Γ2 = 0: Ideal 2-level correlation

θa,b(τ) =
{
Γ(6= 0) ,τ= 0

0 , else.
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Notations

s = (s0,s1, · · · ,sv−1): binary sequence of period v

Support set and characteristic sequence
Ï Support set: supp(s) = {i|si = 1,0 ≤ i ≤ v−1} ⊂Zv (s is called the

characteristic sequence)
Ï Weight: wt(s) = |{i|si = 1,0 ≤ i ≤ v−1}| = ∣∣supp(s)

∣∣
Operations on binary sequences

Ï Cyclic shift: ρi(s) = (si,si+1, · · · ,si+v−1)
Ï Decimation: s(d) = (

sd·0,sd·1, · · · ,sd·(v−1)
)

Ï Negation: s′ = (
s′0, · · · ,s′v−1

)
, where s′i = 1 if si = 0 and s′i = 0 if si = 1

Ï Alternation at even positions: sE = (
s′0,s1,s′2,s3, · · ·)
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Notations

s = (s0,s1, · · · ,sv−1): binary sequence of period v

Support set and characteristic sequence

Operations on binary sequences

Hall polynomial: hs(z) = s0 + s1z1 +·· ·+ sv−1zv−1 (mod zv −1)

Canonical form of circulant matrix associated with s:

Ms =


s0 sv−1 sv−2 . . . s1

s1 s0 sv−1 . . . s2

s2 s1 s0 . . . s3
...

...
...

. . .
...

sv−1 sv−2 sv−3 . . . s0


The sequence s is called the defining array of Ms.
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Correlation Coefficients by Set Notation

(a,b): binary sequence pair of length v
A := supp(a), B := supp(b), ka := wt(a), kb := wt(b)
k := |A∩B|, dA,B(τ) = |A∩ (τ+B)|
Calculation of correlation coefficients of binary sequences

a : 1 · · ·1 1 · · ·1 0 · · ·0 0 · · ·0
ρτ(b) : 1 · · ·1︸ ︷︷ ︸ 0 · · ·0︸ ︷︷ ︸ 1 · · ·1︸ ︷︷ ︸ 0 · · ·0︸ ︷︷ ︸

# of times : dτ ka −dτ kb −dτ v− (ka +kb)+dτ

θa,b(τ) = v−2(ka +kb)+4dA,B(τ)

For a sequence pair (a,b) with ideal 2-level correlation:

dA,B(0) = k ⇒ Γ= v−2(ka +kb)+4k

dA,B(τ) =λ,∀τ 6= 0 ⇒ 0 = v−2(ka +kb)+4λ

Jin, Song (Yonsei Univ) Ideal 2-level crosscorrelation ISIT 2008 8 / 22



Cyclic Difference Pair (CDP)

Binary sequence with 2-level correlation ⇔ cyclic difference set

Binary sequence pair with 2-level correlation ⇔ ?

Definition (Cyclic Difference Pair)

X and Y : kx-subset and ky-subset of Zv with |X ∩Y | = k

(X ,Y ) is a (v,kx,ky,k,λ)-cyclic difference pair (CDP) if

For every nonzero w ∈Zv, w is expressed in exactly λ ways in
the form w = x−y (mod v) where x ∈ X and y ∈ Y .

Especially when v = 2(k1 +k2)−4λ and k 6=λ, it is called an ideal
cyclic difference pair.
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Relation: CDP and Binary Sequence Pair

Theorem (Existence and Relation)

(a,b): binary sequence pair of period v with 2-level correlation
such that

Ï In-phase correlation coefficient: Γ
Ï Out-of-phase correlation coefficients: γ
Ï wt(a) = ka and wt(b) = kb

Their support set pair (A,B) forms a (v,ka,kb,k,λ)-cyclic
difference pair, where

Ï k = |A∩B| satisfies Γ= v−2(ka +kb)+4k
Ï λ is such that γ= v−2(ka +kb)+4λ.

Moreover, any cyclic difference pair arises in this way.
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Characterization: Three Equations

1 Inphase and out-of-phase correlation coefficient:

v−2(ka +kb)+4k = Γ (e-I)

v−2(ka +kb)+4λ= 0 (e-II)

2 Counting the number of elements of A×B:

kakb =λv+ (k−λ) (e-III)

If there exists a binary sequence pair of period v having ideal
2-level correlation, then v is even.

Γ= 4(k−λ)
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Characterization: using Hall Polynomial

A, B: ka-subset and kb-subset of Zv with |A∩B| = k

a, b: the characteristic binary sequences of A and B of period v

Theorem
Let ha(z) and hb(z) denote the associated hall polynomial of a
and b, respectively.

Then (A,B) is a (v,ka,kb,k,λ)-cyclic difference pair if and only if

ha(z)hb(z−1) = (k−λ)+λ(1+z+·· ·+zv−1)
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Characterization: using Circulant Matrix

Under the same notations: A, B, (ka and kb-subset), k = |A∩B|, and a
and b

Theorem

Ma, Mb: canonical form of the circulant matrix associated with a
and b

(A,B) is a (v,ka,kb,k,λ)-cyclic difference pair, if and only if

MaMb
T = (k−λ)I +λJ

Matrices are viewed over the integers or over the reals.
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Necessary Condition: Determinants

(A,B): (v,ka,kb,k,λ)-cyclic difference pair

(a,b): the corresponding characteristic binary sequence pair

Theorem
Let Ma and Mb be the canonical form of circulant matrices associated
with a and b, respectively. Then

det(Ma) ·det(Mb) = kakb(k−λ)v−1
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Property Preserving Transformations
If (A,B) is an ideal (v,ka,kb,k,λ)-cyclic difference pair:

Cyclic Difference Pair Parameters

(τ+A,τ+B), τ= 0,1, . . . (v,ka,kb,k,λ)(
A(d),B(d)

)
, gcd(d,v) = 1 (v,ka,kb,k,λ)

(B,A) (v,kb,ka,k,λ)
(A,BC) (v,ka,v−kb,ka −k,ka −λ)
(AC ,B) (v,v−ka,kb,kb −k,kb −λ)
(AC ,BC) (v,v−ka,v−kb, k′, λ′),

k′ = v− (ka +kb)+k,
λ′ = v− (ka +kb)+λ

(AE ,BE) (v,k′′
a ,k′′

b ,k′′,λ′′),
k′′

a = ka + (v/2−2ea),
k′′

b = kb + (v/2−2eb),
k′′ = k+ (v/2− (ea +eb)),
λ′′ =λ+ (v/2− (ea +eb))
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Parameterizations

For any (v,ka,kb,k,λ)-cyclic difference pair, we assume without loss
of generality:

v/2 ≥ ka ≥ kb ≥ k >λ, and

λ> 0 for v > 4

4(k−λ) = (v−2ka)(v−2kb)

Γ= 4(k−λ) 6= 0 ⇒ k 
λ.

If λ= 0: ka = kb = k = 1, a = b = (1000).
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Ideal CDP with k−λ= 1: Parameterizations

Theorem
If an ideal (v,ka,kb,k,λ)-cyclic difference pair with k−λ= 1 exists,
then

(v,ka,kb,k,λ) = (4t, 2t −1, 2t −1, t, t −1)

Note:

(v,k,λ) = (4t −1,2t −1, t −1): cyclic difference set with
Hadamard parameters

(v,ka,kb,k,λ) = (4t,2t −1,2t −1, t, t −1): cyclic difference pair
with “Hadamard" parameters
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Ideal CDP with k−λ= 1: Construction

det(Ma) ·det(Mb) = kakb(k−λ)v−1

k−λ= 1 : det(Ma) ·det(Mb) = ka ·kb

Q: a and b with det(Ma) = ka and det(Mb) = kb ??

One part: If the sequence a is such that

2t −1 2t +1

a = (
︷ ︸︸ ︷
11 · · ·1

︷ ︸︸ ︷
00 · · ·0︸ ︷︷ ︸ )

4t

,

then det(Ma) = 2t −1 = wt(a).

The other part: even position negation and shift of a
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Ideal CDP with k−λ= 1: Construction

Theorem (cyclic Hadamard difference pair)
Let v = 4t and ka = kb = 2t −1.

Define ka-subset A and kb-subset B of Zv as

A = {0,1, · · · ,2t −2}

B = {0,2, · · · ,2t −2, 2t +1,2t +3, · · · ,4t −3}.

(A,B) is a (4t,2t −1,2t −1, t, t −1)-CDP with k−λ= 1.

Example (v = 12)

0 1 2 3 4 5 6 7 8 9 10 11
a 1 1 1 1 1 0 0 0 0 0 0 0
b 1 0 1 0 1 0 0 1 0 1 0 0
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Parameters for exhaustive search
Table I. 4 < v ≤ 30, v ≡ 2 (mod 4)

v ka kb k λ k−λ

6 - - - - -
10 4 3 3 1 2
14 6 5 4 2 2
18 8 7 5 3 2
22 10 9 6 4 2

10 7 7 3 4
26 12 11 7 5 2

12 9 8 4 4
11 10 10 4 6

30 14 13 8 6 2
14 11 9 5 4
13 12 11 5 6

Table II. 4 < v ≤ 30, v ≡ 0 (mod 4)
v ka kb k λ k−λ

8 3 3 2 1 1
12 5 5 3 2 1
16 7 7 4 3 1

7 5 5 2 3
6 6 6 2 4

20 9 9 5 4 1
9 7 6 3 3
8 8 7 3 4

24 11 11 6 5 1
11 9 7 4 3
10 10 8 4 4

28 13 13 7 6 1
13 11 8 5 3
12 12 9 5 4
13 9 9 4 5
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Search Results for v ≤ 30

If v ≡ 2 (mod 4), there is NO ideal cyclic difference pair of
period v ≤ 30.

If there exists an ideal (v,ka,kb,k,λ)-cyclic difference pair of
period v ≡ 0 (mod 4), it has Hadamard parameters k−λ= 1, for
v ≤ 30.

Moreover, every cyclic Hadamard difference pair found by
exhaustive computer search is equivalent to that by the
construction given in our Theorem under the combination of
transformations introduced.
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Concluding Remarks

Our expectation (“Conjecture") concerning the existence and
uniqueness of cyclic difference pair:

If an ideal (v,ka,kb,k,λ)-cyclic difference pair exists,
1 v = 0 (mod 4)
2 |k−λ| = 1 (⇒ Γ= 4(k−λ) = 4)
3 By some combination of transformations, it can be transformed

to the cyclic Hadamard difference pair introduced.

Note that the second statement imply
Circulant Hadamard matrix conjecture.
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