New DH protocol based on distance-bounding technique for peer-to-peer wireless network

22nd November, 2007
Seon-Yeong PARK, Ju-Young KIM and Hong-Yeop SONG
Yonsei University, Coding and Information Theory Lab
{sy.park, jy.kim, hysong} @yonsei.ac.kr
Some Pictures of Tor

Happy Birthday!
Contents

- Introduction
- Preliminary
 - Commitment scheme
 - MITM attack
 - DH protocol, distance-bounding protocol
- Existing DH-DB protocol
- Improved DH-DB protocol
- Result and Discussion
- Conclusion
Introduction

- Peer-to-peer key agreement protocol
 - Auto configuration of mobile router without shared secret
- DH (Diffie-Hellman) protocols
 - Vulnerability against the MITM attacks
 - Involvement of users
 - Needs of physical devices
- Design of improved DH-DB (Distance-Bounding)
 - Improvement of resistance to attacks
 - Optimization of protocol
DH Protocol[^1]

<table>
<thead>
<tr>
<th>Alice</th>
<th>Bob</th>
</tr>
</thead>
<tbody>
<tr>
<td>Given ID_A, g</td>
<td>Given ID_B, g</td>
</tr>
<tr>
<td>Pick X_A, and calculate g^{X_A}</td>
<td>Pick X_B, and calculate g^{X_B}</td>
</tr>
<tr>
<td>Pick $N_A \in {0,1}^k$</td>
<td>Pick $N_B \in {0,1}^k$</td>
</tr>
<tr>
<td>$m_A \leftarrow 0</td>
<td></td>
</tr>
<tr>
<td>$(L_A, K_A) \leftarrow \text{commit}(m_A)$</td>
<td>$(L_B, K_B) \leftarrow \text{commit}(m_B)$</td>
</tr>
<tr>
<td>$L_A \rightarrow L_B$</td>
<td></td>
</tr>
<tr>
<td>$K_A \rightarrow K_B$</td>
<td></td>
</tr>
<tr>
<td>$m_B \leftarrow \text{open}(L_B, K_B)$</td>
<td>$m_A \leftarrow \text{open}(L_A, K_A)$</td>
</tr>
<tr>
<td>Verify 1 in m_B; $i_A \leftarrow N_A \oplus N_B$</td>
<td>Verify 0 in m_A; $i_B \leftarrow N_B \oplus N_A$</td>
</tr>
<tr>
<td>Verify $i_A = i_B$</td>
<td>Verify $i_B = i_A$</td>
</tr>
<tr>
<td>If $i_A = i_B$, Alice and Bob accept m_B and m_A, respectively.</td>
<td></td>
</tr>
<tr>
<td>Generate $g^{X_B X_A}$</td>
<td>Generate $g^{X_A X_B}$</td>
</tr>
</tbody>
</table>

Commitment Scheme[2]

Commitment/opening pair

- \(L=(y, f) \) is a Locked box.
- \(K=(x) \) is a Key.

Commitment procedure
1. Pick universal hash function \(f \) and \(x \) at random so that \(f(x)=m \).
2. Compute \(y=h(x) \), where \(h \) is a collision-free hash function.
3. Send \(L=(y, f) \) to receiver.

Opening procedure
1. Send \(K=(x) \) to receiver.
2. Receiver computes \(f(x)=m \).

MITM Attack

She can collect L_A, K_A (or L_B, K_B) and get secret DH key. She can use collected L_A, K_A (or L_B, K_B) for replay attack.
Distance-bounding Protocol\[3\]

Distance-bounding principle

<table>
<thead>
<tr>
<th>Alice</th>
<th>Bob</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\alpha_i \in U{0,1}^k$</td>
<td>$\beta_i \in U{0,1}^k$</td>
</tr>
</tbody>
</table>

Starting of rapid bit exchange

α_i \rightarrow

β_i \leftarrow

End of rapid bit exchange

- Single-bit challenge and rapid single-bit response
- Upper-bound the distance between two parties based on the maximum of the delay time for responses
- Two parties communicate when they are close by.

Environment

- **RF and sound capability**[^4]
 - For accurate estimation of the distance between two parties

- **Local verification protocol**[^5]
 - The measured distance appears on both device displays and the users then visually check whether there are other users/devices closer to them than the displayed distance bounds.

Existing DH-DB Protocol\(^{[6]}\) (1/3)

Initialization phase

<table>
<thead>
<tr>
<th>Alice</th>
<th>Bob</th>
</tr>
</thead>
<tbody>
<tr>
<td>Given (\text{ID}_A, g^{x_A})</td>
<td>Given (\text{ID}_B, g^{x_B})</td>
</tr>
<tr>
<td>Pick (N_A, R_A \in {0,1}^k)</td>
<td>Pick (N_B, R_B \in {0,1}^k)</td>
</tr>
<tr>
<td>(m_A \leftarrow 0</td>
<td></td>
</tr>
<tr>
<td>((L_A, K_A) \leftarrow \text{commit}(m_A))</td>
<td>((L_B, K_B) \leftarrow \text{commit}(m_B))</td>
</tr>
<tr>
<td>((L'_A, K'_A) \leftarrow \text{commit}(0</td>
<td></td>
</tr>
<tr>
<td>(m_B \leftarrow \text{open}(L_B, K_B))</td>
<td>(m_A \leftarrow \text{open}(L_A, K_A))</td>
</tr>
<tr>
<td>Verify 1 in (m_B; i_A \leftarrow N_A \oplus N_B)</td>
<td>Verify 0 in (m_A; i_B \leftarrow N_B \oplus N_A)</td>
</tr>
</tbody>
</table>

Eve can collect \(c_A, d_A\) (or \(c_B, d_B\)) and get secret DH key.
Existing DH-DB Protocol[6](2/3)

Distance-bounding phase

Alice

The bits of R_A are R_{A1}, \ldots, R_{Ak}
The bits of i_A are i_{A1}, \ldots, i_{Ak}

$\alpha_1 \leftarrow R_{A1} \oplus i_{A1}$

Measure delay between α_i and β_i

$\alpha_i \leftarrow R_{Ai} \oplus i_{Ai} \oplus \beta_{i-1}$

Bob

The bits of R_B are R_{B1}, \ldots, R_{Bk}
The bits of i_B are i_{B1}, \ldots, i_{Bk}

$\alpha_1 \rightarrow \beta_1 \leftarrow R_{B1} \oplus i_{B1} \oplus \alpha_1$

Measure delay between β_{i-1} and α_i

$\beta_i \leftarrow R_{Bi} \oplus i_{Bi} \oplus \alpha_i$

$\beta_i \rightarrow \alpha_i \leftarrow \ldots$

$\alpha_k \leftarrow R_{Ak} \oplus i_{Ak} \oplus \beta_{k-1}$

Measure delay between α_k and β_k

$\alpha_k \rightarrow \beta_k \leftarrow R_{Bk} \oplus i_{Bk} \oplus \alpha_k$

$\beta_k \rightarrow \ldots$
Verification phase

<table>
<thead>
<tr>
<th>Alice</th>
<th>Bob</th>
</tr>
</thead>
<tbody>
<tr>
<td>K'_A</td>
<td>$0</td>
</tr>
<tr>
<td>K'_B</td>
<td>$i_{A1} \leftarrow \alpha_1 \oplus R_{A1}$</td>
</tr>
<tr>
<td>$1</td>
<td></td>
</tr>
<tr>
<td>$i_{Bi} \leftarrow \alpha_i \oplus \beta_i \oplus R_{Bi} \ (i = 1, \ldots, k)$</td>
<td>Verify $i_B = i_A$</td>
</tr>
<tr>
<td>Verify $i_A = i_B$</td>
<td>Why here?</td>
</tr>
</tbody>
</table>

Alice and Bob visually verify that there are no other users/devices in their integrity region.

Analysis of Existing DH-DB

- **Verification phase**
 - Vulnerable to the MITM attack
 - Insecure in reuse of DH public parameter

- **Distance-bounding phase**
 - Complicated procedures to hide verification string

- **Initialization phase**
 - Generate unnecessary random string for distance-bounding
New Design (Improved)

- Commitment/opening triplet \((f, y, x)\)
 - \(f\) is an index of universal hash function
 - \(x\) is a random string such that \(f(x) = m\) where \(m\) is a message
 - \(y\) is a \(k\)-bit output of the collision-free hash function \(h(x)\), used for measuring RTT

- Reordering of procedure
Security

- **Resistance against the MITH attack**
 - Eve cannot open m without x.
 - h is a one-way hash function: Eve cannot find x easily even though she knows y, where $h(x)=y$.

 We can use y for measuring RTT without any loss in security!

- **Secure reusability of DH public parameter**
 - The protocol is broken if Eve exists in integrity region before Alice and Bob exchange x_A and x_B.
Improved DH-DB (1/3)

- Initialization phase

<table>
<thead>
<tr>
<th></th>
<th>Alice</th>
<th>Bob</th>
</tr>
</thead>
<tbody>
<tr>
<td>Given</td>
<td>ID_A, g^{x_A}</td>
<td>ID_B, g^{x_B}</td>
</tr>
<tr>
<td>Pick</td>
<td>$N_A \in _U {0, 1}^k$</td>
<td>$N_B \in _U {0, 1}^k$</td>
</tr>
<tr>
<td>$m_A \leftarrow 0</td>
<td></td>
<td>\text{ID}_A</td>
</tr>
<tr>
<td></td>
<td>$(f_A, y_A, x_A) \leftarrow \text{commit}(m_A)$</td>
<td>$(f_B, y_B, x_B) \leftarrow \text{commit}(m_B)$</td>
</tr>
</tbody>
</table>

- Generate commitment/opening triplet
Improved DH-DB (2/3)

- **Distance-bounding phase**

<table>
<thead>
<tr>
<th>Alice</th>
<th>Bob</th>
</tr>
</thead>
<tbody>
<tr>
<td>The bits of y_A are y_{A1}, \ldots, y_{Ak}</td>
<td>The bits of y_B are y_{B1}, \ldots, y_{Bk}</td>
</tr>
</tbody>
</table>

The bits of y_A are y_{A1}, \ldots, y_{Ak}

Measure delay between y_{A1} and y_{B1}

Measure delay between y_{A2} and y_{B2}

... (continues)

Measure delay between y_{Ak} and y_{Bk}

The bits of y_B are y_{B1}, \ldots, y_{Bk}

Measure delay between y_{Bk-1} and y_{Ak}

Measure delay between y_{Bi} and y_{Ai} (Simplified distance-bounding)
Opening phase

<table>
<thead>
<tr>
<th>Alice</th>
<th>Bob</th>
</tr>
</thead>
<tbody>
<tr>
<td>x_A</td>
<td>x_B</td>
</tr>
<tr>
<td>m_B←open(f_B, y_B, x_B)</td>
<td>m_A←open(f_A, y_A, x_A)</td>
</tr>
<tr>
<td>Verify 1 in m_B; $i_A ← N_A ⊕ N_B$</td>
<td>Verify 0 in m_A; $i_B ← N_B ⊕ N_A$</td>
</tr>
<tr>
<td>Verify $i_A = i_B$</td>
<td>Verify $i_B = i_A$</td>
</tr>
</tbody>
</table>

Alice and Bob visually verify that there are no other users/devices in their integrity region.

- Secure reuse of DH public parameter
Structure of Protocol (Summary)

- **Initialization and commitment**
 - Pick DH exponent
 - Commit messages (Send a locked box)

- **Distance-bounding**
 - Upper-bound the distance and make integrity region

- **Visual check**
 - Check the existence of attacker in the integrity region

- **Opening and verification**
 - Open messages (Unlock the box)
 - Check verification string for integrity
Analysis of Performance

- **Assumption**
 - Same universal and collision-free hash function
 - Only consider XOR operation
 - 3-DES random generator

- **Result**

<table>
<thead>
<tr>
<th></th>
<th>Message (success)</th>
<th>Message (fail)</th>
<th>Parameters</th>
<th>XOR Operation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Existing</td>
<td>2k+6</td>
<td>2k+4</td>
<td>18</td>
<td>-</td>
</tr>
<tr>
<td>Proposed</td>
<td>2k+6</td>
<td>2k+2</td>
<td>14</td>
<td>Reduce ((7682^*(k/64)-64)*2) operations</td>
</tr>
</tbody>
</table>

- When \(k=64\), the number of reduced XOR operation is 15,236.
Conclusion

- Contribution
 - Provide improved DH-DB to the fundamental problem of key agreement over a radio link
 - Appropriate for devices which have limited power, limited memory, and limited computational power.