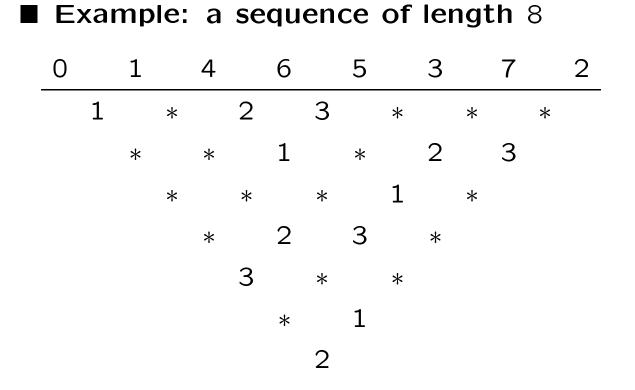
On (n, k)-sequences

Hong-Yeop Song

Department of Electronics Engineering Yonsei University

The Korean Mathematical Society, Conference 97 October 24, 1997



- The sequence itself is a permutation of order 8.
- Triangle below the sequence calculates differences of corresponding terms mod 4 if both less than 3 or if both larger than or equal to 4.
- In any row of this triangle, differences do not repeat.

Definition: (n,k)-Sequences

Let a_1, a_2, \ldots, a_{kn} be a permutation of $0, 1, 2, \ldots, kn - 1$. Let (a_i, a_j) be called a "comparable pair" if $\lfloor a_i/n \rfloor = \lfloor a_j/n \rfloor$, where $\lfloor x \rfloor$ is the integer part of x.

Then, a_1, a_2, \ldots, a_{kn} is called an "(n, k)-sequence" if

$$a_{s+d} - a_s \not\equiv a_{t+d} - a_t \pmod{n}$$

for every s, t and d such that $1 \le s < t < t + d \le kn$ and such that (a_{s+d}, a_s) and (a_{t+d}, a_t) are comparable pairs.

Existence whenever nk + 1 is prime Let kn + 1 = p > 2 be a prime, and α be a primitive root mod p.

For each $i = 1, 2, \ldots, kn$, we denote

$$\log_{\alpha}(i) = j \quad \Longleftrightarrow \quad \alpha^{j} = i$$

where $0 \leq j \leq kn - 1$.

Let q_i and r_i be determined by the relation $\log_{\alpha}(i) = kq_i + r_i$, where $0 \le r_i \le k - 1$.

Then

$$a_i = q_i + nr_i$$

is an (n, k)-sequence.

Proof of Existence

$$(a_i, a_j)$$
 comparable \leftrightarrow $r_i = r_j$
Therefore, we have (mod p)

$$\alpha^{k(a_i-a_j)} \equiv \frac{\alpha^{ka_i}}{\alpha^{ka_j}} \equiv \frac{\alpha^{k(q_i+nr_i)}}{\alpha^{k(q_j+nr_j)}} \equiv \frac{\alpha^{kq_i+r_i}}{\alpha^{kq_j+r_j}} \equiv \frac{i}{j}$$

Assume (a_{s+d}, a_s) and (a_{t+d}, a_t) are comparable pairs. Then

$$\begin{array}{ll} \text{if} & a_{s+d} - a_s \equiv a_{t+d} - a_t \pmod{n}, \\ \Longrightarrow & k(a_{s+d} - a_s) \equiv k(a_{t+d} - a_t) \pmod{kn}, \\ \Longrightarrow & \alpha^{k(a_{s+d} - a_s)} \equiv \alpha^{k(a_{t+d} - a_t)} \pmod{p}, \\ \Longrightarrow & \frac{s+d}{s} \equiv \frac{t+d}{t} \pmod{p}, \\ \Longrightarrow & d \equiv 0 \quad \text{or} \quad s \equiv t \pmod{p}. \end{array}$$

Since 0 < d < kn = p - 1 and $1 \le s \ne t \le kn$, we have a contradiction. (q.e.d) Hong-Yeop Song, Dept. of Electronics Engineering, Yonsei Univ. Transformations of (n, k = 2)-sequences Let a_1, a_2, \ldots, a_{2n} be an (n, 2)-sequence. Call a_i of type A if $0 \le a_i \le n - 1$, and of type B if $n \le a_i \le 2n - 1$.

- S_A : add (mod n) some constant to every term of type A
- S_B : add (mod n) some constant to every term of type B
- M : multiply (mod n) some constant m to every a_i 's, where gcd (m, n) = 1
 - R : take the backward reading
- P : interchange type A and type B by adding n if $a_i < n$ or by subtracting n if $a_i \geq n$

Note that S_A , S_B and M preserve the type of each term and P transposes two types. Hong-Yeop Song, Dept. of Electronics Engineering, Yonsei Univ.

Examples of Transformations

- S_A : $\dot{0}\dot{1}465\dot{3}\dot{7}\dot{2} \Rightarrow \dot{1}\dot{2}465\dot{0}\dot{7}\dot{3}$
- S_B : $\dot{0}\dot{1}465\dot{3}\dot{7}\dot{2} \Rightarrow \dot{0}\dot{1}64\dot{7}\dot{3}\dot{5}\dot{2}$
- $M: \dot{0}\dot{1}465\dot{3}7\dot{2} \Rightarrow \dot{0}\dot{3}467\dot{1}5\dot{2}$
- $R: \quad 01465372 \Rightarrow 27356410$
- $P: \dot{0}\dot{1}465\dot{3}\dot{7}\dot{2} \Rightarrow 45\dot{0}\dot{2}\dot{1}\dot{7}\dot{3}6$

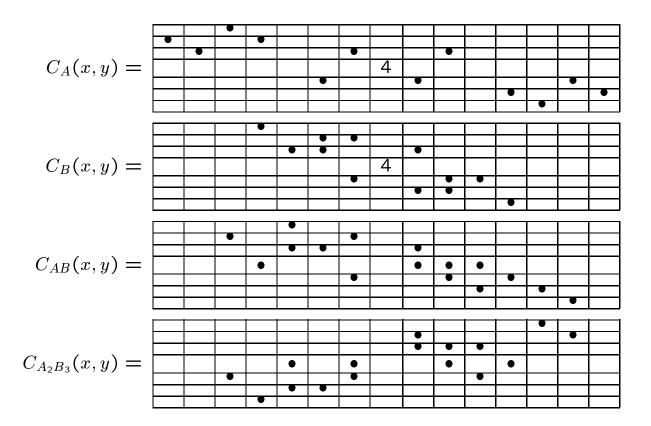
Here, the dot represents the term of type A.

■ Number of distinct (n, 2)-sequences The number of "essentially distinct" (n, 2)sequences for $n \leq 11$ is determined by computer search.

For convenience, $10, 11, 12, \ldots$ are represented by A, B, C, \ldots The sequences followed by " \star " are essentially the same as those given by "prime construction."

n	2 <i>n</i>	#	CPU time	a_i
1	2	1		01 *
2	4	1		0231 *
3	6	2		013254 *
				035124
4	8	2		01465372
				04217563
5	10	5		0159738246
				0513476928
				0514367928*
				0589173246
				0596184237
6	12	4	\sim 0.0 sec	026 <i>B</i> 831 <i>A</i> 4957
				06218 <i>A</i> 7 <i>B</i> 4593
				0621 <i>A</i> 8 <i>B</i> 74593*
				061BA8452793
7	14	8	~ 2.0 sec	017 <i>B</i> 24 <i>D</i> 5 <i>CA</i> 3698
				017 <i>B</i> 64 <i>C</i> 3 <i>D</i> 825 <i>A</i> 9
				07148 <i>AB</i> 6539 <i>D</i> 2 <i>C</i>
				071 <i>CA</i> 524 <i>D</i> 986 <i>B</i> 3
				07 <i>A</i> 124958 <i>DC</i> 63 <i>B</i>
				07 <i>B</i> 1395 <i>A</i> 48 <i>D</i> 62 <i>C</i>
				0791 <i>AB</i> 8365 <i>D</i> 42 <i>C</i>
				079A14D28C653B
8	16	6	\sim 1.6 min	0182 AFD 379 $BE6C54$
				$0182E9B37FDA6C54\star$
				018AD3B26F79EC54
				018 <i>EB</i> 3 <i>D</i> 2697 <i>FAC</i> 54
				089F27E51A36BDC4
				089F61E37A52BDC4
9	18	1	\sim 20 min	$09F1873A4H6GBCE25D \star$
10	20	0	\sim 10 hours	NONE
11	22	1	\sim 52 hours	$0182B9K35CFA7LJ4E6IDHG \star$
12	24	?		still running over 30 days

Every primitive root produces the same example



Concluding Remarks

- The only known family of (n, 1)-sequences is from the "Welch construction" for n = p - 1, which is usually called as *Costas sequences by Welch*.
- There does not exists a (10, 2)-sequence of length 20.
 100 hours of CPU time in Sun Sparc station 600 (1993)
 10 hours in PentiumPro200 (1997)
- **Conjecture** Whenever p is a prime there exists at least one (p, k)-sequence of length kp for each positive integer k > 1.

Truefor p = 3 and $2 \le k \le 10$ Truefor p = 5 and $2 \le k \le 6$ Truefor p = 7 and $2 \le k \le 4$

• Two applications to designing communication signals having **optimal correlations**.