Frequency Hopping Sequences with Optimal Partial Autocorrelation Properties

July 1, 2004.

Yu-Chang Eun, Seok-Yong Jin, Yun-Pyo Hong, and Hong-Yeop Song

Yonsei University Seoul, Korea

Outline

- Motives
- FH Systems
- Strictly-Optimal FH Sequences
- Summary & Remarks

Motives

- Most of FH sequences so far have been designed so that
 - their maximum periodic Hamming correlation is minimized
 - with the number of hopping slots (frequencies) that is a power of a prime.

- Usually, the correlation window is shorter than the period of the FH sequence.
 - ⇒ A sequence having good partial Hamming autocorrelation?

Tx & Rx structure of a FH system

• Correlation window length

- usually shorter than the period of the FH sequence due to the limited synchronization time or hardware complexity
- may vary depending on the channel condition

FH sequences with optimal partial autocorrelation properties

Optimal criteria on partial Hamming autocorrelation

ullet Partial Hamming correlation function for a period N and a correlation window length L starting at t,

$$H_{XY}(\tau; t \mid L) = \sum_{j=t}^{t+L-1} h[x(j), y(j+\tau)], \ 0 \le \tau < N$$
 (1)

where h[x, y] = 1 if x = y and h[x, y] = 0 if $x \neq y$.

• The maximum of the partial Hamming autocorrelation function (p-HAF)

$$H(X \mid L) = \max_{0 < \tau < N, \ 0 < t < N} \{ H_{XX}(\tau; t \mid L) \}.$$
 (2)

♦ Optimal criteria

• Let Ω be the set of all sequences of length N over a given alphabet A. We can state that a sequence $X(\in \Omega)$ is *strictly-optimal* if

$$H(X \mid L) \le H(X' \mid L) \tag{3}$$

for all $L \leq N$ and all $X' \in \Omega$.

• What is the lower bound of $H(X \mid L)$?

• Lemma 1 (Lempel'74) For every sequence $X = \{x(j)\}$ of period N over an alphabet A of size |A| = m,

$$H(X) \ge \overline{H}(X)$$

$$= \frac{1}{N-1} \sum_{\tau=1}^{N-1} H_{XX}(\tau)$$

$$\ge \frac{(N-b)(N+b-m)}{m(N-1)}$$
(4)

where $b (0 \le b < N) \equiv N \pmod{q}$ and $H_{XX}(\tau) = H_{XX}(\tau; 0 \mid N)$

• Corollary 1

$$H(X \mid L) \geq \overline{H}(X \mid L)$$

$$= \frac{\sum_{\tau=1}^{N-1} \sum_{t=0}^{N-1} H_{XX}(\tau; t \mid L)}{(N-1)N}$$

$$= \frac{L}{N} \overline{H}(X)$$

$$\geq \frac{L}{N} \frac{(N-b)(N+b-m)}{m(N-1)}$$
(5)

⋄ Generalized *m*- and GMW sequences

- A polynomial residue class ring: $R = GF(p)[\xi]/(w(\xi)^k)$ where $w(\xi)$ = an irreducible polynomial of degree m over GF(p), $m \ge 1$.
- In this paper, we only consider m=1 particularly, $R=GF(p)[\xi]/(\xi^k)$.
- Any element $b \in R$, ideal basis representation:

$$b = b_0 + b_1 \xi + \dots + b_{k-1} \xi^{k-1}$$

where $b_i \in GF(p)$. Thus, R can be written as

$$R = GF(p) + \xi GF(p) + \dots + \xi^{k-1}GF(p).$$

- The Galois extension ring of R: GR(R,r) = R[x]/(f(x)) where f(x) is a basic monic irreducible polynomial of degree r over R.
 - choose f(x) among monic irreducible polynomials over GF(p).
- any element $\beta (\in GR(R,r))$ and GR(R,r) can be expressed as

$$\beta = \beta_0 + \beta_1 \xi + \dots + \beta_{k-1} \xi^{k-1},$$

$$GR(R, r) = GF(p^r) + \xi GF(p^r) + \dots + \xi^{k-1} GF(p^r)$$

where $\beta_i \in GF(p^r)$.

• If s|r, $Tr_s^r(\cdot)$: $GR(R,r) \to GR(R,s)$

$$Tr_s^r(\beta) = \sum_{j=0}^{k-1} tr_s^r(\beta_j)\xi^j$$
(6)

where $tr_s^r(v) = \sum_{i=0}^{(r/s)-1} v^{p^{si}}$ is the field trace function from $GF(p^r)$ to $GF(p^s)$.

- α = a root of a primitive basic irreducible polynomial f(x) over $R = GF(p)[\xi]/(\xi^k)$
- A *GM* sequence over *R* [Udaya'98]:

$$s^{\nu}(i) = Tr_1^r(\nu\alpha^i), \quad \nu \in GR(R, r).$$

• For $a = \sum_{i=0}^{k-1} a_i \xi^i \in GR(R, s)$, define a permutation monomial:

$$\Psi^d: a \mapsto \sum_{i=0}^{k-1} a_i^d \xi^i$$

where $gcd(d, p^{s} - 1) = 1$.

• GGMW sequence over *R* [Udaya'98]:

$$s^{\nu}(i) = Tr_1^s(\Psi^d[Tr_s^r(\nu\alpha^i)]), \quad \nu \in GR(R, r)$$

where s|r.

• For any p^k -ary sequences, say X, of period $p^{2k}-1$,

$$H(X|L) \ge \left\lceil \frac{L}{p^k + 1} \right\rceil. \tag{7}$$

• Theorem 1 Let f(x) be a degree 2k primitive polynomial over GF(p), $f(\alpha)=0$ and $gcd(d,p^k-1)=1$. A GGMW sequence $\{s^{\nu}(i)\}$,

$$s^{\nu}(i) = Tr_1^k \left(\Psi^d [Tr_k^{2k}(\nu \alpha^i)] \right), \quad \nu = \alpha^{e_0} + \alpha^{e_1} \xi + \alpha^{e_2} \xi^2 + \dots + \alpha^{e_{k-1}} \xi^{k-1} \in GR(R, 2k)$$

is strictly-optimal if and only if α^{e_0d} , α^{e_1d} , α^{e_2d} , ..., $\alpha^{e_{k-1}d}$ are linearly independent over GF(p) and

$$e_i \equiv e_j \pmod{p^k + 1}, \quad \forall i, j, 0 \le i, j \le k - 1.$$

• Corollary 2 Let f(x) be a degree 2k primitive polynomial over GF(p) and $f(\alpha) = 0$. A GM sequence $\{s^{\nu}(i)\}$,

$$s^{\nu}(i) = Tr_1^{2k}(\nu\alpha^i), \quad \nu = \alpha^{e_0} + \alpha^{e_1}\xi + \alpha^{e_2}\xi^2 + \dots + \alpha^{e_{k-1}}\xi^{k-1} \in GR(R, 2k)$$

is strictly-optimal if and only if α^{e_0} , α^{e_1} , α^{e_2} , ..., $\alpha^{e_{k-1}}$ are linearly independent over GF(p) and

$$e_i \equiv e_j \pmod{p^k + 1}, \quad \forall i, j, 0 \le i, j \le k - 1.$$

• For such p^k -ary *strictly-optimal* sequences of period $p^{2k} - 1$,

$$H(S^{\nu} | L) = \left\lceil \frac{L}{p^k + 1} \right\rceil. \tag{8}$$

 \diamond **Example 1** Three GM sequences over $R = GF(3)[\xi]/\xi^3$ where

$$s^{\nu}(i) = Tr_1^6(\nu\alpha^i), \quad \nu = \alpha^{e_0} + \alpha^{e_1}\xi + \alpha^{e_2}\xi^2 \in GR(R, 6)$$

and α is a root of a primitive polynomial $x^6 + x + 2$ over GF(3).

(e_0,e_1,e_2)	GM Sequences (Frequency Hopping Patterns)																															
(0, 1, 2)	0	0	0	9	3	1	0	0	18	15	5	1	0	9	12	13	4	1	18	6	2	9	3	10	21	7	20	15	23	25	26 ·	• •
(0, 17, 100)																																
(0, 28, 56)	24	3	6	15	24	22	21	6	18	18	5	1 2	24	15	0	25	4	13	9	15	14	21	18	4	3	4	20	3	26	1	2 ·	

Summary & Further Work

- FH sequences having optimal partial Hamming autocorrelation properties
 - Optimal criteria on partial Hamming autocorrelation
 - Classification of *Strictly-optimal* p^k -ary generalized m-sequences and generalized GMW sequences of period $p^{2k}-1$
 - Useful for synchronizing process
- We have only considered the case in which $R = GF(p)[\xi]/(\xi^k)$
 - \Rightarrow general description for deg($w(\xi)$)> 1