Punctured bent function sequences for watermarked DS-CDMA

M. K. Song, G. Kim, Hong-Yeop Song, and K. W. Song

Yonsei University, Seoul, Korea Agency for Defense Development, Daejeon, Korea

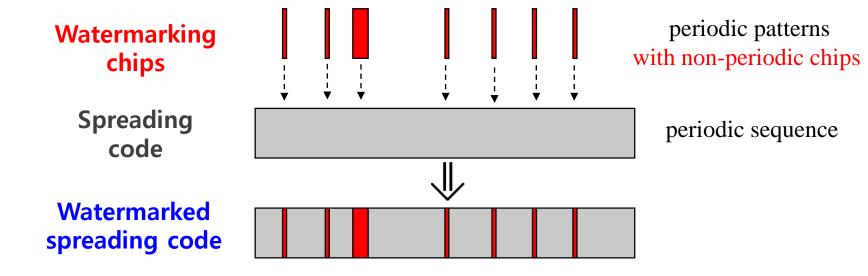
2019 Sino-Korea Conference on Coding Theory, KIAS, Seoul, Korea

Based on the paper with the same title and authors in IEEE Communications Letters, 2019, to appear soon.

Table of Contents

- Introduction to Watermarked DS-CDMA
- Proposed Model of W-DS-CDMA
- Analysis and Design Criteria
- Proposed (optimal) watermarked sequences
 - punctured bent function sequences
 - various properties including optimality

Introduction: Watermarked DS-CDMA



- Insert some watermarking chips into spreading code
- Any two watermarks at different time are different

Introduction: Why we consider?

Watermarked DS-CDMA have been considered to provide security at the signal level

- Steganography
 - Watermark conveys some "secret" information which can be extracted after synchronized.
- Authentication of GNSS open signals
 - Watermark is used to provide where a signal comes from
 - Protect from spoofing attacks
- An option of GPS M signal for fast acquisition (??)

Introduction: Summary

- Investigate the effect of inserting some randomly generated watermarking chips into known (set of) spreading sequences
 - In terms of periodic correlations
- Propose two design criteria for "good" watermarked sequences in the sense of
 - 1) Reducing the average correlation value
 - 2) Minimizing the variance of correlations for the best performance of **multiple-access**
- Specifically, we propose, for n = 2m with even m, an optimal set of 2^{m-1} punctured bent function sequences of length $2^n 1$ in the sense of the above two criteria such that
 - all of which are punctured by the single pattern obtained by the Singer difference set, (Criteria 2) and
 - the max non-trivial correlation magnitude maintains $2^m + 1$, which is only **twice of the Welch bound** (Criteria 1)

Introduction: (selected) References

- S. W. Golomb and G. Gong, Signal design for good correlation: for wireless communications, cryptography, and radar, New York, NY, USA: Cambridge University Press, 2005.
- Global Positioning Systems Directorate Systems Engineering & Integration Interface Specification, document IS-GPS-200H, Mar. 2014.
- G. Caparra and J. T. Curran, "On the achievable equivalent security of GNSS ranging code encryption," in Proc. 2018 IEEE/ION Positions, Location and Navigation Symposium (PLANS), Monterey, USA, pp. 956-966, Apr. 2018.
- X. Li, C. Yu, M. Hizlan, W.-T. Kim, and S. Park, "Physical layer watermarking of direct sequence spread spectrum signals," in Proc. IEEE MILCOM 2013, San Diego, USA. pp. 476-481, Nov. 2013.
- C. Yang, "FFT acquisition of periodic, aperiodic, puncture, and overlaid code sequences in GPS," in Proc. ION GPS 2001, Salt Lake City, USA, pp. 137-147, Sep. 2001.
- M. Villanti, M. Iubatti, A. Vanelli-Coralli, and G. E. Corazza, "Design of distributed unique words for enhanced frame synchronization," IEEE Trans. Commun., vol. 57, no. 8, pp. 2430-2440, Aug. 2009.
- J. D. Olsen, R. A. Scholtz, and L. R. Welch, "Bent-function sequences," IEEE Trans. Inf. Theory, vol. 28, no. 6, pp.858-864, Nov. 1982.
- L. R. Welch, "Lower bounds on the maximum cross correlation of signals (Corresp.)," IEEE Trans. Inf. Theory, vol. 20, no. 3, pp. 397-399, May 1974.
- L. D. Baumert, Cyclic difference sets, New York, NY, USA: Springer-Verlag, 1972.
- J. Singer, "A theorem in finite projective geometry and some applications to number theory," Trans. Amer. Math. Soc., vol. 43, pp. 377-385, 1938.

DS-CDMA for communications

DS-CDMA for navigations

W-DS-CDMA for authentication

W-DS-CDMA for steganography

W-DS-CDMA for fast acquisition

Effect of watermarking on single spreading sequence only in terms of aperiodic autocorrelation

Bent function sequences

Welch Bound

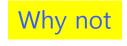
Cyclic difference sets

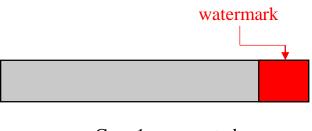
Singer difference sets

Proposed model of W-DS-CDMA

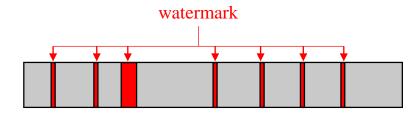
How to insert watermark?

- Previous results are focused on how to use watermarks for security.
- Usually assume the aggregated insertion





Case 1. aggregated

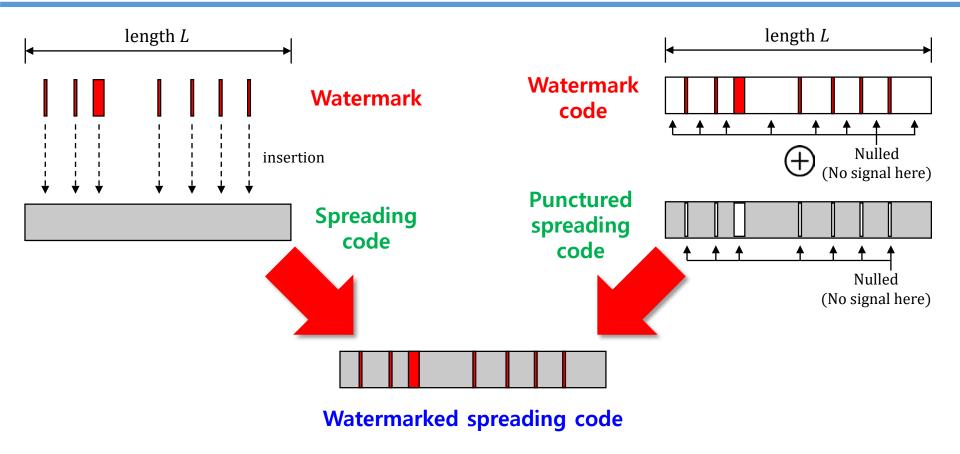


Case 2. spread

- The watermark insertion affects on auto- and cross-correlation of spreading code
- Question:

What insertion is better in the sense of acquisition performance?

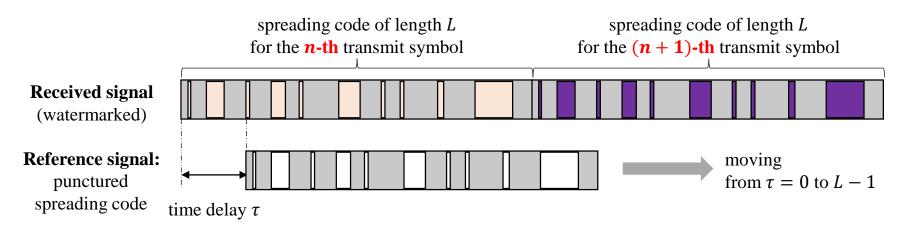
Equivalent model



Some properties

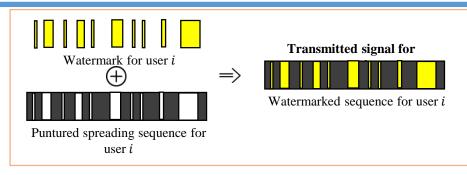
		Alphabet?	Repeated?
watermark	length L \uparrow \uparrow Nulled (No signal here)	Ternary $\{0, +1, -1\}$	Not repeated
Punctured spreading code	Nulled (No signal here)	Ternary {0, +1, -1}	Repeated periodically
Watermarked spreading code		Binary {+1,-1}	Partially repeated

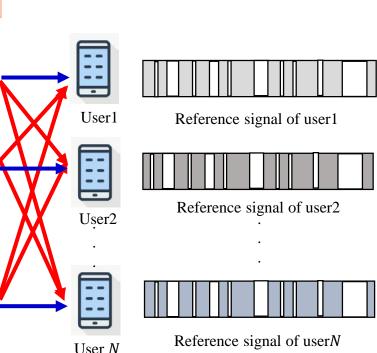
Acquisition for watermarked DS-CDMA



- During the acquisition process,
 - ✓ the receiver **knows which chips are watermarked** (only the position information)
 - but has **no information about what each value is**. (no idea on its value)
 - ✓ Therefore, the receiver can only use **the punctured spreading code**, which is repeated, periodically.
- Watermark chips will be extracted after the signal is obtained/acquired
 - the receiver will use these chips for some other purpose (steganography/authentication/extra security, etc)
- Our goal is to find BEST watermarking chips (position) PLUS spreading codes so that the multiple-access performance is NOT MUCH degraded compared with the conventional DS-CDMA systems without watermarks.

Watermarked DS-CDMA system





Want acquire

Don't want acuire

Transmitted signal for user1

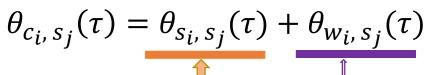
Transmitted signal for user2

Transmitted signal for userN

Analysis on Watermarks and Design Criteria

Crosscorrelation

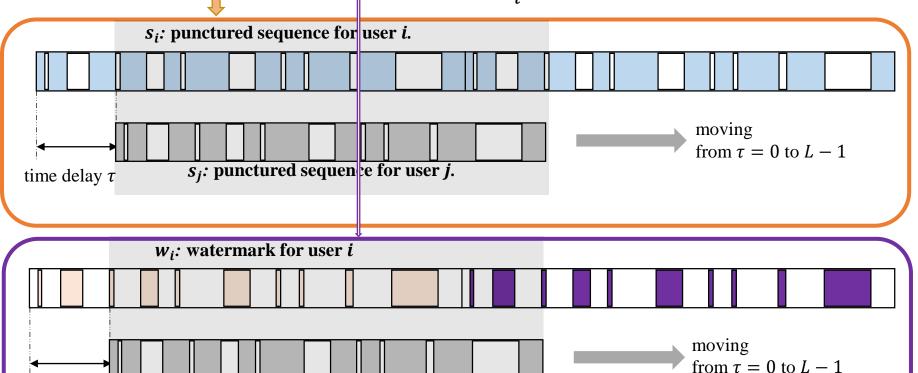
of watermarked sequence and punctured sequence



 $\times c_i$: watermarked sequence for user i.

 s_i : punctured sequence for user i.

 w_i : watermark for user i

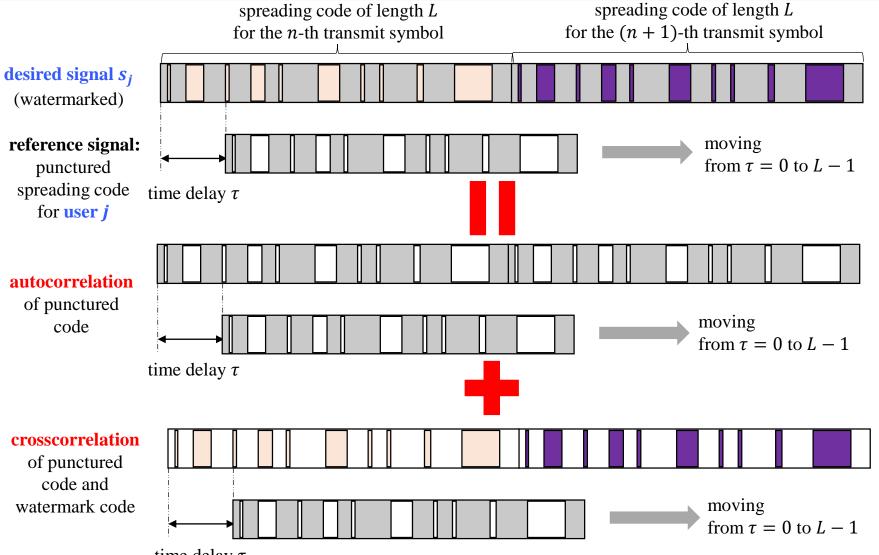


time delay τ

s_i: punctured sequence for user j.

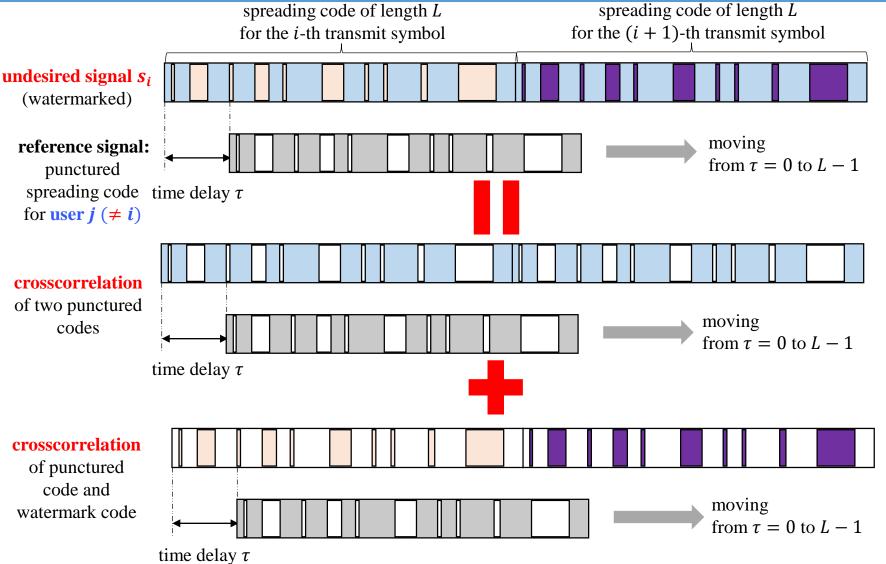
For desired signal (when i = j)

$$\theta_{c_j, s_j}(\tau) = \theta_{s_j, s_j}(\tau) + \boldsymbol{\theta}_{\boldsymbol{w_j}, s_j}(\boldsymbol{\tau})$$

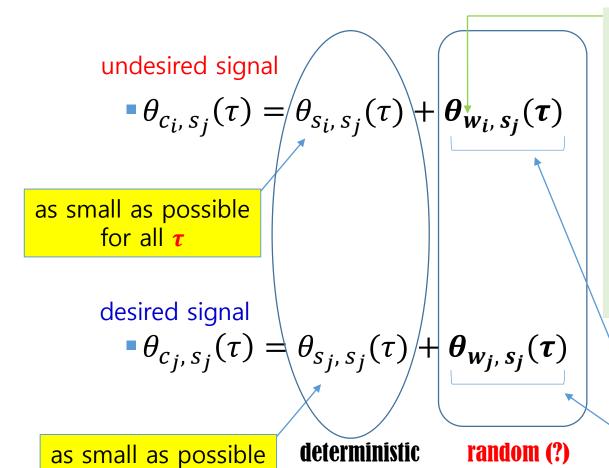


For undesired signal (when $i \neq j$)

$$\theta_{c_i, s_j}(\tau) = \theta_{s_i, s_j}(\tau) + \boldsymbol{\theta}_{\boldsymbol{w_i}, s_j}(\boldsymbol{\tau})$$



What is required



- w_i is a watermark, which have values ± 1 at positions indicated by the puncturing pattern p, which is a k-subset of \mathbb{Z}_L to be OPTIMIZED
- It turned out that it is enough to assume that all the users have the same p.
- Assume that the watermarking chips are i.i.d. random variables with ±1 equally likely

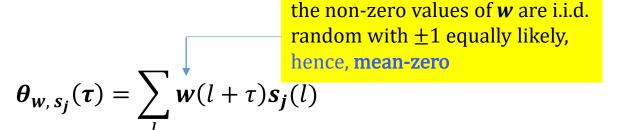
as small as possible for all τ

for all $\tau \neq 0$

Crosscorrelation $\theta_{w, s_i}(\tau)$

OI STATE OF THE PARTY OF THE PA

of watermarking chips and punctured sequence



- Watermarking chip sequence w has a non-zero value ONLY at index $l + \tau \in p$ or at index $l \in p \tau$.
- Punctured sequence s_i has a non-zero value ONLY at index $l \notin p$ or at $l \in Z_L \setminus p$
- Therefore, $w(l+\tau)s_j(l)$ has a non-zero value ONLY at

$$l \in (p - \tau) \cap Z_L \backslash p = (p - \tau) \backslash p$$

Therefore, the number of non-zeros will be

$$= |(p - \tau) \backslash p|$$

$$= |p| - |p \cap (p - \tau)|$$

$$= k - D_p(\tau)$$

- ✓ This must be the <u>variance</u> of $\theta_{w, s_i}(\tau)$.
- ✓ The <u>mean</u> of $\theta_{w, s_i}(\tau)$ becomes 0 since E[w] = 0

DESIGN CRITERIA

$$\theta_{c_i, s_j}(\tau) = \theta_{s_i, s_j}(\tau) + \boldsymbol{\theta}_{\boldsymbol{w_i}, s_j}(\boldsymbol{\tau})$$

This is a random variable with

It is a random variable with mean-zero and variance
$$k - D_{p}(\tau) = |p| - |p \cap (p - \tau)|$$
 where p is a puncturing pattern of size k .

$$\mathbf{mean} = \theta_{s_i, s_j}(\tau)$$

variance =
$$k - D_{p}(\tau) = |p| - |p \cap (p - \tau)|$$

 C_1 : Minimize the mean of $\theta_{c_i,s_i}(\tau)$

 \equiv Minimize $\theta_{s_i, s_j}(\tau)$ the non-trivial correlation magnitude of punctured sequences s_i, s_j for all possible i, j.

 C_2 : Minimize the variance of $\theta_{c_i,s_i}(\tau)$

 $\equiv \text{ Maximize } \min_{\tau \neq 0} D_{p}(\tau) = \min_{\tau \neq 0} |p \cap (p - \tau)| \triangleq D_{min}(p)$

Upper bound of min of $|p \cap (p - \tau)|$

Lemma (C_2) . Assume that k watermarking chips are inserted in a watermarked spreading code of length L, according to a puncturing pattern p. Then,

$$\min_{1 \le \tau \le L-1} |\mathcal{P} \cap (\mathcal{P} - \tau)| \le \left\lfloor \frac{k^2 - k}{L - 1} \right\rfloor.$$

Proof: Recall that p is a k-subset of \mathbb{Z}_L . Therefore, for any such p of size k, we have

$$\sum_{\tau=0}^{L-1} D_{\mathcal{P}}(\tau) = k^2$$

since each member in p will match every member of p (including itself) exactly once as τ runs from 0 to L-1.

Since $D_{\wp}(0) = k$, we have

$$\frac{1}{L-1} \sum_{\tau=1}^{L-1} D_{\mathcal{P}}(\tau) = \frac{k^2 - k}{L-1}$$

20

Proposed Optimal Watermarked Spreading Sequences Set

puncturing pattern **optimization** which spreading sequence is **best** with the selected puncturing?

We consider C_2 first, and then consider C_1 .

Does there any spreading sequence that is **good** with this puncturing?

or that can be proved to be good with this puncturing?

(Almost) Cyclic Difference Sets

Definition. Let p be a k-subset of \mathbb{Z}_L . Then,

① p is called a (L, k, λ, t) -almost cyclic difference set if, for $\tau = 1, 2, ..., L - 1$,

$$|p \cap (p - \tau)| = \begin{cases} \lambda & t \text{ times} \\ \lambda + 1 & L - 1 - t \text{ times.} \end{cases}$$

② p is called a (L, k, λ) -cyclic difference set if, for $\tau = 1, 2, ..., L - 1$,

$$|p \cap (p - \tau)| = \lambda.$$

This is equivalent to almost cyclic difference set with t = L - 1.

Optimal Puncturing Pattern

Well-known Lemma on the existence:

- ① If an (L, k, λ, t) -almost cyclic difference set p exists, then we have $k(k-1) = (L-1)\lambda + (L-1-t)$
- ② If an (L, k, λ) -cyclic difference set p exists, then we have $k(k-1) = (L-1)\lambda$

For both cases, we have

$$\left|\frac{k^2 - k}{L - 1}\right| = \lambda$$

Theorem. (ACDS $\Rightarrow C_2$ optimal)

Let p be a k-subset of \mathbb{Z}_L . Then p is an **optimal** puncturing pattern if it is an (L, k, λ, t) -ACDS in the sense of

$$\min_{1 \le \tau \le L-1} | \mathcal{P} \cap (\mathcal{P} - \tau) | \text{ attains its maximum value } \lambda = \left\lfloor \frac{k^2 - k}{L-1} \right\rfloor$$

Singer Difference Sets (J. Singer 1938)

- $L = 2^n 1$ with $n = 0 \pmod{4}$
- $k = 2^{n/2} 1$ and $\lambda = 2^{n/4} 1$
- $\alpha \in \mathbb{F}_{2^n}$ be a primitive element
- $\operatorname{tr}_1^n(x) = \sum_{i=0}^{n-1} x^{2^i}$ is the trace of $x \in \mathbb{F}_{2^n}$ to \mathbb{F}_2

Then, a k-subset p of \mathbb{Z}_L is an (L, k, λ) -CDS if, for each $l \in \mathbb{Z}_L$,

$$l \in \mathcal{P} \text{ iff } \operatorname{tr}_1^n(\alpha^l) = 0$$

We will use **the puncturing pattern** p from the Singer difference set constructed above.

- This is **optimal** (C_2)
- It punctures about <u>half the bits</u> in one period of the sequence of length $L = 2^n 1$

Is it too much?

Bent Function Sequences

- n = 2m be a positive integer with even m.
- f be a bent function over \mathbb{F}_{2^m} .
- $\alpha \in \mathbb{F}_{2^n}$ be a primitive element and a constant $\sigma \in \mathbb{F}_{2^n} \backslash \mathbb{F}_{2^m}$.

The set \mathcal{B} of 2^m binary sequences of length $2^n - 1$ for each constant $\mu \in \mathbb{F}_{2^m}$ given as, for $l = 0, 1, ..., 2^n - 2$,

$$\boldsymbol{b}_{\mu}[l] = (-1)^{f\left(\operatorname{tr}_{m}^{n}(\alpha^{l})\right) + \operatorname{tr}_{1}^{n}\left((\mu + \sigma)\alpha^{l}\right)}$$

is called **bent function sequence family**

and

$$\theta_{max}(\mathbf{B}) \leq 2^m + 1$$
.

Hence, it is **optimal** in terms of the *Welch bound*.

Original Contribution: J. D. Olsen, R. A. Scholtz, and L. R. Welch (1982) Above formulation by traces: Golomb and Gong (2005) Chapter 10

MAIN Contribution Punctured bent function sequences

- n = 2m be a positive integer with even m.
- f be a bent function over \mathbb{F}_{2}^{m} .
- $\alpha \in \mathbb{F}_{2^n}$ be a primitive element and a constant $\sigma \in \mathbb{F}_{2^n} \backslash \mathbb{F}_{2^m}$.
- $\mathbf{b}_{\mu}[l] = (-1)^{f\left(\operatorname{tr}_{m}^{n}(\alpha^{l})\right) + \operatorname{tr}_{1}^{n}\left((\mu + \sigma)\alpha^{l}\right)}$ be the bent function sequences of length $2^{n} 1$ for each $\mu \in \mathbb{F}_{2^{m}}$, constructed earlier **in previous page**.
- Γ be a subset of \mathbb{F}_{2^m} such that $\mu + \nu \neq 1$ for any $\mu, \nu \in \Gamma$.
- p is the puncturing pattern from the Singer difference set, i.e.,

$$l \in p$$
 iff $tr_1^n(\alpha^l) = 0$

Consider the set of **punctured bent function sequences** $S = \{s_{\mu} : \mu \in \Gamma\}$ where

$$s_{\mu}[l] = \begin{cases} \mathbf{b}_{\mu}[l] & \text{if } l \notin \mathcal{P} \iff \operatorname{tr}_{1}^{n}(\alpha^{l}) = 1\\ 0 & \text{otherwise} \end{cases}$$

Main Theorem

Let $S = \{s_{\mu} : \mu \in \Gamma\}$ be the set of **punctured bent function sequences** in previous page, with puncturing pattern p from **Singer difference set**. Then,

$$\theta_{\max}(S) \leq 2^m + 1.$$

Main observation:

$$s_{\mu}[l] = \frac{1}{2} \left(1 - (-1)^{\operatorname{tr}_{1}^{n}(\alpha^{l})} \right) b_{\mu}[l]$$

Recall that ...

$$s_{\mu}[l] = \begin{cases} b_{\mu}[l] & if \operatorname{tr}_{1}^{n}(\alpha^{l}) = 1, \\ 0 & if \operatorname{tr}_{1}^{n}(\alpha^{l}) = 0. \end{cases}$$

29

Second observation:

$$\begin{split} s_{\mu}[l] &= \frac{1}{2} \Big(1 - (-1)^{\operatorname{tr}_{1}^{n}(\alpha^{l})} \Big) b_{\mu}[l] \\ &= \frac{1}{2} \Big(b_{\mu}[l] - (-1)^{\operatorname{tr}_{1}^{n}(\alpha^{l})} b_{\mu}[l] \Big) = \frac{1}{2} \Big(b_{\mu}[l] - b_{\mu+1}[l] \Big) \end{split}$$

Since

$$(-1)^{\operatorname{tr}_{1}^{n}(\alpha^{l})}b_{\mu}[l] = (-1)^{\operatorname{tr}_{1}^{n}(\alpha^{l})}(-1)^{f\left(\operatorname{tr}_{m}^{n}(\alpha^{l})\right) + \operatorname{tr}_{1}^{n}((\mu + \sigma)\alpha^{l})}$$

$$= (-1)^{f\left(\operatorname{tr}_{m}^{n}(\alpha^{l})\right) + \operatorname{tr}_{1}^{n}((\mu + 1 + \sigma)\alpha^{l})}$$

$$= b_{\mu+1}[l]$$

For $\mu, \nu \in \Gamma$, the correlation of s_{μ} and s_{ν} at time shift τ is given by

$$\begin{aligned} \theta_{s_{\mu},s_{\nu}}(\tau) &= \sum_{l=0}^{L-1} s_{\mu}[l+\tau] s_{\nu}[l] \\ &= \frac{1}{4} \sum_{l=0}^{L-1} \left(b_{\mu}[l+\tau] - b_{\mu+1}[l+\tau] \right) (b_{\nu}[l] - b_{\nu+1}[l]). \\ &= \frac{1}{4} \left(\theta_{b_{\mu},b_{\nu}}(\tau) + \theta_{b_{\mu+1},b_{\nu+1}}(\tau) - \theta_{b_{\mu+1},b_{\nu}}(\tau) - \theta_{b_{\mu},b_{\nu+1}}(\tau) \right) \end{aligned}$$

(1) when $\mu = \nu$, we are checking the values $\theta_{s_{\mu},s_{\mu}}(\tau \neq 0)$

$$=\frac{1}{4}\bigg(\theta_{b_{\mu},b_{\mu}}(\tau\neq0)+\theta_{b_{\mu+1},b_{\mu+1}}(\tau\neq0)-\theta_{b_{\mu+1},b_{\mu}}(\tau\neq0)-\theta_{b_{\mu},b_{\mu+1}}(\tau\neq0)\bigg)$$
 autocorrelations crosscorrelations

Therefore, by triangular inequality, we get

$$\left| \theta_{S_{\mu},S_{\mu}}(\tau \neq 0) \right| \leq \frac{1}{4} \left(\theta_{\max}(\mathcal{B}) + \theta_{\max}(\mathcal{B}) + \theta_{\max}(\mathcal{B}) + \theta_{\max}(\mathcal{B}) \right)$$
$$= \theta_{\max}(\mathcal{B}) \leq 2^{m} + 1$$

For $\mu, \nu \in \Gamma$, the correlation of s_{μ} and s_{ν} at time shift τ is given by

$$\begin{split} \theta_{s_{\mu},s_{\nu}}(\tau) &= \sum_{l=0}^{L-1} s_{\mu}[l+\tau] s_{\nu}[l] \\ &= \frac{1}{4} \sum_{l=0}^{L-1} \left(b_{\mu}[l+\tau] - b_{\mu+1}[l+\tau] \right) (b_{\nu}[l] - b_{\nu+1}[l]). \\ &= \frac{1}{4} \left(\theta_{b_{\mu},b_{\nu}}(\tau) + \theta_{b_{\mu+1},b_{\nu+1}}(\tau) - \theta_{b_{\mu+1},b_{\nu}}(\tau) - \theta_{b_{\mu},b_{\nu+1}}(\tau) \right) \end{split}$$

(2) when $\mu \neq \nu$, we are checking the values $\theta_{S_{\mu},S_{\mu}}(\tau)$ for all τ

$$= \frac{1}{4} \left(\theta_{b_{\mu},b_{\nu}}(\tau) + \theta_{b_{\mu+1},b_{\nu+1}}(\tau) - \theta_{b_{\mu+1},b_{\nu}}(\tau) - \theta_{b_{\mu},b_{\nu+1}}(\tau) \right)$$

crosscorrelations

crosscorrelations

since $\mu + \nu \neq 1$ implies $\mu \neq \nu + 1$ and $\mu + 1 \neq \nu$

condition that $\mu + \nu \neq 1$, it may happen that $\mu = \nu + 1$ and $\mu + 1 = \nu$. Then these become autocorrelations and the values at $\tau = 0$ matters!

Without the

Therefore, similarly,

$$\left|\theta_{s_{\mu},s_{\nu}}(\tau)\right| \leq \frac{1}{4} \left(\theta_{\max}(\mathcal{B}) + \theta_{\max}(\mathcal{B}) + \theta_{\max}(\mathcal{B}) + \theta_{\max}(\mathcal{B})\right)$$
$$= \theta_{\max}(\mathcal{B}) \leq 2^{m} + 1$$

Properties of Punctured bent function sequences

- The **cardinality** of *S* is $|\Gamma| = 2^{m-1}$.
 - Because of Γ in which $\mu + \nu \neq 1$
- S is **optimal** in terms of C_2 .
 - Because puncturing pattern of *S* is Singer difference set.
- Any sequence in S has the energy $E = \theta(0) = 2^{n-1}$, which is about half the energy of the original bent function sequences.
 - Because $|p| = 2^{n-1} 1$ is about the half the length
- S is asymptotically **optimal** in terms of C_1 also.
 - Both *S* and the original bent function sequences have **the same upper bound** on the maximum non trivial correlation magnitude
 - Since the energy is reduced by half, this upper bound $\theta_{max}(S)$ asymptotically achieves **TWO times the Welch bound**.

Some open questions

- For the puncturing pattern from the Singer's difference set, try some other spreading sequences
 - Gold, Kasami, etc
- Optimal puncturing patterns must be from either ACDS or CDS.
 - They all are optimal but some implications might be different when it applies to some other spreading sequences.
 - Does there any pair of puncturing pattern and spreading sequences that can be provable mathematically, other than those mentioned in this talk
- Main theorem implies: we have constructed a set of 2^{m-1} ternary sequences of length $2^{2m} 1$ such that
 - ① Number of **0**'s is $2^{m-1} 1$ in each sequence
 - ② Number of non-zeros (either +1 or -1) is 2^{m-1} in each sequence
 - 3 Max correlation magnitude is upper bounded by 2 times Welch Bound.

True/False:

this is a set of **BEST** ternary sequence family in terms of Welch Bound.

Any questions?