Frequency Hopping Sequences
with Optimal Partial Autocorrelation Properties

July 1, 2004.

Yu-Chang Eun, Seok-Yong Jin, Yun-Pyo Hong, and Hong-Yeop Song

Yonsei University
Seoul, Korea
Outline

• Motives

• FH Systems

• *Strictly-Optimal* FH Sequences

• Summary & Remarks
Motives

• Most of FH sequences so far have been designed so that
 – their maximum periodic Hamming correlation is minimized
 – with the number of hopping slots (frequencies) that is a power of a prime.

• Usually, the correlation window is shorter than the period of the FH sequence.
 ⇒ A sequence having good partial Hamming autocorrelation?
Tx & Rx structure of a FH system

- **Correlation window length**
 - usually shorter than the period of the FH sequence due to the limited synchronization time or hardware complexity
 - may vary depending on the channel condition
FH sequences with optimal partial autocorrelation properties

◊ Optimal criteria on partial Hamming autocorrelation

- Partial Hamming correlation function for a period N and a correlation window length L starting at t,

$$H_{XY}(\tau; t \mid L) = \sum_{j=t}^{t+L-1} h[x(j), y(j + \tau)], \quad 0 \leq \tau < N$$

(1)

where $h[x, y] = 1$ if $x = y$ and $h[x, y] = 0$ if $x \neq y$.
The maximum of the partial Hamming autocorrelation function (p-HAF)

\[H(X \mid L) = \max_{0<\tau<N, 0\leq t<N} \{H_{XX}(\tau; t \mid L)\}. \]

(2)

Optimal criteria

- Let Ω be the set of all sequences of length \(N \) over a given alphabet \(A \). We can state that a sequence \(X(\in \Omega) \) is *strictly-optimal* if

\[H(X \mid L) \leq H(X' \mid L) \]

(3)

for all \(L \leq N \) and all \(X' \in \Omega \).

- What is the lower bound of \(H(X \mid L) \)?
• Lemma 1 (Lempel’74) \textit{For every sequence }X = \{x(j)\} \textit{ of period } N \textit{ over an alphabet } A \textit{ of size } |A| = m,\)

\[
H(X) \geq \overline{H}(X) = \frac{1}{N - 1} \sum_{\tau = 1}^{N-1} H_{XX}(\tau) \geq \frac{(N - b)(N + b - m)}{m(N - 1)}
\]

\textit{where } b (0 \leq b < N) \equiv N \pmod{q} \textit{ and } H_{XX}(\tau) = H_{XX}(\tau; 0 \mid N)

• Corollary 1

\[
H(X \mid L) \geq \overline{H}(X \mid L) = \frac{1}{N - 1} \sum_{\tau = 1}^{N-1} \sum_{t = 0}^{N-1} H_{XX}(\tau; t \mid L) = \frac{L}{N} \overline{H}(X) \geq \frac{L}{N} \frac{(N - b)(N + b - m)}{m(N - 1)}
\]
Generalized m- and GMW sequences

- A polynomial residue class ring: $R = GF(p)[\xi]/(w(\xi)^k)$
 where $w(\xi)$ = an irreducible polynomial of degree m over $GF(p)$, $m \geq 1$.

- In this paper, we only consider $m = 1$ particularly, $R = GF(p)[\xi]/(\xi^k)$.

- Any element $b \in R$, ideal basis representation:
 \[b = b_0 + b_1\xi + \cdots + b_{k-1}\xi^{k-1} \]
 where $b_i \in GF(p)$. Thus, R can be written as
 \[R = GF(p) + \xi GF(p) + \cdots + \xi^{k-1} GF(p). \]
• The Galois extension ring of R: $GR(R, r) = R[x]/(f(x))$
 where $f(x)$ is a basic monic irreducible polynomial of degree r over R.
 - choose $f(x)$ among monic irreducible polynomials over $GF(p)$.

• any element $\beta(\in GR(R, r))$ and $GR(R, r)$ can be expressed as

$$\beta = \beta_0 + \beta_1 \xi + \cdots + \beta_{k-1} \xi^{k-1},$$

$$GR(R, r) = GF(p^r) + \xi GF(p^r) + \cdots + \xi^{k-1} GF(p^r)$$

where $\beta_i \in GF(p^r)$.

• If $s|r$, $Tr_s^r(\cdot): GR(R, r) \rightarrow GR(R, s)$

$$Tr_s^r(\beta) = \sum_{j=0}^{k-1} tr_s^r(\beta_j) \xi^j$$

(6)

where $tr_s^r(\nu) = \sum_{i=0}^{(r/s)-1} \nu^{psi}$ is the field trace function from $GF(p^r)$ to $GF(p^s)$.
• \(\alpha \) = a root of a primitive basic irreducible polynomial \(f(x) \) over \(R = GF(p)[\xi]/(\xi^k) \)

• A GM sequence over \(R \) [Udaya’98]:

\[
 s^\nu(i) = Tr^r_1(\nu \alpha^i), \quad \nu \in GR(R, r).
\]

• For \(a = \sum_{i=0}^{k-1} a_i \xi^i \in GR(R, s) \), define a permutation monomial:

\[
 \Psi^d : a \mapsto \sum_{i=0}^{k-1} a_i d^i \xi^i
\]

where \(\gcd(d, p^s - 1) = 1 \).

• GGMW sequence over \(R \) [Udaya’98]:

\[
 s^\nu(i) = Tr^s_1(\Psi^d[Tr^r_s(\nu \alpha^i)]), \quad \nu \in GR(R, r)
\]

where \(s \mid r \).
• For any p^k-ary sequences, say X, of period $p^{2k} - 1$,

$$H(X | L) \geq \left\lceil \frac{L}{p^k + 1} \right\rceil.$$ \hspace{1cm} (7)

• **Theorem 1** Let $f(x)$ be a degree $2k$ primitive polynomial over $GF(p)$, $f(\alpha) = 0$ and $\gcd(d, p^k - 1) = 1$. A GGMW sequence $\{s^\nu(i)\}$,

$$s^\nu(i) = Tr^k_1(\Psi^d[Tr^2_{2k}(\nu \alpha^i)]) \quad \nu = \alpha^{e_0} + \alpha^{e_1} \xi + \alpha^{e_2} \xi^2 + \cdots + \alpha^{e_{k-1}} \xi^{k-1} \in GR(R, 2k)$$

is strictly-optimal if and only if $\alpha^{e_0}, \alpha^{e_1}, \alpha^{e_2}, \ldots, \alpha^{e_{k-1}}$ are linearly independent over $GF(p)$ and

$$e_i \equiv e_j \pmod{p^k + 1}, \quad \forall i, j, \ 0 \leq i, j \leq k - 1.$$
• **Corollary 2** Let \(f(x) \) be a degree \(2k \) primitive polynomial over \(GF(p) \) and \(f(\alpha) = 0 \). A GM sequence \(\{s^\nu(i)\} \),

\[
s^\nu(i) = Tr_1^{2k}(\nu \alpha^i), \quad \nu = \alpha^{e_0} + \alpha^{e_1} \xi + \alpha^{e_2} \xi^2 + \cdots + \alpha^{e_{k-1}} \xi^{k-1} \in GR(R, 2k)
\]

is strictly-optimal if and only if \(\alpha^{e_0}, \alpha^{e_1}, \alpha^{e_2}, \ldots, \alpha^{e_{k-1}} \) are linearly independent over \(GF(p) \) and

\[
e_i \equiv e_j \pmod{p^k + 1}, \quad \forall \ i, j, \ 0 \leq i, j \leq k - 1.
\]

• For such \(p^k \)-ary strictly-optimal sequences of period \(p^{2k} - 1 \),

\[
H(S^\nu | L) = \left\lceil \frac{L}{p^k + 1} \right\rceil.
\]

\[(8) \]

\[\diamond \textbf{Example 1} \quad \text{Three GM sequences over } R = GF(3)[\xi]/\xi^3 \text{ where} \]

\[
s^\nu(i) = Tr_1^{6}(\nu \alpha^i), \quad \nu = \alpha^{e_0} + \alpha^{e_1} \xi + \alpha^{e_2} \xi^2 \in GR(R, 6)
\]

and \(\alpha \) is a root of a primitive polynomial \(x^6 + x + 2 \) over \(GF(3) \).
(\(e_0, e_1, e_2\))	GM Sequences (Frequency Hopping Patterns)
(0, 1, 2) | 0 0 0 9 3 1 0 0 18 15 5 1 0 9 12 13 4 1 18 6 2 9 3 10 21 7 20 15 23 25 26 ...
(0, 17, 100) | 21 0 9 15 18 19 21 18 3 24 2 7 3 24 15 25 4 4 15 9 20 21 0 25 6 19 8 21 14 19 17 ...
(0, 28, 56) | 24 3 6 15 24 22 21 6 18 18 5 1 24 15 0 25 4 13 9 15 14 21 18 4 3 4 20 3 26 1 2 ...
Summary & Further Work

- FH sequences having optimal partial Hamming autocorrelation properties
 - Optimal criteria on partial Hamming autocorrelation
 - Classification of Strictly-optimal p^k-ary generalized m-sequences and generalized GMW sequences of period $p^{2k} - 1$
 - Useful for synchronizing process

- We have only considered the case in which $R = GF(p)[ξ]/(ξ^k)$
 \Rightarrow general description for $\deg(w(ξ)) > 1$