Cooperative Locality and Availability of the MacDonald Codes for Multiple Symbol Erasures

Zhi Jing and Hong-Yeop Song
Yonsei University

2020
ISITA

Contents

1. MacDonald codes

2. Some properties of the MacDonald codes
2.1 Locality
2.2 Cooperative locality
2.3 Availability
3. Optimal LRC

MacDonald Codes

Simplex Code

puncturing

MacDonald Code

MacDonald Codes

Simplex Code

For ($\mathbf{2}^{\boldsymbol{k}}-\mathbf{1}, k$) Simplex code:

- S_{k} : generator matrix
- Initialize $S_{1}=(1)$, and then

$$
S_{k}=\left(\begin{array}{ccc}
S_{k-1} & \mathbf{0}_{k-1}^{T} & S_{k-1} \\
\mathbf{0}_{2^{k-1}-1} & 1 & \mathbf{1}_{2^{k-1}-1}
\end{array}\right)
$$

MacDonald Code

${ }^{*} \mathbf{0}_{n}$ and $\mathbf{1}_{n}$ be all-zero and all one row vector of length n.

MacDonald Codes

MacDonald Code

${ }^{*} \mathbf{0}_{n}$ and $\mathbf{1}_{n}$ be all-zero and all one row vector of length n.

MacDonald Codes

Simplex Code

MacDonald Code

The ($\left.2^{k}-2^{l}, k\right)$ MacDonald code

$$
G_{k}(l)=\left(\begin{array}{cccc}
B & \mathbf{0}_{k-1}^{T} & A & B \\
\mathbf{0}_{2^{k-1}-2^{l}} & 1 & \mathbf{1}_{2^{l}-1} & \mathbf{1}_{2^{k-1}-2^{l}}
\end{array}\right)
$$

${ }^{*} \mathbf{0}_{n}$ and $\mathbf{1}_{n}$ be all-zero and all one row vector of length n.

Locality

- For an $[n, k]$ code C :

- Symbol locality:
the smallest number of symbols needed to repair the failed symbol.
- $\quad[n, k, r]_{a}\left([n, k, r]_{i}\right)$ code C :

All coded (information) symbol has the locality at most r.

Locality

- For an $[n, k, r]_{a}$ code C :

$$
\text { coded symbol: } 1
$$

Let \boldsymbol{u} be the nonzero information vector.

$$
\begin{aligned}
c_{e} & =c_{i_{1}}+c_{i_{2}}+\cdots+c_{i_{r}} \\
\boldsymbol{u} \cdot g_{e} & =\boldsymbol{u} \cdot \frac{\left(g_{i_{1}}+g_{i_{2}}+\cdots+g_{i_{r}}\right)}{\text { Linear combination of } g_{j}}
\end{aligned}
$$

* $g_{j}, 1 \leq j \leq n$, is the $j^{t h}$ column of the generator matrix of C.

Locality

Lemma 1 [1]:

The locality of the MacDonald code $M_{k}(l)$ is

$$
r= \begin{cases}2, & l<k-1 \\ 3, & l=k-1\end{cases}
$$

- When $l<k-1$,

$$
G_{k}(l)=\left(\begin{array}{cccc}
B & \mathbf{0}_{k-1}^{T} & A & B \\
\mathbf{0}_{2^{k-1}-2^{l}} & 1 & \mathbf{1}_{2^{l}-1} & \mathbf{1}_{2^{k-1}-2^{l}}
\end{array}\right)
$$

- When $l=k-1$,

$$
G_{k}(l)=\left(\begin{array}{ccc}
\mathbf{0}_{k-1}^{T} & A & B \\
1 & \mathbf{1}_{2^{l}-1} & \mathbf{1}_{2^{k-1}-2^{l}}
\end{array}\right)
$$

[1]. Q. Fu, R. Li, L. Guo, and L. Lv, "Locality of optimal binary codes," Finite Fields and Their Applications, vol. 48, pp. 371-394, 2017.

Erasures

- Single erasure \checkmark Locality r
- Multiple erasures
\checkmark Cooperative locality r_{h}
\checkmark Availability t

Cooperative Locality

Generalize the locality $r \triangleq \mathrm{r}_{1}$

- Cooperative locality $\boldsymbol{r}_{\boldsymbol{h}}$:
\checkmark The smallest number of symbols needed to repair $h \geq \mathbb{1}$ erased symbols.
$\checkmark r_{h} \leq r_{1} \cdot h$

Cooperative Locality

- Code locality:

All coded (information) symbol has the locality at most r_{1}.

Cooperative Locality

cooperative

- Code locality:

All coded (information) symbolhas the locality at most r_{1}. Any h coded (information) symbol

Eg: (C has the cooperative locality $r_{2}=4<6$)

Cooperative Locality

Theorem 1:

The cooperative locality r_{2} of the MacDonald code $M_{k}(l)$ is

$$
r_{2}= \begin{cases}3\left(<4=2 r_{1}\right), & l<k-1 \\ 4\left(<6=2 r_{1}\right), & l=k-1\end{cases}
$$

Cooperative Locality

Proof:

Let e_{i} and e_{j} be two erased symbols.

1) When $l<k-1$,

Case 1:

$$
\begin{aligned}
G_{k}(l)= & \left(\begin{array}{cccc}
B & \mathbf{0}_{k-1}^{T} & A & B \\
\mathbf{0}_{2^{k-1}-2^{l}} & 1 & \mathbf{1}_{2^{l}-1} & \mathbf{1}_{2^{k-1}-2^{l}}
\end{array}\right) \\
& g_{i}=\left(\begin{array}{ll}
\boldsymbol{u} & 0
\end{array}\right) \\
& g_{j}=\left(\begin{array}{ll}
v & 0
\end{array}\right)
\end{aligned}
$$

Cooperative Locality

Proof:

Let e_{i} and e_{j} be two erased symbols.

1) When $l<k-1$,

Case 1:

$$
\begin{align*}
& G_{k}(l)=\left(\begin{array}{cccc}
B & \mathbf{0}_{k-1}^{T} & A & B \\
\mathbf{0}_{2^{k-1}-2^{l}} & 1 & \mathbf{1}_{2^{l}-1} & \mathbf{1}_{2^{k-1}-2^{l}}
\end{array}\right) \\
& g_{i}=\left(\begin{array}{ll}
u & 0
\end{array}\right) \\
& g_{j}=\left(\begin{array}{ll}
v & 0
\end{array}\right)\left(\begin{array}{l}
w
\end{array}\right) \tag{w1}
\end{align*}
$$

Cooperative Locality

Proof:

Let e_{i} and e_{j} be two erased symbols.

1) When $l<k-1$,

Case 1:

$$
\left.\begin{array}{r}
G_{k}(l)=\left(\begin{array}{cccc}
B & \mathbf{0}_{k-1}^{T} & A & B \\
\mathbf{0}_{2^{k-1}-2^{l}} & 1 & \mathbf{1}_{2^{l}-1} & \mathbf{1}_{2^{k-1}-2^{l}}
\end{array}\right) \\
g_{i}=(\boldsymbol{u} 0) \leftarrow(\boldsymbol{u}+\boldsymbol{w} 1) \\
g_{j}=\left(\begin{array}{ll}
\boldsymbol{v} & 0) \leftarrow \\
\qquad & (\boldsymbol{w} 1
\end{array}\right) \\
(v+\boldsymbol{w} 1
\end{array}\right) .
$$

Cooperative Locality

Proof:

Let e_{i} and e_{j} be two erased symbols.

1) When $l<k-1$,

Case 2:

$$
\begin{aligned}
G_{k}(l)=\left(\begin{array}{cccc}
B & \mathbf{0}_{k-1}^{T} & A & B \\
\mathbf{0}_{2^{k-1}-2^{l}} & 1 & \mathbf{1}_{2^{l}-1} & \mathbf{1}_{2^{k-1}-2^{l}}
\end{array}\right) \\
g_{i}=\left(\begin{array}{lll}
\boldsymbol{u} & 1
\end{array}\right) \\
g_{j}=\left(\begin{array}{ll}
\boldsymbol{v} & 1
\end{array}\right)
\end{aligned}
$$

Cooperative Locality

Proof:

Let e_{i} and e_{j} be two erased symbols.

1) When $l<k-1$,

Case 2:

$$
\left.\begin{array}{l}
G_{k}(l)=\left(\begin{array}{cccc}
B & \mathbf{0}_{k-1}^{T} & A & B \\
\mathbf{0}_{2^{k-1}-2^{l}} & 1 & \mathbf{1}_{2^{l}-1} & \mathbf{1}_{2^{k-1}-2^{l}}
\end{array}\right) \\
\text { and } \boldsymbol{w} \neq \boldsymbol{u}+\boldsymbol{v}
\end{array}\right) \quad \begin{aligned}
& \left(\begin{array}{ll}
\boldsymbol{v} & =
\end{array}\right. \\
& g_{j}=\left(\begin{array}{ll}
\boldsymbol{v} & 1
\end{array}\right)
\end{aligned}
$$

Cooperative Locality

Proof:

Let e_{i} and e_{j} be two erased symbols.

1) When $l<k-1$,

Case 2:

$$
\left.\begin{array}{rl}
G_{k}(l)= & \left(\begin{array}{cccc}
B & \mathbf{0}_{k-1}^{T} & A & B \\
\mathbf{0}_{2^{k-1}-2^{l}} & 1 & \mathbf{1}_{2^{l}-1} & \mathbf{1}_{2^{k-1}-2^{l}}
\end{array}\right) \\
& (\boldsymbol{u}+\boldsymbol{w} 1) \longrightarrow g_{i}=\left(\begin{array}{ll}
\boldsymbol{u} & 1
\end{array}\right) \\
\left(\begin{array}{ll}
\boldsymbol{w} & 0
\end{array}\right) \Longrightarrow g_{j}=\left(\begin{array}{ll}
\boldsymbol{v} & 1
\end{array}\right) \\
(\boldsymbol{v}+\boldsymbol{w} 1) \longrightarrow \longrightarrow
\end{array}\right)
$$

Cooperative Locality

Proof:

Let e_{i} and e_{j} be two erased symbols.

1) When $l<k-1$,

Case 3:

$$
\begin{gathered}
G_{k}(l)=\left(\begin{array}{cccc}
B & \mathbf{0}_{k-1}^{T} & A & B \\
\mathbf{0}_{2^{k-1}-2^{l}} & 1 & \mathbf{1}_{2^{l}-1} & \mathbf{1}_{2^{k-1}-2^{l}}
\end{array}\right) \\
g_{i}=\left(\begin{array}{ll}
\boldsymbol{u} 0
\end{array}\right)
\end{gathered} g_{j}=\left(\begin{array}{l}
v
\end{array}\right)
$$

Cooperative Locality

Proof:

Let e_{i} and e_{j} be two erased symbols.

1) When $l<k-1$,

Case 3:

$$
\begin{array}{r}
G_{k}(l)=\left(\begin{array}{cccc}
B & \mathbf{0}_{k-1}^{T} & A & B \\
\mathbf{0}_{2^{k-1}-2^{l}} & 1 & \mathbf{1}_{2^{l}-1} & \mathbf{1}_{2^{k-1}-2^{l}}
\end{array}\right) \\
g_{i}=\left(\begin{array}{ll}
\boldsymbol{u} 0
\end{array}\right) \\
g_{j}=\left(\begin{array}{l}
v
\end{array}\right) \\
(v+w 0)
\end{array}
$$

Cooperative Locality

Proof:

Let e_{i} and e_{j} be two erased symbols.

1) When $l<k-1$,

Case 3:

$$
\begin{aligned}
& G_{k}(l)=\left(\begin{array}{cccc}
B & \mathbf{0}_{k-1}^{T} & A & B \\
\mathbf{0}_{2^{k-1}-2^{l}} & 1 & \mathbf{1}_{2^{l}-1} & \mathbf{1}_{2^{k-1}-2^{l}}
\end{array}\right) \\
& g_{i}=\left(\boldsymbol{u}_{0}\right) \quad g_{j}=\left(\begin{array}{ll}
v & 1
\end{array}\right) \\
& (\boldsymbol{u}+\boldsymbol{w} 1) \\
& \text { (} w 1 \text {) } \\
& (v+w 0) \\
& \therefore r_{2}=3
\end{aligned}
$$

Cooperative Locality

Proof:

Let e_{i} and e_{j} be two erased symbols.
2) When $l=k-1$,

$$
G_{k}(l)=\left(\begin{array}{ccc}
\mathbf{0}_{k-1}^{T} & A & B \\
1 & \mathbf{1}_{2^{l}-1} & \mathbf{1}_{2^{k-1}-2^{l}}
\end{array}\right)
$$

$$
g_{i}=\left(\begin{array}{l}
\boldsymbol{u} 1)
\end{array}\right.
$$

$$
g_{j}=\left(\begin{array}{ll}
v & 1
\end{array}\right)
$$

Cooperative Locality

Proof:

Let e_{i} and e_{j} be two erased symbols.
2) When $l=k-1$,

$$
\begin{align*}
& G_{k}(l)=\left(\begin{array}{ccc}
\mathbf{0}_{k-1}^{T} & A & B \\
1 & \mathbf{1}_{2^{l}-1} & \mathbf{1}_{2^{k-1}-2^{l}}
\end{array}\right) \\
& g_{i}=\left(\begin{array}{ll}
\boldsymbol{u} & 1
\end{array}\right) \tag{a1}\\
& g_{j}=\left(\begin{array}{ll}
v & 1
\end{array}\right) \\
& \text { (b 1) } \\
& \text { and } \boldsymbol{a} \neq \boldsymbol{b} \neq \boldsymbol{u}, \boldsymbol{v} \\
& \boldsymbol{a}+\boldsymbol{b} \neq u+\boldsymbol{v}
\end{align*}
$$

Cooperative Locality

Proof:

Let e_{i} and e_{j} be two erased symbols.
2) When $l=k-1$,

$$
\begin{aligned}
& G_{k}(l)=\left(\begin{array}{ccc}
\mathbf{0}_{k-1}^{T} & A & B \\
1 & \mathbf{1}_{2^{l}-1} & \mathbf{1}_{2^{k-1}-2^{l}}
\end{array}\right) \\
& g_{i}=\left(\begin{array}{ll}
\boldsymbol{u} & 1) \leftarrow \\
(\boldsymbol{v}+\boldsymbol{a}+\boldsymbol{b} 1)
\end{array}\right]\left(\begin{array}{l}
(\boldsymbol{u}+\boldsymbol{a}+\boldsymbol{b} 1) \\
(\boldsymbol{b} 1) \\
\hline
\end{array} \rightarrow g_{j}=\left(\begin{array}{ll}
\boldsymbol{v} & 1
\end{array}\right)\right. \\
& \therefore r_{2}=4
\end{aligned}
$$

Availability

\section*{coded symbol: | 1 |
| :---: |
| 2 |$\cdots \quad$ e, $\ldots \sqrt{n}$}

- Availability t of symbol c_{i} :
\checkmark The largest number of the disjoint repair sets.
$\checkmark\left|R_{\tau}(i)\right| \leq r_{1}, 1 \leq \tau \leq t$
- Code availability:
\checkmark All coded (information) symbol has at least t disjoint repair set at most r_{1}.
$\checkmark\left(r_{1}, t\right)_{a} /\left(r_{1}, t\right)_{i}$

Availability

Theorem 2:

The MacDonald code $M_{k}(l), k \geq 3$, are LRCs with all-symbol availability

$$
\begin{cases}\left(r_{1}, t\right)_{a}=\left(2,2^{k-1}-2^{l}\right)_{a^{\prime}} & l<k-1 \\ \left(r_{1}, t\right)_{a}=\left(3, \frac{2^{k-1}-1}{3}\right)_{a}, & l=k-1, k \text { is odd }\end{cases}
$$

Availability

Proof:

$$
\text { 1) } l<k-1 \text { : }
$$

[$\left.2^{k}-1, k\right]$ Simplex code:

$$
\left(r_{1}, t\right)_{a}=\left(2,2^{k-1}-1\right)_{a}[2]
$$

For any symbol s_{i},

$$
\begin{aligned}
& \left|\{i\} \cup R_{1}(i) \cup \cdots \cup R_{2^{k-1}-1}(i)\right| \\
= & 1+2 \times\left(2^{k-1}-1\right)=2^{k}-1
\end{aligned}
$$

The repair sets cover all other symbols.
[2]. M. Kuijper and D, Napp, "Erasure codes with simplex locality," [Online.] Available:http://arxiv.org/abs/1403.2779

Availability

Proof:

1) $l<k-1$:

$$
\begin{aligned}
S_{k} & =\left(\begin{array}{ccc}
S_{k-1} & \mathbf{0}_{k-1}^{T} & S_{k-1} \\
\mathbf{0}_{2^{k-1}-1} & 1 & \mathbf{1}_{2^{k-1}-1}
\end{array}\right) \\
& =\left(\begin{array}{ccccc}
A & B & \mathbf{0}_{k-1}^{T} & A & B \\
\mathbf{0}_{2^{l}-1} & \mathbf{0}_{2^{k-1}-2^{l}} & 1 & \mathbf{1}_{2^{l}-1} & \mathbf{1}_{2^{k-1}-2^{l}}
\end{array}\right)
\end{aligned}
$$

the last $k-l$ elements of the column are 0
the last $k-l$ elements of the column have at least one 1

Availability

Proof:

1) $l<k-1$:

$$
\begin{aligned}
S_{k} & =\left(\begin{array}{ccc}
S_{k-1} & \mathbf{0}_{k-1}^{T} & S_{k-1} \\
\mathbf{0}_{2^{k-1}-1} & 1 & \mathbf{1}_{2^{k-1}-1}
\end{array}\right) \\
& =\left(\begin{array}{c}
A \\
\mathbf{0}_{2^{l}-1}
\end{array} \begin{array}{cccc}
B & \mathbf{0}_{k-1}^{T} & A & B \\
\mathbf{0}_{2^{k-1}-2^{l}} & 1 & \mathbf{1}_{2^{l}-1} & \mathbf{1}_{2^{k-1}-2^{l}}
\end{array}\right)
\end{aligned}
$$

the last $k-l$ elements of the column are 0
the last $k-l$ elements of the column have at least one 1 each repair set of the symbol contains at most one element that belongs to $\rightarrow\left[2^{l}-1\right]$.

Availability

Proof:

$$
\text { 1) } l<k-1 \text { : }
$$

$$
\begin{aligned}
S_{k} & =\left(\begin{array}{ccc}
S_{k-1} & \mathbf{0}_{k-1}^{T} & S_{k-1} \\
\mathbf{0}_{2^{k-1}-1} & 1 & \mathbf{1}_{2^{k-1}-1}
\end{array}\right) \\
& =\left(\begin{array}{ccccc}
\begin{array}{|c}
A \\
\mathbf{0}_{2}^{l}-1
\end{array} & \left.\begin{array}{|cccc}
B & \mathbf{0}_{k-1}^{T} & A & B \\
\mathbf{0}_{2^{k-1}-2^{l}} & 1 & \mathbf{1}_{2^{l}-1} & \mathbf{1}_{2^{k-1}-l^{l}}
\end{array}\right)
\end{array}\right) G_{k}(l)
\end{aligned}
$$

each symbol has $2^{k-1}-2^{l}$ repair sets

Availability

Proof:

2) $l=k-1$ and k is odd integer:

All the symbol have the same number of disjoint repair sets.

The availability of code
\Downarrow
The availability of the first symbol of $M_{k}(k-1)$

Availability

Proof:

2) $l=k-1$ and k is odd integer:

Base case:
When $k=3$, the generator matrix of $M_{3}(2)$ is

$$
\begin{aligned}
& G_{3}(2)=\left(\begin{array}{llll}
0 & 1 & 0 & 1 \\
0 & 0 & 1 & 1 \\
1 & 1 & 1 & 1
\end{array}\right) \\
& \text { Obviously, }\left(\mathrm{r}_{1}, t\right)=\left(3,1=\frac{2^{3-1}-1}{3}\right)
\end{aligned}
$$

Availability

Proof:

2) $l=k-1$ and k is odd integer:

Induction step:
Assume $M_{m}(m-1)$ has the availability $\left(r_{1}, t\right)_{a}=$ $\left(3, h=\frac{2^{m-1}-1}{3}\right)_{a}$ for a given odd m.

$$
g_{1}=g_{\alpha_{i}}+g_{\beta_{i}}+g_{\gamma_{i}}, \text { where } 1 \leq i \leq h
$$

Availability

Proof:

2) $l=k-1$ and k is odd integer:

Induction step:
Assume $M_{m}(m-1)$ has the availability $\left(r_{1}, t\right)_{a}=$ $\left(3, h=\frac{2^{m-1}-1}{3}\right)_{a}$ for a given odd m.

$$
g_{1}=g_{\alpha_{i}}+g_{\beta_{i}}+g_{\gamma_{i}}, \text { where } 1 \leq i \leq h
$$

Availability

Proof:

2) $l=k-1$ and k is odd integer:

Induction step:

$$
\begin{aligned}
\left(\begin{array}{c}
0 \\
0 \\
g_{1}
\end{array}\right) & =\left(\begin{array}{c}
0 \\
0 \\
g_{\alpha_{i}}
\end{array}\right)+\left(\begin{array}{c}
0 \\
0 \\
g_{\beta_{i}}
\end{array}\right)+\left(\begin{array}{c}
0 \\
0 \\
g_{\gamma_{i}}
\end{array}\right)=\left(\begin{array}{c}
0 \\
1 \\
g_{\alpha_{i}}
\end{array}\right)+\left(\begin{array}{c}
1 \\
0 \\
g_{\beta_{i}}
\end{array}\right)+\left(\begin{array}{c}
1 \\
1 \\
g_{\gamma_{i}}
\end{array}\right) \\
& =\left(\begin{array}{c}
1 \\
0 \\
g_{\alpha_{i}}
\end{array}\right)+\left(\begin{array}{c}
1 \\
1 \\
g_{\beta_{i}}
\end{array}\right)+\left(\begin{array}{c}
0 \\
1 \\
g_{\gamma_{i}}
\end{array}\right)=\left(\begin{array}{c}
1 \\
1 \\
g_{\alpha_{i}}
\end{array}\right)+\left(\begin{array}{c}
0 \\
1 \\
g_{\beta_{i}}
\end{array}\right)+\left(\begin{array}{c}
1 \\
0 \\
g_{\gamma_{i}}
\end{array}\right)
\end{aligned}
$$

Availability

Proof:
2) $l=k-1$ and k is odd integer:

Induction step:

$$
\left(\begin{array}{c}
0 \\
0 \\
g_{1}
\end{array}\right)=\left(\begin{array}{c}
0 \\
1 \\
g_{1}
\end{array}\right)+\left(\begin{array}{c}
1 \\
0 \\
g_{1}
\end{array}\right)+\left(\begin{array}{c}
1 \\
1 \\
g_{1}
\end{array}\right)
$$

$\left(\begin{array}{c}0 \\ 0 \\ g_{1}\end{array}\right)$ has $4 h+1$ disjoint linear combination.
$3 \times(4 h+1)=2^{m+1}-1 \Rightarrow$ No more repair sets

$$
4 h+1=4 \times \frac{2^{m-1}-1}{3}+1=\frac{2^{m+1}-1}{3}
$$

Optimal

Theorem 3:

The MacDonald code $M_{k}(l)$ are both the optimal LRCs with all-symbol availability and the optimal LRCs with information availability only when $l \leq k-$ $1, k=3$ and $l=3, k=4$.

All-symbol availability [3]:

$$
d \leq n-\sum_{i=0}^{t}\left\lfloor\frac{k-1}{r_{1}^{i}}\right\rfloor
$$

Information availability [4]:

$$
d \leq n-k+2-\left\lceil\frac{(k-1) t+1}{\left(r_{1}-1\right) t+1}\right\rceil
$$

[3]. I. Tamo and A. Barg, "Bounds on locally recoverable codes with multiple recovering sets," in Proc. IEEE Int. Symp. Inf. Theory (ISIT), pp. 691-695, Jun./Jul. 2014.
[4]. A. Wang and Z. Zhang, "Repair locality with multiple erasure tolerance," IEEE Trans. Inf. Theory, vol. 60, no. 11, pp. 6979-6987, Nov. 2014.

Conclusion

In this paper,

- Calculate the cooperative locality r_{2} and the availability t of the MacDonald codes.
- Show its optimization when $k=3$ and 4 .

