Some Intersections of two Binary LRCs with Disjoint Repair Groups

Hyojeong Choi, Zhi Jing, Gangsan Kim, and Hong-Yeop Song School of Electrical and Electronic Engineering, Yonsei University Seoul, Korea

Contents

1. Preliminary

1) Locally repairable code (LRC)
2) LRCs for multiple erasure
3) Disjoint repair group
2. Intersections of two Binary LRCs with Disjoint Repair Group
1) necessary and sufficient condition for such an intersection to have availability 2
2) 3 -seq LRCs with availability 2 constructed by such intersection
3) The dimension bound for 3 -seq LRCs with availability 2
3. Concluding Remark

Locally Repairable Code

- To guarantee the reliability against node failures, various coding techniques have been applied

Locally Repairable Code

[Gopalan et al. 12]

- Locally repairable code (LRC) just needs a small number of nodes to repair the single node failure

Locally Repairable Code

- Locality

The number of nodes accessed to repair a single node failure

Locality of $c_{1} \Rightarrow 3$

- Code C has locality r :

All coded symbols have the locality at most r. C is denoted as $[n, k, r]$ LRC.

Locally Repairable Code

- Availability

The number of disjoint repair sets to repair a single node failure

Repair set of $c_{3} \Rightarrow\left\{c_{1}, c_{2}, c_{6}\right\}$
Repair set of $c_{3} \Rightarrow\left\{c_{4}, c_{5}, c_{7}\right\}$

Locality of $c_{3} \Rightarrow 3$
Availability of $c_{3} \Rightarrow 2$

LRCs for multiple erasure

- t-parallel-recovery LRCs
$>$ The repaired erasure cannot participate in the repair process of the unrepaired erasures
E.g. Erasures: $1^{s t}, 2^{n d}$ symbol

Repaired locally and parallelly

$i^{\text {th }}$ symbol	Repair set
1	$\{2,3\}$ and $\{4,7\}$
2	$\{1,3\}$ and $\{5,8\}$

- t-sequential-recovery (\mathbf{t}-seq) LRCs
$>$ The repaired erasure can participate in the repair process of the unrepaired erasures
E.g. Erasures: $1^{\text {st }}, 2^{\text {nd }}, 7^{\text {th }}$ symbol

Locally repaired by order $7 \rightarrow 2 \rightarrow 1$

$$
\begin{gathered}
2 \rightarrow 7 \rightarrow 1 \\
2 \text { and } 7 \rightarrow 1
\end{gathered}
$$

$i^{\text {th }}$ symbol	Repair set
1	$\{2,3\}$ and $\{4,7\}$
2	$\{1,3\}$ and $\{5,8\}$
7	$\{1,4\}$ and $\{8,9\}$

Disjoint repair group

- $[n]=\{1,2, \ldots, n\}$
- $h_{i}: i^{\text {th }}$ row of H
$>$ Each row h_{i} defines a repair group since $h_{i} \cdot c=0$ for any code word c.

$$
\begin{aligned}
H=\underbrace{\begin{array}{c}
\text { repair group } \\
\begin{array}{c}
\{1,2,3\} \\
\text { repair group } \\
\{4,5,6\}
\end{array}
\end{array}}_{\left.\begin{array}{ccccccccc}
1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 1 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1
\end{array}\right]} \underbrace{}_{\substack{\text { repair group } \\
\text { pairwise disjoint } \\
\text { and } \\
\{7,8,9\}}}
\end{aligned}
$$

If all these repair groups are pairwise disjoint and their union becomes [n], then the LRC is said to have disjoint repair groups.

Disjoint repair group

$>[9,6,2]$ LRC with disjoint repair group

disjoint repair groups of all equal size $r+1$
\Rightarrow length n is a multiple of $r+1$
$\Rightarrow m \triangleq \frac{n}{r+1}$
$\Rightarrow \mathrm{H}$ matrix of size $m \times(r+1) m$

1. Preliminary
1) Locally repairable code (LRC)
2) LRCs for multiple erasure
3) Disjoint repair group

2. Intersections of two Binary LRCs with Disjoint Repair Group

1) necessary and sufficient condition for such an intersection to have availability 2
2) 3-seq LRCs with availability 2 constructed by such intersection
3) The dimension bound for $\mathbf{3}$-seq LRCs with availability 2
3. Concluding Remark

Intersections of Binary LRCs with Disjoint Repair Groups

1) necessary and sufficient condition for an intersection of LRCs to have availability 2

Theorem 1. Given two parity-check matrices H_{1} and H_{2} of the same size $m \times(r+1) m$ for two LRC's with disjoint repair groups and constant repair group size $r+1$ and with $m \geq r+1$, the linear code C (which is the intersection of two constituent codes) with the parity check matrix

$$
H=\left(\begin{array}{c}
H_{1} \\
---- \\
H_{2}
\end{array}\right)
$$

of size $2 m \times(r+1) m$ will have availability 2 if and only if

$$
\left|\operatorname{supp}\left(h_{1, i}\right) \cap \operatorname{supp}\left(h_{2, j}\right)\right|=1, \quad \text { for all } i, j,
$$

where $h_{1, i}$ and $h_{2, j}$ are i-th row of H_{1} and j-th row of H_{2}.

The proof is omitted.

Intersections of Binary LRCs with Disjoint Repair Groups

2) 3-seq LRCs with availability 2 constructed by such intersection

Corollary 1. Assume the notation in Theorem 1. If the LRC in Theorem 1 with the parity check matrix H has availability 2 , then this code is a 3 -seq LRC.

Example)

$$
\begin{aligned}
& c=\left(\begin{array}{lllllllll}
c_{1} & c_{2} & c_{3} & c_{4} & c_{5} & c_{6} & c_{7} & c_{8} & c_{9}
\end{array}\right) \\
& H=\left[\begin{array}{l}
1 \\
H_{1} \\
-H_{2}
\end{array}\right]=\left[\begin{array}{lllllllll}
1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 1 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 \\
1 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 & 1 & 0 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 1
\end{array}\right] \quad \begin{array}{l}
\\
R_{1}(1)=\{2,3\}, R_{2}(1)=\{4,7\}, \\
R_{1}(4)=\{5,6\}, R_{2}(4)=\{1,7\},
\end{array} \quad \begin{array}{l}
\\
R_{1}(5)=\{4,6\}, R_{2}(5)=\{2,8\} .
\end{array}
\end{aligned}
$$

Locally repaired by order $c_{1} \rightarrow c_{4} \rightarrow c_{5}$ (or c_{4} and c_{5} in parallel)

$$
\text { or } c_{5} \rightarrow c_{1} \rightarrow c_{4}\left(\text { or } c_{1} \text { and } c_{4} \text { in parallel }\right)
$$

The bound for 3 -seq LRCs with availability 2

3) The dimension bound for 3-seq LRCs with availability 2

Theorem 2. Assume the notation in Theorem 1. If the LRC in Theorem 1 with the parity check matrix H has availability 2 , then

$$
\operatorname{rank}(H) \geq 2 m-\left\lfloor\frac{m}{r+1}\right\rfloor
$$

Corollary 2. If a linear code with the parity check matrix H of Theorem 1 has availability 2 , then its dimension k is upper bounded by

$$
\begin{equation*}
k \leq(r-1) m+\left\lfloor\frac{m}{r+1}\right\rfloor \tag{3}
\end{equation*}
$$

so that

$$
\begin{equation*}
\frac{k}{n} \leq\left(\frac{r-1}{r+1}\right)+\frac{1}{n}\left\lfloor\frac{n}{(r+1)^{2}}\right\rfloor \leq \frac{r^{2}}{(r+1)^{2}} \tag{4}
\end{equation*}
$$

where the second inequality becomes equality if and only if $(r+1) \mid m$ or $(r+1)^{2} \mid n$.

The bound for $\mathbf{3}$-seq LRCs with availability $\mathbf{2}$

Remark 1.

$$
\begin{gathered}
\frac{k}{n} \leq \frac{\left(\frac{r-1}{r+1}\right)+\frac{1}{n}\left\lfloor\frac{n}{(r+1)^{2}}\right\rfloor}{\begin{array}{l}
\text { the special case of H } \\
\text { satisfying the condition in } \\
\text { Theorem } 1 \text { for availability } 2
\end{array}} \leq \frac{r^{2}}{(r+1)^{2}} \\
\downarrow \\
\text { general case [17] } \\
\text { in the narrow sense of } \\
\text { Theorem 1 }
\end{gathered}
$$

- When $r+1$ does not divide m, this maximum rate is slightly smaller than $\frac{r^{2}}{(r+1)^{2}}$ in [17].

The bound for $\mathbf{3}$-seq LRCs with availability 2

Example 1 in [25]

$$
H=\left(\begin{array}{ccc}
I_{4} & I_{4} & I_{4} \\
I_{4} & I_{4}^{(1)} & I_{4}^{(2)}
\end{array}\right)
$$

The linear code with this H matrix is an $(12,5,2)$-LRC with availability 2 , and in fact, it is a 3 -seq LRC according to Cor. 1.
\Rightarrow optimal in the sense of Cor. 2 :

$$
\begin{gathered}
k \leq(r-1) m+\left\lfloor\frac{m}{r+1}\right\rfloor=4+\left\lfloor\frac{4}{3}\right\rfloor=5 \\
\frac{k}{n}=\frac{5}{12}=\left(\frac{r-1}{r+1}\right)+\frac{1}{n}\left\lfloor\frac{n}{(r+1)^{2}}\right\rfloor=\frac{1}{3}+\frac{1}{12}\left\lfloor\frac{4}{3}\right\rfloor=\frac{5}{12}
\end{gathered}
$$

"rate optimal in the narrow sense of Theorem 1 "
\Rightarrow not optimal in the sense of general rate bound [17]:

$$
\frac{k}{n}=\frac{5}{12}=0.41 \dot{6} \quad \leq \frac{r^{2}}{(r+1)^{2}}=\frac{4}{9}=0 . \dot{4}
$$

The bound for $\mathbf{3}$-seq LRCs with availability 2

Example 8 in [27]

$$
H=\left(\begin{array}{ccc}
I_{7} & I_{7} & I_{7} \\
I_{7} & I_{7}^{(1)} & I_{7}^{(3)}
\end{array}\right)
$$

The linear code with this H matrix is an (21,8,2)-LRC with availability 2 , and in fact, it is a 3 -seq LRC according to Cor. 1.
\Rightarrow not optimal in the sense of Cor. 2 :

$$
k=8 \leq(r-1) m+\left\lfloor\frac{m}{r+1}\right\rfloor=7+\left\lfloor\frac{7}{3}\right\rfloor=9
$$

Neither rate optimal in the sense of the general rate bound [17], nor rate optimal in the narrow sense of Cor.2.

1. Preliminary

1) Locally repairable code (LRC)
2) LRCs for multiple erasure
3) Disjoint repair group
2. Intersections of two Binary LRCs with Disjoint Repair Group
1) necessary and sufficient condition for such an intersection to have availability 2
2) 3-seq LRCs with availability 2 constructed by such intersection
3) The dimension bound for 3 -seq LRCs with availability 2
3. Concluding Remark

Concluding Remark

In this paper,

- Prove that a necessary and sufficient condition for intersections of two binary LRCs with disjoint repair group to have availability 2.
- Prove that such an intersection with availability 2 is in fact a 3 -seq LRC.
- Prove that a bound on the dimension of such intersections.
- Find a relation between this bound and the general rate bound for 3-seq LRCs.

Thank you for listening

