An efficient method to solve a system of equations with elementary symmetric polynomials using SAT solvers

Jung Youl Park, Hong-Yeop Song

Coding and Cryptography Lab., TMS (BK21), Yonsei University

February 24, 2011

▲□▶ ▲圖▶ ★ 国▶ ★ 国▶ - 国 - のへで

Outline

1 Introduction

- Motivation
- Approaches using an SAT solver

2 Our method

- Background
- The first approach by Bard et al.
- Our construction
- Analysis

▲□▶ ▲圖▶ ★ 国▶ ★ 国▶ - 国 - のへで

Outline

- Motivation
- Approaches using an SAT solver

2 Our method

- Background
- The first approach by Bard et al.
- Our construction
- Analysis

An algebraic attack

How an algebraic attack works:

• Step 1:

A cryptographic problem \rightarrow A system of algebraic equations

• Step 2:

Solve a system of algebraic equations

How to obtain a system of equations

- direct analysis
 - analyze the cryptosystem and compute equations directly
 - Toyocrypt, *E*₀(bluetooth), NTRU, ...
- indirect analysis
 - find equations describing states of the cryptosystem best

Example : NTRU cryptosystem

Algebraic equations for NTRU cryptosystem (direct analysis)

- NTRU : a public key cryptosystem on a polynomial ring $\left(\frac{\mathbb{Z}}{q\mathbb{Z}}\right)[X]/\left(X^N-1\right)$
- Using the Witt vector, its algebraic equations are obtained:

$$\sum_{i < j \in S_k} F_i F_j + h_{k,0} \sum_{i \in S_k} F_i + \sum_{i \in T_k} F_i + h_{k+1,0} + h_{k,1} = 0$$
$$\sum_{i < j \in U} F_i F_j = d_{f,1}$$
$$\sum_{i \in U} F_i = d_{f,0}$$

for k = 0, ..., N - 1, and S_k , T_k and U are sets of indices.

Approaches using an SAT solver

How to solve algebraic equations?

Linear equations

Gaussian elimination. We're done.

Equations with degrees ≥ 2

- XL and its successors
 - Linearize higher-order terms and solve them
- Gröbner basis (F4, F5)
 - Compute a Gröbner basis for equations
 - Slow and requires too much memory
- An SAT solver
 - $\bullet\,$ a system of quadratic equations over \mathbb{F}_2
 - \rightarrow a logical problem called a CNF-SAT problem
 - A CNF-SAT problem can be solved using SAT solvers
 - Requires significantly less memory than Gröbner basis

Introduction ○○○● Our method

Approaches using an SAT solver

Solving by an SAT solver

Bard et al. (2006)

- $\bullet~$ Each quadratic term $\rightarrow~$ new extra variable
- Cut a long linear equation to reduce the number of clauses
- Similar to XL
- Not good if there exist many quadratic terms

Park et al. (2010)

- Extension of Bard et al.'s work
- Focused on symmetric quadratic terms such as

 $a_1a_2 + a_1a_3 + a_1a_4 + a_2a_3 + a_2a_4 + a_3a_4$

• Good if there exist large blocks of symmetric quadratic terms

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

Outline

1 Introduction

- Motivation
- Approaches using an SAT solver

2 Our method

- Background
- The first approach by Bard et al.
- Our construction
- Analysis

Background

Conjunctive Normal Form (CNF)

Conjunctive Normal Form

- Boolean variables
- Literal
- Clause
- Conjunctive Normal Form

a, b, x, y, v₁, ... a, \overline{a} , b, \overline{b} , x, \overline{x} , ... $a \lor \overline{x}$, $b \lor \overline{x}$, $\overline{a} \lor \overline{b} \lor x$, ... $(a \lor \overline{x}) \land (b \lor \overline{x}) \land (\overline{a} \lor \overline{b} \lor x)$

Satisfiability problem

- Satisfying assignment(s)
 - a set(s) of boolean values that make CNF true
- CNF-Satisfiability problem
 - Does there exist satisfying assignments?

Background

Example

Example 1

T has a satisfying assignment of T = true, or equivalently, $T = 1 \quad \Leftrightarrow T + 1 = 0$

Example 2

 $(a \lor \overline{x}) \land (b \lor \overline{x}) \land (\overline{a} \lor \overline{b} \lor x)$ has satisfying assignments of

$$(a,b,x) = egin{cases} (0,0,0)\ (0,1,0)\ (1,0,0)\ (1,1,1) \end{cases} \Leftrightarrow ab+x=0$$

Background

Example

Example 3

Satisfying assignments of $(a \lor \overline{x}) \land (\overline{a} \lor x)$ are

$$(a,x) = egin{cases} (0,0) \ (1,1) \end{cases} \quad \Leftrightarrow \quad a+x=0$$

Example 4

Satisfying assignments of $(a \lor b \lor \overline{x}) \land (a \lor \overline{b} \lor x) \land (\overline{a} \lor b \lor x) \land (\overline{a} \lor \overline{b} \lor \overline{x})$ are $(a, b, x) = \begin{cases} (0, 0, 0) \\ (0, 1, 1) \\ (1, 0, 1) \\ (1, 1, 0) \end{cases} \Leftrightarrow a + b + x = 0$ The first approach by Bard et al.

Observation

A CNF for a equation

Given polynomial p, a CNF tautologically equivalent to an equation p = 0 is denoted by CNF(p)

CNFs for some simple equations

- $CNF(ab + x) = (a \lor \overline{x}) \land (b \lor \overline{x}) \land (\overline{a} \lor \overline{b} \lor x)$
- $CNF(a+x) = (a \lor \overline{x}) \land (\overline{a} \lor x)$
- CNF(a + b + x) = $(a \lor b \lor \overline{x}) \land (a \lor \overline{b} \lor x) \land (\overline{a} \lor b \lor x) \land (\overline{a} \lor \overline{b} \lor \overline{x})$
- CNF (a₁ + a₂ + ··· + a_n) consists of 2ⁿ⁻¹ clauses, where each clause is an arrangement of n variables, with odd number of negations less than n

The first approach by Bard et al.

Bard et al.'s work

Basic idea

- Linearization; replace quadratic terms with new extra variable
- Computing CNFs for both linear equations and quadratic replacements and combine them all
- Solve a CNF-Satisfiability problem by an SAT solver

Improvement : a cutting number

•
$$a_1 + a_2 + \dots + a_9 = 0 \rightarrow 2^8 = 256$$
 clauses!
• $\begin{cases} a_1 + a_2 + a_3 + a_4 + u_1 = 0 \\ u_1 + a_5 + a_6 + a_7 + u_2 = 0 \\ u_2 + a_8 + a_9 = 0 \end{cases} \rightarrow 2^4 + 2^4 + 2^2 = 36$ clauses

• A best cutting number is reported to be 6

Introduction 0000 Our method

◆□→ ◆□→ ◆臣→ ◆臣→ □臣□

The first approach by Bard et al.

Example

$$v_{1}v_{2} + v_{1}v_{3} + v_{1}v_{4} + v_{2}v_{3} + v_{2}v_{4} + v_{3}v_{4} + v_{2} + v_{3} + v_{4} + 1 = 0$$

$$\begin{cases} v_{1}v_{2} + v_{1,2} = 0 \\ v_{1}v_{3} + v_{1,3} = 0 \\ v_{1}v_{4} + v_{1,4} = 0 \\ v_{2}v_{3} + v_{2,3} = 0 \\ v_{2}v_{4} + v_{2,4} = 0 \\ v_{3}v_{4} + v_{3,4} = 0 \\ v_{1,2} + v_{1,3} + v_{1,4} + v_{2,3} + v_{2,4} + u_{1} = 0 \\ u_{1} + v_{3,4} + v_{2} + v_{3} + v_{4} + T = 0 \\ T = 1 \end{cases}$$

Our construction

Recall the algebraic equations of NTRU cryptosystem

$$\sum_{i < j \in S_k} F_i F_j + h_{k,0} \sum_{i \in S_k} F_i + \sum_{i \in T_k} F_i + h_{k+1,0} + h_{k,1} = 0$$
$$\sum_{i < j \in U} F_i F_j = d_{f,1}$$
$$\sum_{i \in U} F_i = d_{f,0}$$

for k = 0, ..., N - 1, and S_k , T_k and U are sets of indices.

Observation

• There exist many blocks of *symmetric* quadratic terms.

ヘロト 人間ト 人注ト 人注ト

э

• How can we handle them whole and efficiently?

Our construction

Notation

A set of indices

By S we denote a set of indices of boolean variables F_i 's.

$$S = \{v_1, v_2, \ldots, v_n\}$$

An elementary symmetric polynomial of degree k for S

$$S^k = \sum_{1 \leq i_1 < i_2 < \cdots < i_k \leq n} F_{v_{i_1}} F_{v_{i_2}} \cdots F_{v_{i_k}}$$

A CNF for a polynomial p

We use $CNF(p + v_p)$ by introducing an extra variable v_p associated to p since we do not know whether p = 0 or not. $(p + v_p = 0; v_p \text{ is a representative of } p)$ Introduction 0000

Our construction

Our method

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Main idea

Combining rules for sets

If
$$S = S_1 \dot{\cup} S_2 \dot{\cup} \cdots \dot{\cup} S_l$$
 (a disjoint union), then

$$S^{1} = \sum_{i=1}^{l} S_{i}^{1}$$
$$S^{2} = \sum_{i=1}^{l} S_{i}^{2} + \sum_{1 \le i_{1} < i_{2} \le l} S_{i_{1}}^{1} \cdot S_{i_{2}}^{1}$$

Introduction 0000 Our construction Our method

Main idea (cont'd)

Combining rules for CNFs for S^1

If $S = S_1 \dot{\cup} S_2 \dot{\cup} \cdots \dot{\cup} S_l$, then

$$S^1 = \sum_{i=1}^l S^1_i$$

implies

$$CNF\left(S^{1} + v_{S^{1}}\right) = \\CNF\left(v_{S^{1}} + \sum_{i=1}^{l} v_{S_{i}^{1}}\right) \land \bigwedge_{i=1}^{l} CNF\left(S_{i}^{1} + v_{S_{i}^{1}}\right)$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへ⊙

Introduction 0000 Our construction Our method

Main idea (cont'd)

Combining rules for CNFs for S^2

If $S = S_1 \dot{\cup} S_2 \dot{\cup} \cdots \dot{\cup} S_l$, then

$$S^2 = \sum_{i=1}^{l} S_i^2 + \sum_{1 \le i_1 < i_2 \le l} S_{i_1}^1 \cdot S_{i_2}^1$$

implies

$$CNF(S^{2} + v_{S^{2}}) = CNF\left(v_{S^{2}} + \sum_{i=1}^{l} v_{S_{i}^{2}} + \sum_{1 \le i < j \le l} v_{S_{i}^{1}} v_{S_{j}^{1}}\right)$$
$$\land \bigwedge_{i=1}^{l} CNF\left(S_{i}^{1} + v_{S_{i}^{1}}\right) \land \bigwedge_{i=1}^{l} CNF\left(S_{i}^{2} + v_{S_{i}^{2}}\right)$$

A split graph

Construction

Step 1

Represent a given system of equations as the following form:

$$L_1^1 + Q_{1,1}^2 + Q_{1,2}^2 + \dots + Q_{1,m_1}^2 + C_1 = 0$$

$$L_2^1 + Q_{2,1}^2 + Q_{2,2}^2 + \dots + Q_{2,m_2}^2 + C_2 = 0$$

$$L_n^1 + Q_{n,1}^2 + Q_{n,2}^2 + \dots + Q_{n,m_n}^2 + C_n = 0$$

where L_i 's and $Q_{i,j}$'s are set of indices and C_i 's are constants.

Step 2

Construct a full split graph from L_i 's and $Q_{i,j}$'s.

Our construction

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Construction (cont'd)

Step 3

Construct CNFs for the followings:

$$L_i^1 + v_{L_i^1} = 0$$

 $Q_{i,j}^2 + v_{Q_{i,j}^2} = 0$

for all *i*'s and *j*'s from the bottom of the graph to the top, using combining rules

Introduction 0000

Our construction

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Construction (cont'd)

Step 4

Construct CNFs for the followings:

$$v_{L_{1}^{1}} + v_{Q_{1,1}^{2}} + v_{Q_{1,2}^{2}} + \dots + v_{Q_{1,m_{1}}^{2}} + C_{1} = 0$$

$$\vdots$$

$$v_{L_{n}^{1}} + v_{Q_{n,1}^{2}} + v_{Q_{n,2}^{2}} + \dots + v_{Q_{n,m_{n}}^{2}} + C_{n} = 0$$

Analysis on the size of CNFs

Theorem (Worst case of Bard et al.'s construction)

A CNF for a system has

$$O\left(\sum_{i=1}^{n}\left(|L_i|+\sum_{j=1}^{m_i}|Q_{i,j}|^2\right)\right)$$

clauses, literals and extra variables at most

Theorem (Worst case of Park et al.'s construction)

A CNF for a system has

$$O\left(\sum_{i=1}^n \left(|L_i| + \sum_{j=1}^{m_i} |Q_{i,j}| \right) \right)$$

clauses, literals and extra variables at most

Application to the case of NTRU cryptosystem

Bard et al.

A constructed CNF has

$$O\left(N^3\right)$$

clauses, literals and extra variables at most

Park et al.

A constructed CNF has

$$O\left(N^2\right)$$

clauses, literals and extra variables at most

Running time by an SAT solver

Table: Time taken in solving 100 instances for N = 26, 28 and 30.

Ν	Method		#var.	#cl.	#lit.	time
						(sec)
26	Bard	avg	1067	24309	141976	215.4
		max	1619	41772	246640	3678.9
	Park	avg	446	2119	6762	12.8
		max	518	2591	8459	86.4
28	Bard	avg	1218	27521	160626	2062.6
		max	2047	53843	318459	42237.7
	Park	avg	509	2438	7809	65.1
		max	577	2763	8922	242.9
30	Bard	avg	1503	34986	204778	15930.8
		max	2560	69042	409206	175840
	Park	avg	574	2753	8808	278.6
		max	652	3204	10414	1856.2