



# A concatenated binary locally repairable codes with locality 2 using puncturing

**Zhi Jing**, Gangsan Kim, and Hong-Yeop Song Yonsei University

2019

IWSDA



## Contents



- 1. Preliminary
  - 1.1 Locally repairable code (LRC)
  - 1.2 Concatenated LRC
- 2. New construction of binary LRC (BLRC)
- 3. Conclusion





• [*n*, *k*, *r*] LRC is:

[*n*, *k*] linear block code with *locality r* 

• <u>Symbol locality:</u>

the smallest number of symbols needed to repair the failed symbol.



• <u>Code with locality r:</u>

each symbol has the locality at most r.





## It's easy to get the locality from the parity check matrix H.

[7,4] Hamming code:  

$$H \cdot \mathbf{c} = \begin{pmatrix} 1 & 0 & 1 & 0 & 1 & 0 & 1 \\ 0 & 1 & 1 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 & 1 & 1 \end{pmatrix} \cdot \begin{pmatrix} c_1 \\ c_2 \\ c_3 \\ c_4 \\ c_5 \\ c_6 \\ c_7 \end{pmatrix} = 0$$





# **Concatenated LRC**



• Concatenated [*n*, *k*] code:



*H*: the parity check matrix of the concatenated code  $H_{in}$ : the parity check matrix of the inner code

We have known

$$H \cdot \boldsymbol{c} = 0.$$

Because of the concatenated structure,

 $H_{in} \cdot \boldsymbol{c} = 0.$ 



# **Concatenated LRC**



From the paper "<u>New constructions of binary and ternary locally</u> <u>repairable codes using cyclic code</u>" by C. Kim, the concatenated BLRC with locality 2 is proposed as following:

Outer code: <u>shortened</u> *expurgated Hamming code*.

- $[2^m 1, 2^m m 2]$  expurgated Hamming code with generator polynomial  $g(x) = (x + 1)g_1(x)$ , where  $\frac{2n}{3} \le 2^m - 1$  and  $g_1$  is the primitive polynomial of order *m* over  $F_2$ .
- shortening the first  $(2^m 1 \frac{2n}{3})$  information bits of the above expurgated Hamming code.

Inner code: *binary*  $[n, \frac{2n}{3}]$  *cyclic code* with parity check polynomial  $h_{in}(x) = x^{\frac{2n}{3}} + x^{\frac{n}{3}} + 1$ .



## **Concatenated LRC**



From the paper "<u>New constructions of binary and ternary locally</u> <u>repairable codes using cyclic code</u>" by C. Kim, the concatenated BLRC with locality 2 is proposed as following:

**Inner code:** a binary  $[n, \frac{2n}{3}]$  cyclic code with parity check polynomial  $h_{in}(x) = x^{\frac{2n}{3}} + x^{\frac{n}{3}} + 1$ .

$$H_{in} = \begin{bmatrix} 1 & & & & & & & & \\ & \ddots & & & & & & \\ & & 1 & & \ddots & & & \\ & & 1 & & 1 & & \ddots & \\ & & & 1 & & & 1 \\ & & & 1 & & & 1 \end{bmatrix}$$



# Motivation



Shortening: decrease the length and dimension simultaneously.

Puncturing: decrease the length and keep the same dimension.

For the given length and locality, the system want the larger dimension.

Shortening — Puncturing



# Cyclic code



Let u be an odd integer  $\geq 3$ ; v be any positive integer;

$$uv = \left(\frac{2n}{3} + 1\right) \text{ or } \frac{2n}{3}$$
$$gcd(u, v) = 1$$

 $\beta$  be a primitive  $u^{th}$  root of unity in some extension field of  $F_2$ .

 $C_{cyc}$  be a binary  $[n_{cyc}, k]$  cyclic code with the generator polynomial

 $g(x) = (x^{\nu} + 1)g_1(x),$ 

where  $g_1(x)$  is the minimal polynomial of  $\beta$  over  $F_2$ .

 $n_{cyc} = uv;$  $k = vu - v - \deg[q_1(x)].$ 





Let  $n \ge 9$  and 3|n;

 $C_{cyc}$  be a binary  $[n_{cyc}, k]$  cyclic code, where  $n_{cyc} = (\frac{2n}{3} + 1)$  or  $\frac{2n}{3}$ .

Outer code: 1)  $n_{cyc} = (\frac{2n}{3} + 1)$ : puncturing any one bit of  $C_{cyc}$ ; 2)  $n_{cyc} = \frac{2n}{3}$ :  $C_{cyc}$ .

### Inner code (the same inner code by Kim):

a systematic binary  $[n, \frac{2n}{3}]$  cyclic code with parity check polynomial  $h_{in}(x) = x^{\frac{2n}{3}} + x^{\frac{n}{3}} + 1$ .

Then, a binary [n, k, r = 2] can be constructed.



# Comparison



## **Construction by Kim**

#### Outer code:

**shortening** the first  $(2^m - 1 - \frac{2n}{3})$ information bits of the expurgated Hamming code.

#### Inner code:

a systematic binary  $[n, \frac{2n}{3}]$  cyclic code with parity check polynomial  $h_{in}(x) = x^{\frac{2n}{3}} + x^{\frac{n}{3}} + 1$ .

## **Proposed Construction**

## Outer code:

1) 
$$n_{cyc} = (\frac{2n}{3} + 1)$$
:

**puncturing** any one bit of *C*<sub>cyc</sub>;

2) 
$$n_{cyc} = \frac{2n}{3}$$
:  $C_{cyc}$ .

### Inner code:

a systematic binary  $[n, \frac{2n}{3}]$  cyclic code with parity check polynomial  $h_{in}(x) = x^{\frac{2n}{3}} + x^{\frac{n}{3}} + 1$ .



# Proposition



Let  $[n, k_1] C_1$  be constructed by proposed construction; Let  $[n, k_2] C_2$  is constructed by [1].

If  $n = 3(2^{t-1} - 1)$ , where t is a positive integer.

Then  $k_1 = k_2 + 1$ .

[1]. C. Kim and J.-S. No, "New constructions of binary and ternary locally repairable codes using cyclic code," IEEE Communications Letter, vol. 22, no. 2, pp. 228–231, Feb. 2018.





Proof: Let v = 1 and  $u = 2^t - 1$ .

For 
$$C_1$$
,  $n_{cyc} = uv = 2^t - 1 \implies n = \frac{3}{2}(n_{cyc} - 1) = 3(2^{t-1} - 1)$ 

So, 
$$k_1 = vu - v - \deg[g_1(x)] = u - 1 - t = 2^t - 2 - t$$

 $g_1(x)$  is the minimal polynomial of  $\beta$  over  $F_2$ , and  $\beta$  be a primitive  $u^{th}$  root of unity in some extension field of  $F_2$ .

$$\because u = 2^t - 1$$

$$\therefore \deg[g_1(x)] = t$$



# Proposition



Proof:

For 
$$C_{2}$$
,  $k_{2} = \frac{2n}{3} - \left[ \log_{2} \left( \frac{2n}{3} + 1 \right) \right] - 1$   
=  $(2^{t} - 2) - \left[ \log_{2} (2^{t} - 2 + 1) \right] - 1$   
=  $2^{t} - 2 - t - 1$   
=  $2^{t} - 3 - t = k_{1} - 1$ 



## Proposition



| Proposed construction  | (9,3) | (21,10) | (30,15) | (45,25) | •••• |
|------------------------|-------|---------|---------|---------|------|
| Construction in<br>[1] | (9,2) | (21,9)  | (30,14) | (45,24) | •••• |

[1]. C. Kim and J.-S. No, "New constructions of binary and ternary locally repairable codes using cyclic code," IEEE Communications Letter, vol. 22, no. 2, pp. 228–231, Feb. 2018.







In this paper,

- propose a construction for LRC using the punctured code
- increase the dimension at some length of n.



## In the future, ...



We will

- try to find other outer code, which can provide better k and
   n based on the concatenated structure.
- use concatenated structure to construct the LRC with other properties, such as, joint locality, availability.