Polyphase Sequences with Almost Perfect Autocorrelation and Optimal Crosscorrelation

2020 Information Theory and Applications Workshop

Hong-Yeop Song hysong@yonsei.ac.kr

YONSEI UNIVERSITY, SEOUL, KOREA

Contents

- Introduction to Sidelnikov sequences
 There are two different types, now called
 Sidelnikov sequences and Power Residue sequences
- Historical Review on the construction for polyphase sequences family with good correlation property
 - ✓ Original paper only discusses only their autocorrelation properties
- Main contribution (very brief)
 - ✓ Almost-polyphase sequences

Polyphase Sequences

Correlation of sequences

- Let $\mathbf{x} = {x(n)}_{n=0}^{L-1}$ and $\mathbf{y} = {y(n)}_{n=0}^{L-1}$ be two *k*-ary polyphase sequences of length *L*. (over the integers mod *k*)
- The (periodic) correlation between *x* and *y* at time shift *τ* is computed over the complex:

$$C_{x,y}(\tau) = \sum_{\substack{n=0\\n=0}}^{L-1} \omega^{x(n)} \left(\omega^{y(n+\tau)} \right)^* = \sum_{\substack{n=0\\n=0}}^{L-1} \omega^{x(n)-y(n+\tau)}$$

where $\omega = e^{-j\frac{2\pi}{k}}$ is a complex primitive *k*-th root of unity.

- > It is called autocorrelation if y = x.
- It is called cross-correlation otherwise.

In the beginning

- (Sidelnikov-69) Sidelnikov introduced two different types of non-binary (k-ary polyphase) sequences with very good non-trivial autocorrelation
 - Power Residue sequences (PRS in short) of period p
 - Max non-trivial autocorrelation magnitude \leq 3
 - > Sidelnikov sequences of period q 1
 - Max non-trivial autocorrelation magnitude \leq 4
 - ✓ V. M. Sidelnikov, "Some k-valued pseudo-random sequences and nearly equidistant codes," *Probl. Inf. Transm.*, vol. 5, pp. 12-16, 1969.
- (Lempel-Cohn-Eastman-77) re-discovered binary "Sidelnikov sequences" of period q-1

Cosets of k-th powers in F_q^*

- $p = \text{odd prime}, q = p^m \text{ and } F_q = \text{finite field of size } q$
- μ = primitive element of F_q
- *k* is a divisor of q 1 so that q = kf + 1 for some *f*
- Coset Partition

✓
$$D_0$$
 = set of *k*-th powers in F_q^*
= { $\mu^{k0} = 1, \ \mu^{2k}, \ \mu^{3k}, \ ..., \ \mu^{(f-1)k}$ }
✓ $D_i = \mu^i D_0$ for $i = 0, 1, ..., k - 1$
= { $\mu^{k0+i} = \mu^i, \mu^{2k+i}, \mu^{3k+i}, ..., \mu^{(f-1)k+i}$ }

• Well-known that

$$F_q^* = \bigcup_{i=0}^{k-1} D_i$$
 is a disjoint union

and

$$|D_i| = f$$
 for all $i = 0, 1, ..., k - 1$.

Example

• Let q = 13 and the finite field $F_q = F_{13}$ has $\mu = 2$ (primitive) since

$$\{\mu^{n} | n = 1, 2, ..., 11, 12\}$$

= {\mu^{1}, \mu^{2}, \mu^{3}, \mu^{4}, ..., \mu^{12}}
= {2,4,8,3,6,12,11,9,5,10,7,1} = F_{13}^{*}

• A divisor k = 3 of $q - 1 = 12 = 3 \times 4$ with f = 4 = (q - 1)/k

and $D_0 = \{2^3, 2^{3 \cdot 2}, 2^{3 \cdot 3}, 2^{3 \cdot 4}\} = \{8, 12, 5, 1\}$

is the set of all the k-th (3^{rd}) powers of F_{13}^* .

• All its cosets are

$$D_0 = 2^0 D_0 = \{8, 12, 5, 1\}$$

 $D_1 = 2^1 D_0 = \{3, 11, 10, 2\}$
 $D_2 = 2^2 D_0 = \{6, 9, 7, 4\}$

each of size f = 4, and

 $F_{13}^* = D_0 \cup D_1 \cup D_2$ is a disjoint union

Two sequences from Sidelnikov

- Let p must be an **odd prime** and $q = p^m$
 - ≻ Let $k \ge 2$ be a **divisor** of q 1
 - ▶ Let μ be a primitive element of F_q^*
 - > D_0 = set of all the *k*-th powers of F_q^*
 - > $D_i = \mu^i D_0 = \text{coset of } D_0 \text{ for } i = 0, 1, ..., k 1$
- A k-ary power residue sequence (PRS) of **period** q = p

(q = p = prime): $s(n) = \begin{cases} 0, & \text{if } n = 0\\ i, & \text{if } n \in D_i \end{cases}$

• A k-ary sidelnikov sequence of period q - 1 $(q - 1 = p^m - 1 = \text{one less than a prime or a power of a prime)}$ $s(n) = \begin{cases} 0, & \text{if } \mu^n + 1 = 0 \\ i, & \text{if } \mu^n + 1 \in D_i \end{cases}$

Examples - continued

$$p = q = 13 \text{ and } \mathbf{k} = \mathbf{3}$$

> $D_0 = 2^0 D_0 = \{\mathbf{8}, \mathbf{12}, \mathbf{5}, \mathbf{1}\}$
> $D_1 = 2^1 D_0 = \{\mathbf{3}, \mathbf{11}, \mathbf{10}, \mathbf{2}\}$
> $D_2 = 2^2 D_0 = \{\mathbf{6}, \mathbf{9}, \mathbf{7}, \mathbf{4}\}$

• A k-ary PR S of period p:

$$s(n) = \begin{cases} 0, & \text{if } n = 0\\ i, & \text{if } n \in D_i \end{cases}$$

• A k-ary Sidel. sequence of period q - 1: $s(n) = \begin{cases} 0, & \text{if } \mu^n + 1 = 0 \\ i, & \text{if } \mu^n + 1 \in D_i \end{cases}$

n	0	1	2	3	4	5	6	7	8	9	10	11	12
PRS	0	0	1	1	2	0	2	2	0	2	1	1	0
μ^n	1	2	4	8	3	6	12	11	9	5	10	7	
μ^n+1	2	3	5	9	4	7	0	12	10	6	11	8	
Sidel S	1	1	0	2	2	2	0	0	1	2	1	0	Х

QUESTION

Can we construct a set of sequences with GOOD cross-correlation as well as GOOD non-trivial autocorrelation from any of these sequences?

Up until 2006, only the autocorrelation properties of these sequences are known (original paper Sidelnikov-69):

The non-trivial autocorrelation magnitude is upper bounded by 3 (for PRS) or 4 (for Sidel. sequences).

First Attempt (2006-2007)

- Construct a family from a given sequence by changing the primitive element in the definition.
- It turned out that the same family can be obtained by multiplying a constant term-by-term.
- Results are
 - PRS (period p): Song-06 (ISIT)
 - Max $\leq \sqrt{p} + 2$

Crosscorrelation of q-ary power residue sequences of period p

- SS (period q-1): Song-07 (IT Trans.)
 - $Max \le \sqrt{q} + 3$ Crosscorrelation of Sidel'nikov Sequences and Their Constant Multiples
- Note that the size of the family is k 1 for k-ary sequences. It is only $\varphi(k)$ when we need to maintain k distinct values.

An improvement begins by some observations and a conjecture

- Z. Guohua and Z. Quan, "Pseudonoise codes constructed by Legendre sequence," IEE Electronic Letters, vol. 38, no. 8, pp. 376-377, 2002.
- The technique of shift-and-add (as in the construction of GOLD sequences using an m-sequence) is introduced.
- They used a Legendre sequence and the technique of shift-and-add to construct a family with good crosscorrelation, where the crosscorrelation is (conjectured to be) upper bounded by $4\left\lfloor 2\sqrt{p}/4 \right\rfloor + 1$

It is proved by Rushanan at ISIT-06

- J. Rushanan, "Weil Sequences: A Family of Binary Sequences with Good orrelation Properties," *Proc. of IEEE Int. Symp. Information Theory(ISIT2006)*, Seattle, WA, USA, July 2006.
- Crosscorrelation of the sequence family containing a Legendre sequence and its shift-and-add sequences is upper bounded by $2\sqrt{p} + 5$.

Results of No-Chung/Yang/Gong (2008-2016)

Shift-and-add techniques

to construct larger family of sequences from a Sidelnikov sequence or a power-residue sequence Weil Bound on character sums
 to prove crosscorrelation bound of the family constructed

Sidelnikov sequences only

• Y.-S. Kim, J.-S. Chung, <u>J.-S. No</u>, and H. Chung, "New families of M-ary sequences with low correlation constructed from Sidel'nikov sequences," *IEEE Trans. Inf. Theory*, vol. 54, no. 8, pp. 3768–3774, Aug. 2008.

Both Sidelnikov sequences and PRS

- Y. K. Han and <u>K. Yang</u>, New M-ary sequence families with low correlation and large size, *IEEE Trans. Inf. Theory*, vol. 55, no. 4, pp. 1815-1823, Apr. 2009.
- N. Y. Yu and <u>G. Gong</u>, Multiplicative Characters, the Weil Bound, and Polyphase Sequence Families With Low Correlation, *IEEE Trans. Inf. Theory*, vol. 56, no. 12, pp. 6376-6387, Dec. 2010.

Note that the size of the family becomes $\approx kq/2$ for *k*-ary sequences of period q - 1.

Array structure of Sidelnikov sequences @

For a *k*-ary **Sidelnikov sequence** s(t) of period $q^d - 1$, make an array as

and **choose some columns** to construct a set of k-ary sequences of period q - 1.

(Gong 10) when d = 2(Song 15) when $3 \le d < \sqrt{q}/2$ with $q \ge 27$

The family size now becomes $\approx kq^d/d$

Sidelnikov 69

Array structure of Sidelnikov sequences @

MAIN CONTRIBUTION

PRS with single **ZERO**

In 2019, Xiaoping Shi et al proposed an almost-polyphase sequence of period *p*, by replacing a single term of 1 to zero from PRS.

X. Shi et al, "A family of M-ary σ-sequences with good autocorrelation," *IEEE Comm. Letters*, vol. 23, no. 7, pp. 1132-1135, May. **2019**.

Key Contribution:

The max autocorrelation magnitude of this sequence is reduced from 3 to 1.

$$p = q = 13 \text{ and } \mathbf{k} = \mathbf{3}$$

$$D_0 = 2^0 D_0 = \{\mathbf{8}, \mathbf{12}, \mathbf{5}, \mathbf{1}\}$$

$$D_1 = 2^1 D_0 = \{\mathbf{3}, \mathbf{11}, \mathbf{10}, \mathbf{2}\}$$

$$D_2 = 2^2 D_0 = \{\mathbf{6}, \mathbf{9}, \mathbf{7}, \mathbf{4}\}$$

• A *k*-ary PR S of period *p*:

$$s(n) = \begin{cases} \mathbf{0}, & \text{if } n = \mathbf{0} \\ i, & \text{if } n \in D_i \end{cases}$$

• A k-ary Sidel. sequence of period q - 1: $s(n) = \begin{cases} 0, & \text{if } \mu^n + 1 = 0 \\ i, & \text{if } \mu^n + 1 \in D_i \end{cases}$

Main Contribution

- 8
- We have applied similar technique to a k-ary Sidelnikov sequences of period q − 1 and all its constant multiples.
- We can make a sequence set of size k 1 with better correlation properties in both **auto** and **cross-correlation**.

	Auto	Cross	alphabet
Sidelnikov	4	$\sqrt{q} + 3$	k-ary polyphase
Proposed Seq. set	2	<u>√q</u> +1	k-ary polyphase and ZERO

Proof is almost the same as those in Song-2007

$$p = q = 13 \text{ and } \mathbf{k} = \mathbf{3}$$

> $D_0 = 2^0 D_0 = \{\mathbf{8}, \mathbf{12}, \mathbf{5}, \mathbf{1}\}$
> $D_1 = 2^1 D_0 = \{\mathbf{3}, \mathbf{11}, \mathbf{10}, \mathbf{2}\}$
> $D_2 = 2^2 D_0 = \{\mathbf{6}, \mathbf{9}, \mathbf{7}, \mathbf{4}\}$

• A *k*-ary PR S of period *p*:

$$s(n) = \begin{cases} 0, & \text{if } n = 0\\ i, & \text{if } n \in D_i \end{cases}$$

• A k-ary Sidel. sequence of period q - 1: $s(n) = \begin{cases} 0, & \text{if } \mu^n + 1 = 0 \\ i, & \text{if } \mu^n + 1 \in D_i \end{cases}$

We suspect that the main result is an easy (and almost trivial) consequence of replacing the value $1 = e^{j\frac{2\pi}{k}0}$ (phase 0) at only one position with the value 0 (not phase 0).

Question:

Could we have the same result if we replace the value $1 = e^{j\frac{2\pi}{k}0} \text{ at ANY one position}$ with the value 0?

The answer is NO.

- For an experiment, we choose $q-1=3^6-1=728=28\times 26$.
- We construct a 28-ary Sidelnikov sequence $\{s(n)\}$ of period 728.
- We multiply a constant 2 to every term: {2s(n)}
- Complex polyphase sequence $\{\omega^{2s(n)}\}$ of period 728
- The table shows that the maximum autocorrelation magnitude of the sequences when the single term of 1 at position n₁ is replace with 0 from this sequence

n ₁	Max Autocorr.	n_1	Max Autocorr.
0	5.950	364	2.000
28	5.177	392	5.441
56	5.569	420	5.493
84	5.509	448	5.435
112	5.531	476	5.653
140	5.817	504	5.769
168	5.200	532	5.638
196	5.638	560	5.200
224	5.769	588	5.817
252	5.653	616	5.531
280	5.435	644	5.509
308	5.493	672	5.569
336	5.441	700	5.177

Conjecture.

This happens for all other k-ary Sidelnikov sequences.

That is,

Replacing a value 1 with 0 will reduce the max autocorrelation magnitude ONLY when the position is (q - 1)/2.

The conjecture was confirmed for all odd prime powers q with $1000 \le q \le 10000$ and all the divisors k of q - 1 and constants c from 2 to k - 1.

We have just completed the proof! (4 days ago)

Theorem:

The change of no other single element with the value 0 will reduce the max non-trivial autocorrelation magnitude unless the position is (q - 1)/2.

	q	
37	37 ²	71 ²
3 ⁸	41^{2}	73 ²
5 ⁵	43 ²	79 ²
74	47 ²	83 ²
11 ³	53 ²	89 ²
13 ³	59 ²	97 ²
17 ³	61 ²	
19 ³	67 ²	

- A k-ary Sidelnikov sequence and all its constant multiples (of period q − 1) will have a slightly better correlation performance (both autocorrelation and crosscorrelation) when the single term at the position (q − 1)/2 is replaced with the value 0.
- No other position will work for the same improvement at all (for Sidelnikov sequences).

• Conjecture:

We guess that the same is true for PRS sequences.

