Multi-user coded cooperative communication scheme for relay channel using Fountain codes

Miyoung Nam†, Hong-Yeop Song†, Jung-Hyun Kim‡, Kwang Jae Lim‡

†Department of Electrical & Electronics Engineering, Yonsei University
‡Wireless System Research Department, ETRI
COOPERATIVE COMMUNICATION

- Relay channel
 - Broadcast channel + Multiple Access Channel

- Cooperative communication
 - Achieves the transmit diversity

- Multi-user cooperative communication

- Multi-user cooperative communication via network coding
COOPERATIVE COMMUNICATION

- **Coded cooperative communication**
 - Cooperative communication using channel coding

- **The effective scheme is needed**
 - Network coding helps to improve the throughput
 - Channel coding is essential to guarantee the performance
 - Network coding and channel coding should be processed jointly, not separately
RELATED WORKS

- **Using convolutional codes**
 - Source-relay channel is protected by only the convolutional code
 - This yields the performance degradation

![Diagram showing convolutional codes and their effects at source, relay, and destination.](image)
RELATED WORKS

- Using bilayer LDPC codes
 - The relay generates additional parity by Density Evolution which optimizes the degree of overall LDPC code
Block diagram for the proposed scheme

- For simplicity, 2 users are assumed to cooperate
PROPOSED SCHEME

- **Each source node**
 - Encodes the information with LDPC code
 - So that the (S-R) channel is protected by LDPC code

- **The relay node**
 - Decodes the received blocks separately
 - And then encodes the recovered blocks jointly with LT code

- **The destination node**
 - Decodes all information block using overall graph
FOUNTAIN CODES

- **Fountain code**
 - Rate-less codes
 - Any number of input symbols can be applied
 - Infinitely many output symbols are available
 - This makes the code to be effective for various channel condition
 - Simple and fast encoding is possible (linear time)

- **But**

 \[
 m_{o,i}^{(l)} = 2 \tanh^{-1} \left(\frac{\tanh(Z_o/2) \prod_{i' \neq i} \tanh \left(m_{i',o}^{(l)}/2 \right)}{2} \right)
 \]

 Disadvantage of fountain codes: Many iterations are needed than LDPC codes
In the proposed scheme

- If the source-dest. channel is available then the intermediate nodes of fountain code are received at the destination.

The situation that a meaningless value is obtained do not occur.
Therefore Fast decoding is possible.

- If the source-dest. channel is not available then the same decoding process is performed.
DISCUSSION

- **Compared to the scheme based on convolutional code**
 - Better performance

- **Compared to the scheme based on bilayer LDPC code**
 - Low complexity
 - High flexibility

- **The rate-less property**
 - Makes the system works adaptively
 - If the channel condition is good, the relay transmits only the small number of symbols
 - If the channel condition is not good, the relay can generate and transmit more symbols until the decoding is succeed
 - Makes any number of source nodes can cooperate
SIMULATION

- Transmission model

 - All links are assumed to be AWGN channel with the same SNR
 - user-relay, user-destination and relay-destination

 - LDPC used for each user is assumed to be the same
 - Rate 2/3, block length 576

 - Fixed-rate LT code is assumed for simplicity
 - The number of output symbols generated are 576

 - BP decoding and not global iteration is assumed at dest.
SIMULATION RESULT

SNR (dB) vs. Bit Error Rate using bilayer-LDPC and Fountain code.