

A simple construction for QC-LDPC codes of short lengths with girth at least 8

Inseon Kim and Hong-Yeop Song

Yonsei University

The 11th International Conference on ICT Convergence

In this paper, we propose a simple construction for quasi-cyclic low density parity-check codes with girth at least 8 by selecting 3 consecutive rows of a square base matrix over a finite field of size prime $p = t^2 + 1$ for some t. The bit error rate performance of the codes of lengths 1200 and 2400 are Monte-Carlo simulated.

1. QC-LDPC codes and Cycle Property

- QC-LDPC Codes the finite field approach
 - Every non-zero element of GF(p) appears once in square matrix B when p = t² + 1

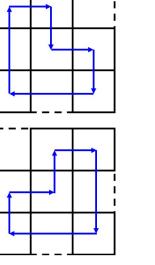
$$\mathbf{B} = \begin{bmatrix} 1 & \alpha^t & \cdots & \alpha^{(t-1)t} \\ \alpha & \alpha^{t+1} & \cdots & \alpha^{(t-1)t+1} \\ \vdots & \vdots & \ddots & \vdots \\ \alpha^{t-1} & \alpha^{2t-1} & \cdots & \alpha^{t^2-1} \end{bmatrix}$$

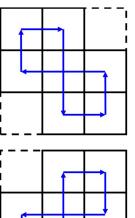
Parity matrix of QC-LDPC code by choosing any *m* rows of *B*

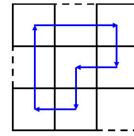
	$H_{0,0}$	$\mathbf{H}_{0,1}$		$\mathbf{H}_{0,t-1}$
H =	$\mathbf{H}_{1,0}$	$\mathbf{H}_{1,1}$	·	$\mathbf{H}_{1,t-1}$
	$\mathbf{H}_{m-1,0}$	$\mathbf{H}_{m-1,1}$		$\mathbf{H}_{m-1,t-1}$

- $H_{i,j}$: $p \times p$ CPM cyclically shifting by (i, j) th entry of B
- Rate : $\frac{t-m}{t}$ and QC-LDPC codes have girth at least 6 [8].
- Cycle property of QC-LDPC codes
 - 2 by 2 submatrix of $B : \begin{bmatrix} a & b \\ c & d \end{bmatrix}$
 - $a b c + d \equiv 0 \pmod{p}$ iff \exists a cycle of length 4 in parity-check matrix

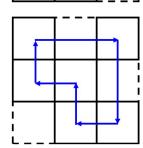
2. Simple construction of QC-LDPC codes with girth at least 8







YON



Length and rate of constructed QC-LDPC

р	code rate	code length
$t^2 + 1$	$\frac{t-3}{t}$	$t(p+l)$ where $l = 0, 1, 2, \cdots$
$4^2 + 1$	$\frac{1}{4}$	$4(p+l) = 68, 72, 76, \cdots$
$6^2 + 1$	$\frac{1}{2}$	$6(p+l) = 222, 228, 234, \cdots$
$10^2 + 1$	$\frac{7}{10}$	$10(p+l) = 1010, 1020, 1030, \cdots$
$14^2 + 1$	$\frac{11}{14}$	$14(p+l) = 2758, 2772, 2786, \cdots$
$16^2 + 1$	$\frac{13}{16}$	$16(p+l) = 4112, 4128, 4144, \cdots$
:	:	

- Proposed construction gives QC-LDPC codes with
 - 1. Very short length as a few hundreds
 - 2. High code rate approaching 1

- Construction Methods
 - Select 3 consecutive rows of square matrix *B*

	α^0	10 B	α^{2t}		$\alpha^{(t-1)t}$
$\mathbf{B}_s =$	α^1	α^{t+1}	α^{2t+1}		$\alpha^{(t-1)t+1}$
	α^2	α^{t+2}	α^{2t+2}	•••	$ \begin{array}{c} \alpha^{(t-1)t} \\ \alpha^{(t-1)t+1} \\ \alpha^{(t-1)t+2} \end{array} $

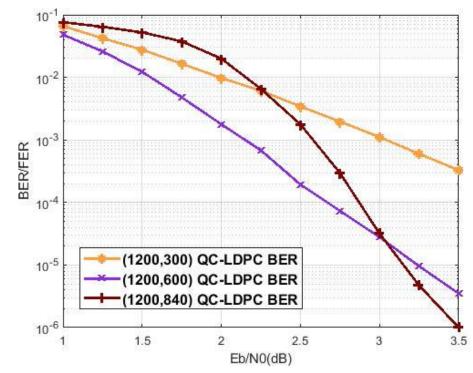
- Generate parity-check matrix whose base matrix is selected matrix
- These QC-LDPC codes has girth at least 8
- For some case, the QC-LDPC codes has girth at least 10
- Its cycle property
 - Consider 3×3 submatrix of \mathbf{B}_s

$$\begin{bmatrix} \alpha^{it} & \alpha^{jt} & \alpha^{kt} \\ \alpha^{it+1} & \alpha^{jt+1} & \alpha^{kt+1} \\ \alpha^{it+2} & \alpha^{jt+2} & \alpha^{kt+2} \end{bmatrix}$$

- $\alpha^{it} \alpha^{jt} + \alpha^{jt+1} \alpha^{kt+1} + \alpha^{kt+2} \alpha^{it+2} \equiv 0 \pmod{p}$ iff \exists a cycle of length 6
- Patterns of cycle of length 6

3. Simulation Results

- To compare the performance of QC-LDPC codes, we choose three case : t = 4, 6, 10
- Code length : 1200 (set $l_1 = 283, l_2 = 163, l_3 = 19$)
- Code length : 2400 (set $l_1 = 563, l_2 = 363, l_3 = 139$)
- Assume BPSK modulation and AWGN channel
- Decoding algorithm : SP algorithm



 Surprisingly, higher code rate codes have better decoding performance

