Rate Allocation for Component Codes of Plotkin-Type UEP Codes

Jin Soo Park, Ki-Hyeon Park, Hong-Yeop Song
{js.park09, kh.park, hysong}@yonsei.ac.kr

Yonsei University, Seoul, Republic of Korea

IEEE International Symposium on Information Theory
ISIT2012

July 1-6, 2012
Cambridge, MA, USA
Contents

• Background
 – Plotkin-type UEP Codes

• Problem
 – Better & Worse
 – Which is MSB?

• Threshold and Noise Analysis

• Simulation Results and Conclusion
Error Rate

Non-UEP

MSB

LSB

E_b/N_0
Plotkin-Type Codes

- Plotkin-type Code

$$C_p = \{|u|u + v|u \in C_1, v \in C_2\}$$

Channel

\[u \rightarrow u + v \rightarrow L'' \rightarrow L''' \]

\(u: \text{Repeated}\)
Plotkin-type UEP Codes

\[u \quad \quad w = u + v \]

- Code Rate of \(C_1 \): \(R_1 \) > Code Rate of \(C_2 \): \(R_2 \)

Overall Code Rate: \(R_p = (R_1 + R_2)/2 \)
Plotkin-type UEP Codes

\[
L_i^u = L_i^{y'} + (-1)^\hat{v}_i L_i^{y''}
\]

\[
L_i^v = 2 \tanh^{-1} \left(\tanh \left(\frac{L_i^{y'}}{2} \right) \tanh \left(\frac{L_i^{y''}}{2} \right) \right)
\]
According to their paper (with arbitrary rate allocation I)

\[R_1 = 0.65 \quad R_2 = 0.47 \quad (R_p = 0.56) \]

Plotkin-type UEP Code works MUCH WORSE than Non-UEP Code
According to their paper (with arbitrary rate allocation II)

\[R_1 = 0.47 \quad R_2 = 0.65 \quad (R_p = 0.56) \]

Plotkin-type UEP Code works still WORSE than Non-UEP Code
According to their paper (with arbitrary rate allocation III)

\[R_1 = 0.87 \quad R_2 = 0.25 \quad (R_p = 0.56) \]

Plotkin-type UEP code works as "UEP", But MSB and LSB are switched!!
PROBLEM

We Give the
Reason & Method
Average Code

“(Ideal) Average EEP Code C_a”

- **Ideal** EEP code which **Achieves the Channel Capacity**
- **Code Rate** $R_a = R_p$
- **Threshold** $\sigma_{a,th}^2$
Notations

"Plotkin-type UEP Code C_p"

"C_1 in C_p"
Threshold: $\sigma_{1,th}^2$
Channel Noise: σ_1^2

"C_2 in C_p"
Threshold: $\sigma_{2,th}^2$
Channel Noise: σ_2^2

"(Ideal) Average EEP Code C_a"

"C_i (for $i = 1, 2$) Only" (EEP)
For a Given $R_a = R_p$ (i.e., $\sigma_{a,th}^2$)

$R_p = (R_1 + R_2)/2$

$\sigma_{a,th}^2$

$\sigma_{1,th}^2$

$\sigma_{2,th}^2$

< Threshold >

Compare

< Equivalent Channel Noise >

By Monte Carlo Simulation

σ_1^2

σ_2^2

$\sigma_{a,th}^2$

put

σ_{ch}^2
For a Given $R_a = R_p$ (i.e., $\sigma_{a,th}^2$)

- $\sigma_{a,th}^2$ > $\sigma_{1,th}^2$
- $\sigma_{1,th}^2$ > σ_1^2
- σ_1^2 > σ_{ch}^2

Known

< Threshold >

Error Free

< Equivalent Channel Noise >
Design Example: $\sigma_{a,th}^2 = 0.8$ (i.e., $R_a = 0.5604$)
Design Example: $\sigma_{a,th}^2 = 0.8$ (i.e., $R_a = 0.5604$)
Design Example: $\sigma_{a,th}^2 = 0.8$ (i.e., $R_a = 0.5604$)
Design Example: $\sigma_{a,th}^2 = 0.8$ (i.e., $R_a = 0.5604$)

Choice - Right

$\sigma_{1,th}^2 < \sigma_1^2$
Choice – Left \((\sigma_{1,th}^2 = 0.3) \): \(R_1 = 0.87, R_2 = 0.25 \)
Choice – Middle ($\sigma_{1,\text{th}}^2 = 0.4$): $R_1 = 0.79, R_2 = 0.33$
Choice – Right ($\sigma_{1,th}^2 = 0.619$): $R_1 = 0.65, R_2 = 0.47$
Our Design Works as Expected

- ‘Choice-Left’ Combination
 - UEP capability ↑ - Slightly Worse than C_a

- ‘Choice-Middle’ Combination
 - UEP capability ↓ - Comparable to C_a

- ‘Choice-Right’ Combination
 - UEP capability ? - Much Worse than C_a
Design Example: $\sigma_{a,th}^2 = 2.0$ (i.e., $R_a = 0.2905$)
Conclusions

• Guideline for the rate allocation for the component codes of Plotkin-type UEP codes.

⇒ We can construct the Plotkin-type codes without brute force simulation of performance.

 – For a good overall performance, we should select the code rates near the “middle” region.

 – For a good UEP capability, we suggest that the code rates should be selected in the “left” region and use C_2 as MSB (instead of C_1).
Thank You for Listening!