Polyphase Sequences with Almost Perfect Autocorrelation

 andOptimal Grosscorrelation

2020 Information Theory and Applications Workshop

> Hong-Yeop Song
> hysong@yonsei.ac.kr

YONSEI UNIVERSITTY, SEOUL, KOREA

Contents

- Introduction to Sidelnikov sequences
\checkmark There are two different types, now called
Sidelnikov sequences and Power Residue sequences
- Historical Review on the construction for polyphase sequences family with good correlation property
\checkmark Original paper only discusses only their autocorrelation properties
- Main contribution (very brief)
\checkmark Almost-polyphase sequences

Polyphase Sequences

Alphabet of a polyphase sequence

Equivalent representations

$\{x(n)\}_{n=0}^{L-1}$ be \boldsymbol{k}-ary polyphase sequences of length L

$x(n)$ belongs to the integers $\bmod \boldsymbol{k}$ for each $n=0,1, \ldots$

A complex-valued polyphase sequence

$$
e^{j \frac{2 \pi}{5} 1}, e^{j \frac{j \pi}{5} 3}, e^{j \frac{2 \pi}{5} 0}, e^{j \frac{2 \pi}{5} 2}, e^{j \frac{2 \pi}{5} 4}, \ldots
$$

$$
1,3,0,2,4, \ldots
$$

Corresponding phase sequence \longleftarrow over the integers modulo 5

Correlation of sequences

- Let $\boldsymbol{x}=\{x(n)\}_{n=0}^{L-1}$ and $\boldsymbol{y}=\{y(n)\}_{n=0}^{L-1}$ be two \boldsymbol{k}-ary polyphase sequences of length L. (over the integers $\bmod \boldsymbol{k}$)
- The (periodic) correlation between \boldsymbol{x} and \boldsymbol{y} at time shift τ is computed over the complex:

$$
\mathrm{C}_{x, y}(\tau)=\sum_{\substack{n=0 \\ 2 \pi}}^{L-1} \omega^{x(n)}\left(\omega^{y(n+\tau)}\right)^{*}=\sum_{n=0}^{L-1} \omega^{x(n)-y(n+\tau)}
$$

where $\omega=e^{-j \frac{2 \pi}{k}}$ is a complex primitive k-th root of unity.
$>$ It is called autocorrelation if $y=x$.
> It is called cross-correlation otherwise.

In the beginning

- (Sidelnikov-69) Sidelnikov introduced two different types of non-binary (k-ary polyphase) sequences with
very good non-trivial autocorrelation
$>$ Power Residue sequences (PRS in short) of period \boldsymbol{p}
- Max non-trivial autocorrelation magnitude ≤ 3
> Sidelnikov sequences of period q - 1
- Max non-trivial autocorrelation magnitude ≤ 4
\checkmark V. M. Sidelnikov, "Some k-valued pseudo-random sequences and nearly equidistant codes," Probl. Inf. Transm., vol. 5, pp. 12-16, 1969.
- (Lempel-Cohn-Eastman-77) re-discovered binary "Sidelnikov sequences" of period $q-1$

Cosets of k-th powers in F_{q}^{*}

- $\quad p=$ odd prime,$q=p^{m}$ and $F_{q}=$ finite field of size q
- $\mu=$ primitive element of F_{q}
- k is a divisor of $q-1$ so that $q=k f+1$ for some f
- Coset Partition
$\checkmark D_{0}=$ set of k-th powers in F_{q}^{*}

$$
=\left\{\mu^{k 0}=1, \mu^{2 k}, \mu^{3 k}, \ldots, \mu^{(f-1) k}\right\}
$$

$\checkmark D_{i}=\mu^{i} D_{0}$ for $i=0,1, \ldots, k-1$

$$
=\left\{\mu^{k 0+i}=\mu^{i}, \mu^{2 k+i}, \mu^{3 k+i}, \ldots, \mu^{(f-1) k+i}\right\}
$$

- Well-known that

$$
F_{q}^{*}=\bigcup_{i=0}^{k-1} D_{i} \text { is a disjoint union }
$$

and

$$
\left|D_{i}\right|=f \text { for all } i=0,1, \ldots, k-1 .
$$

Example

- Let $q=13$ and the finite field $F_{q}=F_{13}$ has $\mu=2$ (primitive) since

$$
\begin{aligned}
& \left\{\mu^{n} \mid n=1,2, \ldots, 11,12\right\} \\
= & \left\{\mu^{1}, \mu^{2}, \mu^{3}, \mu^{4}, \ldots, \mu^{12}\right\} \\
= & \{2,4,8,3,6,12,11,9,5,10,7,1\}=F_{13}^{*}
\end{aligned}
$$

- A divisor $k=3$ of $q-1=12=3 \times 4$ with $f=4=(q-1) / k$ and

$$
D_{0}=\left\{2^{3}, 2^{3 \cdot 2}, 2^{3 \cdot 3}, 2^{3 \cdot 4}\right\}=\{8,12,5,1\}
$$

is the set of all the k-th $\left(3^{\text {rd }}\right)$ powers of F_{13}^{*}.

- All its cosets are

$$
\begin{aligned}
& D_{0}=2^{0} D_{0}=\{8,12,5,1\} \\
& D_{1}=2^{1} D_{0}=\{3,11,10,2\} \\
& D_{2}=2^{2} D_{0}=\{6,9,7,4\}
\end{aligned}
$$

each of size $f=4$, and

$$
F_{13}^{*}=D_{0} \cup D_{1} \cup D_{2} \text { is a disjoint union }
$$

Two sequences from Sidelnikov

- Let p must be an odd prime and $q=p^{m}$
> Let $k \geq 2$ be a divisor of $q-1$
$>$ Let μ be a primitive element of F_{q}^{*}
$>D_{0}=$ set of all the k-th powers of F_{q}^{*}
$>D_{i}=\mu^{i} D_{0}=\operatorname{coset}$ of D_{0} for $i=0,1, \ldots, k-1$
- A k-ary power residue sequence (PRS) of period $\boldsymbol{q}=\boldsymbol{p}$

$$
\begin{aligned}
\quad(\boldsymbol{q} & =\boldsymbol{p}=\text { prime }): \\
s(n) & = \begin{cases}0, & \text { if } n=0 \\
i, & \text { if } n \in D_{i}\end{cases}
\end{aligned}
$$

- A k-ary sidelnikov sequence of period $q-1$
$\left(q-1=p^{m}-1=\right.$ one less than a prime or a power of a prime)

$$
s(n)= \begin{cases}0, & \text { if } \mu^{n}+1=0 \\ i, & \text { if } \mu^{n}+1 \in D_{i}\end{cases}
$$

Examples - continued

- A k-ary PRS of period p :

$$
\begin{aligned}
& p=q=13 \text { and } \boldsymbol{k}=3 \\
> & D_{0}=2^{0} D_{0}=\{8,12,5,1\} \\
> & D_{1}=2^{1} D_{0}=\{3,11,10,2\} \\
> & D_{2}=2^{2} D_{0}=\{6,9,7,4\}
\end{aligned}
$$

$$
s(n)= \begin{cases}0, & \text { if } \quad n=0 \\ i, & \text { if } \quad n \in D_{i}\end{cases}
$$

- A k-ary Sidel. sequence of period $q-1$:

$$
s(n)= \begin{cases}0, & \text { if } \mu^{n}+1=0 \\ i, & \text { if } \mu^{n}+1 \in D_{i}\end{cases}
$$

\boldsymbol{n}	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	4	5	6	7	8	9	$\mathbf{1 0}$	$\mathbf{1 1}$	$\mathbf{1 2}$
PRS	$\mathbf{0}$	0	$\mathbf{1}$	$\mathbf{1}$	2	0	2	2	0	2	$\mathbf{1}$	$\mathbf{1}$	0
μ^{n}	1	2	4	8	3	6	$\mathbf{1 2}$	11	9	5	10	7	
$\mu^{n}+1$	$\mathbf{2}$	$\mathbf{3}$	5	9	4	7	$\mathbf{0}$	12	$\mathbf{1 0}$	6	$\mathbf{1 1}$	8	
Sidel S	$\mathbf{1}$	$\mathbf{1}$	0	2	2	2	$\mathbf{0}$	0	$\mathbf{1}$	2	$\mathbf{1}$	0	\times

QUESTION

Can we construct a set of sequences with G00D cross-correlation

```
    as well as
    GOOD non-trivial autocorrelation
    from any of these sequences?
```

Up until 2006, only the autocorrelation properties of these sequences are known (original paper Sidelnikov-69):

The non-trivial autocorrelation magnitude is upper bounded by 3 (for PRS) or 4 (for Sidel. sequences).

First Attempt (2006-2007)

- Construct a family from a given sequence by changing the primitive element in the definition.
- It turned out that the same family can be obtained by multiplying a constant term-by-term.
- Results are
> PRS (period p): Song-06 (ISIT)
- $\operatorname{Max} \leq \sqrt{p}+2$

Crosscorrelation of q-ary power residue sequences of period p
> SS (period q-1): Song-07 (IT Trans.)

- $\operatorname{Max} \leq \sqrt{q}+3$

Crosscorrelation of Sidel'nikov Sequences and Their Constant Multiples

- Note that the size of the family is $\boldsymbol{k}-\mathbf{1}$ for \boldsymbol{k}-ary sequences. It is only $\boldsymbol{\varphi}(\boldsymbol{k})$ when we need to maintain k distinct values.

An improvement begins by some observations and a conjecture

- Z. Guohua and Z. Quan, "Pseudonoise codes constructed by Legendre sequence," IEE Electronic Letters, vol. 38, no. 8, pp. 376-377, 2002.
- The technique of shift-and-add (as in the construction of GOLD sequences using an m-sequence) is introduced.
- They used a Legendre sequence and the technique of shift-and-add to
 construct a family with good crosscorrelation, where the crosscorrelation is (conjectured to be) upper bounded by $4[2 \sqrt{p} / 4]+1$

It is proved by Rushanan at ISIT-06

- J. Rushanan, "Weil Sequences: A Family of Binary Sequences with Good orrelation Properties," Proc. of IEEE Int. Symp. Information Theory(ISIT2006), Seattle, WA, USA, July 2006.
- Crosscorrelation of the sequence family containing a Legendre sequence and its shift-and-add sequences is upper bounded by $2 \sqrt{p}+5$.
- Major Technique:

$$
\left|\sum_{x=0}^{p-1}\left(\frac{\left(x+a_{1}\right) \cdots\left(x+a_{4}\right)}{p}\right)\right| \leq 2 \sqrt{p}+1
$$

Results of No-Chung/Yang/Gong (2008-201 $)$

Shift-and-add techniques

to construct larger family of sequences from a Sidelnikov sequence or a power-residue sequence

Weil Bound on character sums
to prove crosscorrelation bound of the family constructed

Sidelnikov sequences only

- Y.-S. Kim, J.-S. Chung, J.-S. No, and H. Chung, "New families of M-ary sequences with low correlation constructed from Sidel'nikov sequences," IEEE Trans. Inf. Theory, vol. 54, no. 8, pp. 3768-3774, Aug. 2008.

Both Sidelnikov sequences and PRS

- Y. K. Han and K. Yang, New M-ary sequence families with low correlation and large size, IEEE Trans. Inf. Theory, vol. 55, no. 4, pp. 1815-1823, Apr. 2009.
- N. Y. Yu and G. Gong, Multiplicative Characters, the Weil Bound, and Polyphase Sequence Families With Low Correlation, IEEE Trans. Inf. Theory, vol. 56, no. 12, pp. 6376-6387, Dec. 2010.
Note that the size of the family becomes $\approx \boldsymbol{k q} / \mathbf{2}$ for \boldsymbol{k}-ary sequences of period $\boldsymbol{q}-\mathbf{1}$.

Array structure of Sidelnikov sequences

Sidelnikov 69

Song-06/07

No-08, Yang-09, Gong-10

Song-15

For a k-ary Sidelnikov sequence $s(t)$ of period $\boldsymbol{q}^{\boldsymbol{d}}-\mathbf{1}$, make an array as

$$
\left(\begin{array}{cccc}
s(0) & s(1) & \cdots & s\left(\frac{q^{d}-1}{q-1}-1\right) \\
s\left(\frac{q^{d}-1}{q-1}\right) & s\left(\frac{q^{d}-1}{q-1}+1\right) & \cdots & s\left(2 \times \frac{q^{d}-1}{q-1}-1\right) \\
\vdots & \vdots & \ddots & \vdots \\
s\left((q-2) \times \frac{q^{d}-1}{q-1}\right) & s\left((q-2) \times \frac{q^{d}-1}{q-1}+1\right) & \cdots & s\left(q^{d}-2\right)
\end{array}\right)
$$

and choose some columns to construct a set of k-ary sequences of period $\boldsymbol{q}-\mathbf{1}$.
(Gong 10) when $\boldsymbol{d}=\mathbf{2}$
(Song 15) when $\mathbf{3} \leq \boldsymbol{d}<\sqrt{\boldsymbol{q}} / \mathbf{2}$ with $q \geq 27$
The family size now becomes $\approx \boldsymbol{k} \boldsymbol{q}^{\boldsymbol{d}} / \boldsymbol{d}$

Array structure of Sidelnikov sequences

ieice (Song 19) Combine $\boldsymbol{d}=\mathbf{2}, \mathbf{3}, \ldots, \boldsymbol{d}_{\text {max }}$,
The family size now becomes $\approx \boldsymbol{k} \sum \boldsymbol{q}^{\boldsymbol{d}} / \boldsymbol{d}$

MAIN CONTRIBUTION

PRS with single ZERO

In 2019, Xiaoping Shi et al proposed an almost-polyphase sequence of period p, by replacing a single term of 1 to zero from PRS.
X. Shi et al, "A family of M-ary σ-sequences with good autocorrelation," IEEE Comm. Letters, vol. 23, no. 7, pp. 1132-1135, May. 2019.

Key Contribution:

The max autocorrelation magnitude of this sequence is reduced from 3 to 1.

- A k-ary PR S of period p :

$$
p=q=13 \text { and } \boldsymbol{k}=\mathbf{3}
$$

$>D_{0}=2^{0} D_{0}=\{8,12,5,1\}$
$>D_{1}=2^{1} D_{0}=\{3,11,10,2\}$
$>D_{2}=2^{2} D_{0}=\{6,9,7,4\}$

$$
s(n)=\left\{\begin{array}{lll}
0, & \text { if } & n=0 \\
i, & \text { if } & n \in D_{i}
\end{array}\right.
$$

- A k-ary Sidel. sequence of period $q-1$:

$$
s(n)= \begin{cases}0, & \text { if } \mu^{n}+1=0 \\ i, & \text { if } \mu^{n}+1 \in D_{i}\end{cases}
$$

\boldsymbol{n}	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	4	5	6	7	8	9	$\mathbf{1 0}$	$\mathbf{1 1}$	$\mathbf{1 2}$
PRS (phase)	$\mathbf{0}$	0	$\mathbf{1}$	$\mathbf{1}$	2	0	2	2	0	2	$\mathbf{1}$	$\mathbf{1}$	0

complex	$e^{j \frac{2 \pi}{3} 0}$	$e^{j \frac{2 \pi}{3} 0}$	$e^{j \frac{2 \pi}{3} 1}$	$e^{j \frac{2 \pi}{3} 1}$	$e^{j \frac{2 \pi}{3} 2}$	$e^{j \frac{2 \pi}{3} 0}$	$e^{j \frac{2 \pi}{3} 2}$	$e^{j \frac{2 \pi}{3} 2}$	$e^{j \frac{2 \pi}{3} 0}$	$e^{j \frac{2 \pi}{3} 2}$	$e^{j \frac{2 \pi}{3} 1}$	$e^{j \frac{2 \pi}{3} 1}$	$e^{j \frac{2 \pi}{3} 0}$

Almost-polyphase
polyphase

0	$e^{j \frac{2 \pi}{3} 0}$	$e^{j \frac{2 \pi}{3} 1}$	$e^{j \frac{2 \pi}{3} 1}$	$e^{j \frac{2 \pi}{3} 2}$	$e^{j \frac{2 \pi}{3} 0}$	$e^{j \frac{2 \pi}{3} 2}$	$e^{j \frac{2 \pi}{3} 2}$	$e^{j \frac{2 \pi}{3} 0}$	$e^{j \frac{2 \pi}{3} 2}$	$e^{j \frac{2 \pi}{3} 1}$	$e^{j \frac{2 \pi}{3} 1}$	$e^{j \frac{2 \pi}{3} 0}$

Main Contribution

- We have applied similar technique to a \boldsymbol{k}-ary Sidelnikov sequences of period $\boldsymbol{q}-1$ and all its constant multiples.
- We can make a sequence set of size $\boldsymbol{k}-1$ with better correlation properties in both auto and cross-correlation.

	Auto	Cross	alphabet
Sidelnikov	4	$\sqrt{q}+3$	k-ary polyphase
Proposed Seq. set	2	$\sqrt{q}+1$	k-ary polyphase and ZERO

Proof is almost the same as those in Song-2007

- A k-ary PR S of period p :

$$
\begin{aligned}
& p=q=13 \text { and } \boldsymbol{k}=3 \\
> & D_{0}=2^{0} D_{0}=\{8,12,5,1\} \\
> & D_{1}=2^{1} D_{0}=\{3,11,10,2\} \\
> & D_{2}=2^{2} D_{0}=\{6,9,7,4\}
\end{aligned}
$$

$$
s(n)= \begin{cases}0, & \text { if } n=0 \\ i, & \text { if } n \in D_{i}\end{cases}
$$

- A k-ary Sidel. sequence of period $q-1$:

$$
s(n)= \begin{cases}\mathbf{0}, & \text { if } \mu^{n}+\mathbf{1}=\mathbf{0} \\ i, & \text { if } \mu^{n}+1 \in D_{i}\end{cases}
$$

\boldsymbol{n}	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}$	$\mathbf{1 1}$	
Sidel S	$\mathbf{1}$	$\mathbf{1}$	0	2	2	2	$\mathbf{0}$	0	$\mathbf{1}$	2	$\mathbf{1}$	0	X

$\begin{gathered} \text { Song } \\ (2020) \end{gathered}$	$e^{\frac{2 \pi}{3} 1}$	$j \frac{2 \pi}{3}$	$\frac{2 \pi}{3} 0$	${ }^{2} \frac{2 \pi}{3}$	$e^{\frac{2 \pi}{3} \frac{1}{2}}$	$e^{\frac{2 \pi}{3} \frac{1}{2}}$	0	$e^{\frac{2 \pi}{3} 0}$	$e^{\frac{2 \pi}{3} 1}$	$e^{\frac{2 \pi}{3}}$	$e^{i \frac{2 \pi}{3}}$	$e^{\frac{2 \pi}{3} 0}$	

Some Discussion

We suspect that the main result is an easy (and almost trivial) consequence of replacing the value $1=e^{j \frac{2 \pi}{k} 0}$ (phase 0) at only one position with the value 0 (not phase 0).

Question:

Could we have the same result if we replace the value
$1=e^{j \frac{2 \pi}{k} 0}$ at ANY one position with the value $\mathbf{0}$?

The answer is NO.

Some Discussion

- For an experiment, we choose $q-1=3^{6}-1=728=28 \times 26$.
- We construct a 28 -ary Sidelnikov sequence $\{s(n)\}$ of period 728.
- We multiply a constant 2 to every term: $\{2 s(n)\}$
- Complex polyphase sequence $\left\{\omega^{2 s(n)}\right\}$ of period 728
- The table shows that the maximum autocorrelation magnitude of the sequences when the single term of 1 at position \boldsymbol{n}_{1} is replace with 0 from this sequence

n_{1}	Max Autocorr.	n_{1}	Max Autocorr.
0	5.950	364	$\mathbf{2 . 0 0 0}$
28	5.177	392	5.441
56	5.569	420	5.493
84	5.509	448	5.435
112	5.531	476	5.653
140	5.817	504	5.769
168	5.200	532	5.638
196	5.638	560	5.200
224	5.769	588	5.817
252	5.653	616	5.531
280	5.435	644	5.509
308	5.493	672	5.569
336	5.441	700	5.177

Some Discussion

Conjecture.
This happens for all other k-ary Sidelnikov sequences.
That is,
Replacing a value 1 with 0 will reduce the max autocorrelation magnitude ONLY when the position is $(q-1) / 2$.

Some Discussion

The conjecture was confirmed for all odd prime powers q with $1000 \leq q \leq 10000$ and all the divisors \boldsymbol{k} of $q-1$ and constants \boldsymbol{c} from 2 to $\boldsymbol{k}-1$.

We have just completed the proof!
(4 days ago)
Theorem:
The change of no other single

q		
3^{7}	37^{2}	71^{2}
3^{8}	41^{2}	73^{2}
5^{5}	43^{2}	79^{2}
7^{4}	47^{2}	83^{2}
11^{3}	53^{2}	89^{2}
13^{3}	59^{2}	97^{2}
17^{3}	61^{2}	
19^{3}	67^{2}	

Summary

- A k-ary Sidelnikov sequence and all its constant multiples (of period $q-1$) will have a slightly better correlation performance (both autocorrelation and crosscorrelation) when the single term at the position $(\boldsymbol{q}-\mathbf{1}) / 2$ is replaced with the value 0 .
- No other position will work for the same improvement at all (for Sidelnikov sequences).
- Conjecture:

We guess that the same is true for PRS sequences.

