

Performance Analysis of QC-LDPC codes constructed by using Golomb rulers

27th Asia-Pacific Conference on Communications (APCC 2022)

School of Electrical & Electronic Engineering, Yonsei University Daekyeong Kim, Inseon Kim, Hyunwoo Cho, Hyojeong Choi and Hong-Yeop Song

2022.10.20

Introduction

Introduction

- QC-LDPC codes are widely studied and used because of its simple encoding and parallel decoding (5GNR).
- Golomb ruler is a sequence of n marks in integer position such that every distances between two marks are distinct
- Recently, a paper about construction method for girth-8 QC-LDPC codes using Golomb rulers is published [1].
- We check and analyze the performance of half rate QC-LDPC codes of length 900, 1200 from the construction in [1]

LDPC codes and Golomb ruler

Low-Density Parity-Check (LDPC) code

- LDPC code is a linear block code whose parity check matrix have sparse nonzero elements
- Tanner graph can represent parity relations of codewords

• Avoid short length cycles in Tanner graph for designing LDPC codes

Quasi-Cyclic(QC) LDPC codes

- Widely studied since its simple encoding scheme, parallel decoding
- Adopted in many mobile communications like WIMAX, 5G NR, ...
 - WIMAX LDPC code (N=2304)

• Constructed from exponent matrix (may have some algebraic structure)

Golomb ruler

- Golomb ruler is a sequence of n-marks in integer position such that every distance between two marks is distinct
- *n*-mark Golomb ruler can be represented in ascending order like

$$\set{g_1, g_2, \dots, g_n}$$

• Example of 4-mark Golomb ruler {0, 1, 4, 6}

Distances are all distinct

Constructing QC-LDPC codes using Golomb ruler[1]

Generate exponent matrix from multiplication table

* I. Kim and H.-Y. Song, "A construction for girth-8 QC-LDPC codes using Golomb rulers," Electronic 2023-09-04 MoLetters, vol. 58, no. 15, pp. 582-584, July 2022.

8

Girth property

• Girth is the shortest length of cycle(s) in a graph

Theorem [1]

The QC-LDPC codes from exponent matrix constructed from Golomb ruler have girth 8 if

P > 2L,

where P is the modulus in the construction of the exponent matrix and L is the length of the Golomb ruler.

• The length L of n-mark Golomb ruler { g_1, g_2, \dots, g_n } is

 $L = g_n - g_1$

[1] I. Kim and H.-Y. Song, "A construction for girth-8 QC-LDPC codes using Golomb rulers," Electronic 2023-09-04 MoLetters, vol. 58, no. 15, pp. 582-584, July 2022.

Constructing another Golomb ruler

• If $g_1 = 0$, change g_n (of *n*-mark Golomb ruler) to g_n^* as

• To satisfy girth 8 in QC-LDPC construction ($g_1 = 0$)

$$2g_{n-1} < g_n^* = L < P/2$$

Performance Comparison

Simulation

- QC-LDPC codes
 - construct using 6-mark Golomb ruler $\{0,1,8,12,14,g_6\}$ where

$$g_6 = 29, 30, ..., 74$$
 (P = 150)
 $g_6 = 29, 30, ..., 99$ (P = 200) Satisfying girth 8

- Assume AWGN channel, BPSK modulation
- Decoded using sum-product algorithm (maximum 50 iterations)
- Checked 200 frame errors to estimate Frame Error Rate(FER) using Monte-Carlo method

Performance comparison

- Best(FER 10^{-3}): $g_6 = 59$ (P = 150, N = 900), $g_6 = 91$ (P = 200, N = 1200),
- Most cases(group A, C) shows 2.5~3dB at FER 10^{-3}
- Few cases(group B, D) show apparently worse performance

Performance comparison

Conclusion

- Constructed half rate QC-LDPC codes with 900, 1200 length using previously proposed method [1]
- Checked that most constructed codes shows performance between 2.5dB~3dB at FER $10^{\rm -3}$
- Most of constructed QC-LDPC codes shows 2.5~3dB at FER 10^{-3}
- But there are few cases that show worse performance
- Additional analysis considering other factors is required

[1] I. Kim and H.-Y. Song, "A construction for girth-8 QC-LDPC codes using Golomb rulers," Electronic 2023-09-04 MoLetters, vol. 58, no. 15, pp. 582-584, July 2022.

Thank for Your Attention