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Motivation

An algebraic attack

How an algebraic attack works:

Step 1:
A cryptographic problem → A system of algebraic equations

Step 2:
Solve a system of algebraic equations

How to obtain a system of equations

direct analysis
- analyze the cryptosystem and compute equations directly
- Toyocrypt, E0(bluetooth), NTRU, ...

indirect analysis
- find equations describing states of the cryptosystem best



Introduction Our method

Motivation

Example : NTRU cryptosystem

Algebraic equations for NTRU cryptosystem (direct analysis)

NTRU : a public key cryptosystem on a polynomial ring(
Z
qZ

)
[X ]/

(
XN − 1

)
Using the Witt vector, its algebraic equations are obtained:∑

i<j∈Sk

FiFj + hk,0

∑
i∈Sk

Fi +
∑
i∈Tk

Fi + hk+1,0 + hk,1 = 0

∑
i<j∈U

FiFj = df ,1∑
i∈U

Fi = df ,0

for k = 0, . . . ,N − 1, and Sk , Tk and U are sets of indices.
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Approaches using an SAT solver

How to solve algebraic equations?

Linear equations

Gaussian elimination. We’re done.

Equations with degrees ≥ 2

XL and its successors

Linearize higher-order terms and solve them

Gröbner basis (F4, F5)

Compute a Gröbner basis for equations
Slow and requires too much memory

An SAT solver

a system of quadratic equations over F2

→ a logical problem called a CNF-SAT problem
A CNF-SAT problem can be solved using SAT solvers
Requires significantly less memory than Gröbner basis
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Approaches using an SAT solver

Solving by an SAT solver

Bard et al. (2006)

Each quadratic term → new extra variable

Cut a long linear equation to reduce the number of clauses

Similar to XL

Not good if there exist many quadratic terms

Park et al. (2010)

Extension of Bard et al.’s work

Focused on symmetric quadratic terms such as

a1a2 + a1a3 + a1a4 + a2a3 + a2a4 + a3a4

Good if there exist large blocks of symmetric quadratic terms
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Background

Conjunctive Normal Form (CNF)

Conjunctive Normal Form

Boolean variables a, b, x , y , v1, . . .

Literal a, a, b, b, x , x , . . .

Clause a ∨ x , b ∨ x , a ∨ b ∨ x , . . .

Conjunctive Normal Form (a ∨ x) ∧ (b ∨ x) ∧
(
a ∨ b ∨ x

)
Satisfiability problem

Satisfying assignment(s)
- a set(s) of boolean values that make CNF true

CNF-Satisfiability problem
- Does there exist satisfying assignments?
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Background

Example

Example 1

T has a satisfying assignment of T = true, or equivalently,
T = 1 ⇔ T + 1 = 0

Example 2

(a ∨ x) ∧ (b ∨ x) ∧
(
a ∨ b ∨ x

)
has satisfying assignments of

(a, b, x) =


(0, 0, 0)
(0, 1, 0)
(1, 0, 0)
(1, 1, 1)

⇔ ab + x = 0
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Background

Example

Example 3

Satisfying assignments of (a ∨ x) ∧ (a ∨ x) are

(a, x) =

{
(0, 0)
(1, 1)

⇔ a + x = 0

Example 4

Satisfying assignments of
(a ∨ b ∨ x) ∧

(
a ∨ b ∨ x

)
∧ (a ∨ b ∨ x) ∧

(
a ∨ b ∨ x

)
are

(a, b, x) =


(0, 0, 0)
(0, 1, 1)
(1, 0, 1)
(1, 1, 0)

⇔ a + b + x = 0
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The first approach by Bard et al.

Observation

A CNF for a equation

Given polynomial p, a CNF tautologically equivalent to an
equation p = 0 is denoted by CNF (p)

CNFs for some simple equations

CNF (ab + x) = (a ∨ x) ∧ (b ∨ x) ∧
(
a ∨ b ∨ x

)
CNF (a + x) = (a ∨ x) ∧ (a ∨ x)

CNF (a + b + x) =
(a ∨ b ∨ x) ∧

(
a ∨ b ∨ x

)
∧ (a ∨ b ∨ x) ∧

(
a ∨ b ∨ x

)
CNF (a1 + a2 + · · ·+ an) consists of 2n−1 clauses, where each
clause is an arrangement of n variables, with odd number of
negations less than n
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The first approach by Bard et al.

Bard et al.’s work

Basic idea

Linearization; replace quadratic terms with new extra variable

Computing CNFs for both linear equations and quadratic
replacements and combine them all

Solve a CNF-Satisfiability problem by an SAT solver

Improvement : a cutting number

a1 + a2 + · · ·+ a9 = 0 → 28 = 256 clauses!
a1 + a2 + a3 + a4 + u1 = 0

u1 + a5 + a6 + a7 + u2 = 0

u2 + a8 + a9 = 0

→ 24 + 24 + 22 = 36 clauses

A best cutting number is reported to be 6
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The first approach by Bard et al.

Example

v1v2 + v1v3 + v1v4 + v2v3 + v2v4 + v3v4 + v2 + v3 + v4 + 1 = 0

⇒



v1v2 + v1,2 = 0

v1v3 + v1,3 = 0

v1v4 + v1,4 = 0

v2v3 + v2,3 = 0

v2v4 + v2,4 = 0

v3v4 + v3,4 = 0

v1,2 + v1,3 + v1,4 + v2,3 + v2,4 + u1 = 0

u1 + v3,4 + v2 + v3 + v4 + T = 0

T = 1
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Our construction

Observation

Recall the algebraic equations of NTRU cryptosystem∑
i<j∈Sk

FiFj + hk,0

∑
i∈Sk

Fi +
∑
i∈Tk

Fi + hk+1,0 + hk,1 = 0

∑
i<j∈U

FiFj = df ,1∑
i∈U

Fi = df ,0

for k = 0, . . . ,N − 1, and Sk , Tk and U are sets of indices.

Observation

There exist many blocks of symmetric quadratic terms.

How can we handle them whole and efficiently?
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Our construction

Notation

A set of indices

By S we denote a set of indices of boolean variables Fi ’s.

S = {v1, v2, . . . , vn}

An elementary symmetric polynomial of degree k for S

Sk =
∑

1≤i1<i2<···<ik≤n

Fvi1
Fvi2

· · ·Fvik

A CNF for a polynomial p

We use CNF (p + vp) by introducing an extra variable vp

associated to p since we do not know whether p = 0 or not.
(p + vp = 0; vp is a representative of p)
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Our construction

Main idea

Combining rules for sets

If S = S1∪̇S2∪̇ · · · ∪̇Sl (a disjoint union), then

S1 =
l∑

i=1

S1
i

S2 =
l∑

i=1

S2
i +

∑
1≤i1<i2≤l

S1
i1 · S

1
i2
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Our construction

Main idea (cont’d)

Combining rules for CNFs for S1

If S = S1∪̇S2∪̇ · · · ∪̇Sl , then

S1 =
l∑

i=1

S1
i

implies

CNF
(
S1 + vS1

)
=

CNF

(
vS1 +

l∑
i=1

vS1
i

)
∧

l∧
i=1

CNF
(
S1

i + vS1
i

)
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Our construction

Main idea (cont’d)

Combining rules for CNFs for S2

If S = S1∪̇S2∪̇ · · · ∪̇Sl , then

S2 =
l∑

i=1

S2
i +

∑
1≤i1<i2≤l

S1
i1 · S

1
i2

implies

CNF
(
S2 + vS2

)
=

CNF

vS2 +
l∑

i=1

vS2
i

+
∑

1≤i<j≤l

vS1
i
vS1

j


∧

l∧
i=1

CNF
(
S1

i + vS1
i

)
∧

l∧
i=1

CNF
(
S2

i + vS2
i

)
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Our construction

A split graph

Figure: An example of a full split graph without simple nodes
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Our construction

Construction

Step 1

Represent a given system of equations as the following form:

L1
1 + Q2

1,1 + Q2
1,2 + · · ·+ Q2

1,m1
+ C1 = 0

L1
2 + Q2

2,1 + Q2
2,2 + · · ·+ Q2

2,m2
+ C2 = 0

...

L1
n + Q2

n,1 + Q2
n,2 + · · ·+ Q2

n,mn
+ Cn = 0

where Li ’s and Qi ,j ’s are set of indices and Ci ’s are constants.

Step 2

Construct a full split graph from Li ’s and Qi ,j ’s.
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Our construction

Construction (cont’d)

Step 3

Construct CNFs for the followings:

L1
i + vL1

i
= 0

Q2
i ,j + vQ2

i,j
= 0

for all i ’s and j ’s from the bottom of the graph to the top, using
combining rules
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Our construction

Construction (cont’d)

Step 4

Construct CNFs for the followings:

vL1
1
+ vQ2

1,1
+ vQ2

1,2
+ · · ·+ vQ2

1,m1
+ C1 = 0

...

vL1
n
+ vQ2

n,1
+ vQ2

n,2
+ · · ·+ vQ2

n,mn
+ Cn = 0
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Analysis

Analysis on the size of CNFs

Theorem (Worst case of Bard et al.’s construction)

A CNF for a system has

O

 n∑
i=1

|Li |+
mi∑
j=1

|Qi ,j |2


clauses, literals and extra variables at most

Theorem (Worst case of Park et al.’s construction)

A CNF for a system has

O

 n∑
i=1

|Li |+
mi∑
j=1

|Qi ,j |


clauses, literals and extra variables at most
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Analysis

Application to the case of NTRU cryptosystem

Bard et al.

A constructed CNF has
O
(
N3
)

clauses, literals and extra variables at most

Park et al.

A constructed CNF has
O
(
N2
)

clauses, literals and extra variables at most
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Analysis

Running time by an SAT solver

Table: Time taken in solving 100 instances for N = 26, 28 and 30.

N
Method

#var. #cl. #lit.
time
(sec)

26
Bard

avg 1067 24309 141976 215.4
max 1619 41772 246640 3678.9

Park
avg 446 2119 6762 12.8
max 518 2591 8459 86.4

28
Bard

avg 1218 27521 160626 2062.6
max 2047 53843 318459 42237.7

Park
avg 509 2438 7809 65.1
max 577 2763 8922 242.9

30
Bard

avg 1503 34986 204778 15930.8
max 2560 69042 409206 175840

Park
avg 574 2753 8808 278.6
max 652 3204 10414 1856.2
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