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Locally Repairable Code

• To guarantee the reliability against node failures, various coding 

techniques have been applied

Failed node
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Locally Repairable Code

• Locally repairable code (LRC) just needs a small number of  nodes 

to repair the single node failure

Failed node

[Gopalan et al. 12]
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Locally Repairable Code

• Locality

The number of  nodes accessed to repair a single node failure

𝑐1 𝑐2 𝑐3 𝑐4 𝑐5

𝑐6 𝑐7

Locality of  𝑐1 ⇒ 3

• Code 𝐶 has locality 𝑟:  

All coded symbols have the locality at most 𝑟.

𝐶 is denoted as [𝑛,𝑘,𝑟] LRC.
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Locally Repairable Code

• Availability

The number of  disjoint repair sets to repair a single node failure

Locality of  𝑐3 ⇒ 3

Availability of  𝑐3 ⇒ 2

Repair set of  𝒄𝟑 ⇒ {𝒄𝟒, 𝒄𝟓, 𝒄𝟕}

Repair set of  𝒄𝟑 ⇒ {𝒄𝟏, 𝒄𝟐, 𝒄𝟔} 𝑐1 𝑐2 𝑐3 𝑐4 𝑐5

𝑐6 𝑐7
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LRCs for multiple erasure

• 𝒕-sequential-recovery (t-seq) LRCs

➢ The repaired erasure can participate in the repair process of  the unrepaired 

erasures 

E.g.  Erasures: 1𝑠𝑡 , 2𝑛𝑑 , 7𝑡ℎ symbol

Locally repaired by order 7 → 2 → 1

2 → 7 → 1

2 𝑎𝑛𝑑 7 → 1

• 𝒕-parallel-recovery LRCs

➢ The repaired erasure cannot participate in the repair process of  the unrepaired 

erasures 

E.g.  Erasures: 1𝑠𝑡 , 2𝑛𝑑 symbol

Repaired locally and parallelly

𝑖𝑡ℎ symbol Repair set

1 {2,3} and {4,7}

2 {1,3} and {5,8}

𝑖𝑡ℎ symbol Repair set

1 {2,3} and {4,7}

2 {1,3} and {5,8}

7 {1,4} and {8,9}
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Disjoint repair group

𝐻 =
1 1 1 0 0 0 0 0 0
0 0 0 1 1 1 0 0 0
0 0 0 0 0 0 1 1 1

• [𝑛] = {1,2, … , 𝑛}

• ℎ𝑖 ∶ 𝑖
th row of  𝐻

➢ Each row ℎ𝑖 defines a repair group since ℎ𝑖 ⋅ 𝑐 = 0 for any code word 𝑐.

repair group

{1,2,3}

repair group

{4,5,6}

repair group

{7,8,9}

pairwise disjoint
and 

1,2,3 ∪ 4,5,6 ∪ 7,8,9 = [9]

If all these repair groups are pairwise disjoint and their union becomes [n], 

then the LRC is said to have disjoint repair groups.
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Disjoint repair group

𝐻 =
1 1 1 0 0 0 0 0 0
0 0 0 1 1 1 0 0 0
0 0 0 0 0 0 1 1 1

repair group

{1,2,3}

repair group

{4,5,6}

repair group

{7,8,9}

disjoint repair groups of all equal size r+1

➢ [9, 6, 2] LRC with disjoint repair group

⇒ length n is a multiple of r+1

⇒ 𝑚 ≜
𝑛

𝑟+1

⇒ H matrix of size 𝑚 × 𝑟 + 1 𝑚
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Intersections of  Binary LRCs with Disjoint Repair Groups

Theorem 1.   Given two parity-check matrices 𝐻1 and 𝐻2 of  the same size 𝑚 × (𝑟 + 1)𝑚

for two LRC’s with disjoint repair groups and constant repair group size 𝑟 + 1 and with 

𝑚 ≥ 𝑟 + 1, the linear code 𝐶 (which is the intersection of  two constituent codes) with the 

parity check matrix 

𝐻 =
𝐻1
−
𝐻2

of  size 2𝑚 × (𝑟 + 1)𝑚 will have availability 2 if  and only if

𝑠𝑢𝑝𝑝 ℎ1,𝑖 ∩ 𝑠𝑢𝑝𝑝 ℎ2,𝑗 = 1, for all 𝑖, 𝑗,

where ℎ1,𝑖 and ℎ2,𝑗 are 𝑖-th row of  𝐻1 and 𝑗-th row of  𝐻2. 

1) necessary and sufficient condition for an intersection of  LRCs to have availability 2

The proof is omitted.
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Intersections of  Binary LRCs with Disjoint Repair Groups

Example)

𝐻 =
𝐻1
𝐻2

=

1 1 1 0 0 0 0 0 0
0 0 0 1 1 1 0 0 0
0
1
0
0

0
0
1
0

0
0
0
1

0
1
0
0

0
0
1
0

0
0
0
1

1
1
0
0

1
0
1
0

1
0
0
1

Corollary 1. Assume the notation in Theorem 1. If  the LRC in Theorem 1 with the parity 

check matrix 𝐻 has availability 2, then this code is a 3-seq LRC. 

𝑐 = (𝑐1 𝑐2 𝑐3 𝑐4 𝑐5 𝑐6 𝑐7 𝑐8 𝑐9)

𝑅1 1 = 2,3 , 𝑅2 1 = 4,7 ,

𝑅1 4 = 5,6 , 𝑅2 4 = 1,7 ,

𝑅1 5 = 4,6 , 𝑅2 5 = 2,8 .

Locally repaired by order  c1 → 𝑐4 → 𝑐5 (or 𝑐4 and 𝑐5 in parallel)

or  c5 → 𝑐1 → 𝑐4 (or 𝑐1 and 𝑐4 in parallel)

⋮

2) 3-seq LRCs with availability 2 constructed by such intersection
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Theorem 2. Assume the notation in Theorem 1. If  the LRC in Theorem 1 with the parity 

check matrix 𝐻 has availability 2, then

𝑟𝑎𝑛𝑘 𝐻 ≥ 2𝑚 −
𝑚

𝑟 + 1
.

The bound for 3-seq LRCs with availability 2

Corollary 2. If  a linear code with the parity check matrix 𝐻 of  Theorem 1 has availability 

2, then its dimension k is upper bounded by 

𝑘 ≤ 𝑟 − 1 𝑚 +
𝑚

𝑟 + 1

so that 

𝑘

𝑛
≤

𝑟 − 1

𝑟 + 1
+
1

𝑛

𝑛

𝑟 + 1 2
≤

𝑟2

𝑟 + 1 2

where the second inequality becomes equality if  and only if  𝑟 + 1 |𝑚 or  𝑟 + 1 2|𝑛.

(3)

(4)

3) The dimension bound for 3-seq LRCs with availability 2



the special case of H 
satisfying the condition in 
Theorem 1 for availability 2
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The bound for 3-seq LRCs with availability 2

Remark 1. 

𝑘

𝑛
≤

𝑟 − 1

𝑟 + 1
+

1

𝑛

𝑛

𝑟 + 1 2
≤

𝑟2

𝑟 + 1 2
(4)

[17] W. Song, K. Cai, C. Yuen, K. Cai and G. Han, “On Sequential Locally Repairable Codes,” IEEE Trans. Inf. Theory, vol. 64, no. 5, pp. 3513-3527, May 2018.

general case [17]

➢ When 𝑟 + 1 does not divide 𝑚, this maximum rate is 

slightly smaller than 
𝑟2

𝑟+1 2 in [17].

rate optimal 
in the narrow sense of 

Theorem 1
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The bound for 3-seq LRCs with availability 2

[17] W. Song, K. Cai, C. Yuen, K. Cai and G. Han, “On Sequential Locally Repairable Codes,” IEEE Trans. Inf. Theory, vol. 64, no. 5, pp. 3513-3527, May 2018.

[25] A. Wang and Z. Zhang and M. Liu, “Achieving arbitrary locality and availability in binary codes,” in Proc. IEEE Int. Symp. Inf. Theory (ISIT), pp. 1866–1870, Jun. 2015.

Example 1 in [25]

𝐻 =
𝐼4 𝐼4 𝐼4

𝐼4 𝐼4
(1)

𝐼4
(2)

The linear code with this 𝐻 matrix is an (12 , 5, 2)-LRC with availability 2,

and in fact, it is a 3-seq LRC according to Cor. 1.

⇒ optimal in the sense of  Cor.2  : 

𝑘 ≤ 𝑟 − 1 𝑚 +
𝑚

𝑟+1
= 4 +

4

3
= 5

𝑘

𝑛
=

5

12
=    

𝒓−𝟏

𝒓+𝟏
+

𝟏

𝒏

𝒏

(𝒓+𝟏)𝟐
=

𝟏

𝟑
+

𝟏

𝟏𝟐

𝟒

𝟑
=

5

12

“rate optimal in the narrow sense of  Theorem 1”

⇒ not optimal in the sense of  general rate bound [17]: 

𝑘

𝑛
=

5

12
= 0.41 ሶ6 ≤

𝑟2

𝑟 + 1 2
=
4

9
= 0. ሶ4
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Example 8 in [27]

𝐻 =
𝐼7 𝐼7 𝐼7

𝐼7 𝐼7
(1)

𝐼7
(3)

The bound for 3-seq LRCs with availability 2

[27]E. Yavari and M. Esmaeili, “Locally Repairable Codes: Joint Sequential–Parallel Repair for Multiple Node Failures,” IEEE Trans. Inf.Theory, vol. 66, no. 1, pp. 222-232, Jan. 2020.

The linear code with this 𝐻 matrix is an (21, 8, 2)-LRC with availability 2, 

and in fact, it is a 3-seq LRC according to Cor. 1.

⇒ not optimal in the sense of  Cor.2  : 

𝑘 = 8 ≤ 𝑟 − 1 𝑚 +
𝑚

𝑟+1
= 7 +

7

3
= 9

Neither rate optimal in the sense of  the general rate bound [17], 

nor rate optimal in the narrow sense of  Cor.2.
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Concluding Remark 

In this paper,

• Prove that a necessary and sufficient condition for intersections of  two binary 

LRCs with disjoint repair group to have availability 2.

• Prove that such an intersection with availability 2 is in fact a 3-seq LRC.

• Prove that a bound on the dimension of  such intersections.

• Find a relation between this bound and the general rate bound for 3-seq LRCs.
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