Rate-optimal Binary Locally Repairable Codes with Joint Information Locality

Jung-Hyun Kim, Mi-Young Nam, and Hong-Yeop Song Yonsei University, Korea

(jh.kim06, my.nam, hysong@yonsei.ac.kr)

2015 / 10 / 12 2015 IEEE Information Theory Workshop

Outline

Introduction

Prior Work

BLRC with Joint Inform. Locality

Summary & Conclusion

Distributed Storage System (DSS)

- Locally repairable code (LRC)
 - Codes with good (small) locality

Locality

- **Symbol locality**: # of symbols required to repair a failed symbol
- (Code) locality: the maximum value of symbol locality

Symbol

Codeword:

Symbol : locality

- Locally repairable code (LRC)
 - Codes with good (small) locality

Locality

- **Symbol locality**: # of symbols required to repair a failed symbol
- (Code) locality: the maximum value of symbol locality

- Locally repairable code (LRC)
 - Codes with good (small) locality

Locality

- **Symbol locality**: # of symbols required to repair a failed symbol
- (Code) locality: the maximum value of symbol locality

- Locally repairable code (LRC)
 - Codes with good (small) locality

Locality (Generalized definition)

- ℓ -locality (r_{ℓ}) : locality for ℓ symbols repair
- * 1-locality (r_1) is the same with "code locality" in the previous definition

A. S. Rawat, A. Mazumdar, and S. Vishwanath, "Cooperative local repair in distributed storage," arXiv Preprint arXiv:1409.3900, 2014.

Jung-Hyun Kim, Mi-Young Nam, Ki-Hyeon Park, and Hong-Yeop Song, "New Binary Locally Repairable Codes with Joint Locality and Average Locality," under revision, IEEE Trans. on Inf. Theory.

Outline

Introduction

Prior Work

BLRC with Joint Inform. Locality

Summary & Conclusion

(Binary) Simplex codes

$$r_1 = 2 \text{ (VERY GOOD)}$$

 $R = \frac{k}{2^k - 1} \text{ (VERY LOW)}$

Only better code is repetition code ($r_1 = 1$), but its code rate is extremely low.

(Binary) Simplex codes

$$r_1 = 2$$
 (VERY GOOD)
 $R = \frac{k}{2^k - 1}$ (VERY LOW)

Only better code is repetition code ($r_1 = 1$), but its code rate is extremely low.

Q1: Can we improve the code rate maintaining the locality? $(r_1 = 2)$

(Binary) Simplex codes

$$r_1 = 2 \text{ (VERY GOOD)}$$

 $R = \frac{k}{2^k - 1} \text{ (VERY LOW)}$

Only better code is repetition code $(r_1 = 1)$, but its code rate is extremely low.

Q1: Can we improve the code rate maintaining the locality? $(r_1 = 2)$

Simplex code

$$(r_1 = 2)$$

Prior

Complete graph code

$$(r_1 = 2)$$

Complete multipartite graph code
$$(r_1 = 2)$$

$$G_{CG} = \begin{pmatrix} 1000 & 0110 & 10 \\ 0100 & 1001 & 10 \\ 0010 & 0101 & 01 \\ 0001 & 1010 & 01 \end{pmatrix}$$

$$R_{CG}=\frac{4}{10}$$

$$G_{CMG} = \begin{pmatrix} 1000 & 0110 \\ 0100 & 1001 \\ 0010 & 0101 \\ 0001 & 1010 \end{pmatrix}$$

$$R_{CMG}=\frac{4}{8}$$

Jung-Hyun Kim, Mi-Young Nam, Ki-Hyeon Park, and Hong-Yeop Song, "New Binary Locally Repairable Codes with Joint Locality and Average Locality," under revision, IEEE Trans. on Inf. Theory.

Q2: What about multiple failure patterns? (every ℓ-locality)

Q2: What about multiple failure patterns? (every ℓ -locality)

Q2: What about multiple failure patterns? (every ℓ -locality)

$$r_1 = 2$$
 $r_1 = 3$

Q2: What about multiple failure patterns? (every ℓ -locality)

$$r_1 = 2$$
 > $r_1 = 3$
 $r_2 = 5$ < $r_2 = 4$

Q2: What about multiple failure patterns? (every ℓ -locality)

$$r_1 = 2$$
 $r_1 = 3$ $r_2 = 5$ $r_2 = 4$ $r_1 = 3$ $r_2 = 4$ $r_2 = 4$

Q2: What about multiple failure patterns? (every ℓ -locality)

Which one is better? C_1 ? or C_2 ?

Joint locality

$$(r_1, r_2, r_3) = (2, 5, 5)$$
 $(r_1, r_2, r_3) = (3, 4, 5)$

1-locality (r_1) : 5 Maximum value (Worst case)

1-locality (r_1) : 5 Maximum value (Worst case)

Average 1-locality $(\overline{r_1})$: 4 Average value

Q3: Worst vs. Average?

1-locality (r_1) : 5

Maximum value (Worst case)

Average 1-locality $(\overline{r_1})$: 4

Average value

Which one is more reasonable measure?

Q3: Worst vs. Average?

1-locality (r_1) : 5 Maximum value (Worst case)

Average 1-locality $(\overline{r_1})$: 4 Average value

Q3: Worst vs. Average?

1-locality (r_1) : 5 Maximum value (Worst case)

Average 1-locality $(\overline{r_1})$: 4 Average value

Which one is better? C_1 ? or C_2 ?

Average locality

$$(\overline{r_1}, \overline{r_2}, \overline{r_3}) = (2, \frac{105}{33}, \frac{141}{33})$$
 $(\overline{r_1}, \overline{r_2}, \overline{r_3}) = (3, \frac{132}{33}, \frac{145}{33})$

Main results

Joint locality

Code (dimension k)	Code rate	(r_1, r_2)	Another metric?
Simplex code	$\frac{k}{2^k-1}$	(2,3)	?
Complete graph code	$\frac{2}{k+1}$	(2,3)	?
Complete multipartite graph code (p-partite)	$\frac{2}{k - \frac{k}{p} + 2}$	(2, 4)	?
New code?	?	(2, 4)	?

Outline

Introduction

Prior Work

BLRC with Joint Inform. Locality

Summary & Conclusion

- Joint Information Locality
 - a set of numbers of symbols for repairing various erasure patterns of information symbols

- Joint Information Locality
 - a set of numbers of symbols for repairing various erasure patterns of information symbols

Can we design rate-optimal codes with joint inform. locality (2,3) or (2,4)?

- Joint Information Locality
 - a set of numbers of symbols for repairing various erasure patterns of information symbols

Can we design rate-optimal codes with joint inform. locality (2, 3) or (2, 4)?

We begin with a simple graph.

an unweighted, undirected, connected graph containing no loops or multiple edges

simple graph

$$k = \#v$$

$$n = \#v + \#e \longrightarrow \text{If } \#e \uparrow, \text{ then } \frac{k}{n} \downarrow$$

Vertex: inform. symbol

$$G = \begin{bmatrix} 1 & 0 & 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 0 & 1 & 1 \end{bmatrix}$$

$$G = \begin{bmatrix} 1 & 0 & 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 0 & 1 & 1 \end{bmatrix}$$

$$G = \begin{bmatrix} 1 & 0 & 0 & 0 & 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 1 & 1 \end{bmatrix}$$

edge: parity symbol

$$G = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 1 \end{bmatrix}$$

$$G = \begin{bmatrix} 1 & 0 & 0 & 0 & 1 & 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 0 & 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 1 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 & 0 & 1 & 1 & 0 \end{bmatrix}$$

- Simple graph-based code construction
 - Minimum distance

obtained straightforwardly

We found this expression.

$$d = \min_{S \subseteq V} [|Cut(S, S^c)| + |S|]$$

where V is the set of all the vertices.

- Simple graph-based code construction
 - Minimum distance obtained straightforwardly

- Simple graph-based code construction
 - Minimum distance obtained straightforwardly

$$S = \{1, 2\}$$
 2

$$d \ge 3 \Leftrightarrow \text{For } \forall v$$

 $\deg(v) \ge 2$

- Simple graph-based code construction
 - Minimum distance obtained straightforwardly

To repair 2 failed symbols,

$$d \ge 3 \Leftrightarrow \text{For } \forall v$$

 $\deg(v) \ge 2$

- Simple graph-based code construction
 - Minimum distance obtained straightforwardly

To repair 2 failed symbols,

$$d \ge 3 \Leftrightarrow \text{For } \forall v$$

 $\deg(v) \ge 2$

Simple graph-based code construction

Lemma 1. Always
$$(r_1)_{info} = 2$$

Node failure (Information symbol)

Repair set

Simple graph-based code construction

Lemma 1. Always
$$(r_1)_{info} = 2$$

Node failure (Information symbol)

Repair set

Lemma 2. If every vertex pair is in 2-hop distance, $(r_2)_{info} = 3$

2-hop distance vs. higher rate

2-hop distance vs. higher rate

of edges ↑ Too many edges \Rightarrow low rate Too few edges \Rightarrow 2-xop

of edges ↓

2-hop distance vs. higher rate

of edges ↑ Too many edges ⇒ low rate

of edges ↓
Too few edges ⇒ 2-xop

2-hop Low rate

High rate 3-hop

Lemma 3. $(r_1, r_2)_{info} = (2, 3)$, if and only if any vertex pair is in either of triangle, quadrangle, or pentagon.

$$r_2 = 4$$

Crown code

Rate-optimal code with joint information locality $(r_1, r_2)_{info} = (2, 3)$

For every positive integer $k \geq 5$, the code construction is possible.

Crown code

Crown code

Theorm 1.

$$(r_1, r_2)_{info} = (2, 3)$$

Rate-optimal

Any vertex pair should be in either of or , and no more. The graph should contain at least one .

$$(r_1, r_2)_{info} = (2, 3)$$

Not rate-optimal

Crown code

Theorm 1.

$$(r_1, r_2)_{info} = (2, 3)$$

Rate-optimal

Any vertex pair should be in either of or o, and no more. The graph should contain at least one o.

$$(r_1, r_2)_{info} = (2, 3)$$

Not rate-optimal

$$(r_1, r_2)_{info} = (2, 3)$$

Rate-optimal

Ring code

Rate-optimal code with joint information locality $(r_1, r_2)_{info} = (\mathbf{2}, \mathbf{4})$

More than 2-hop is ok

For every positive integer $k \ge 3$, the code construction is possible. When k = 5, $(r_1, r_2)_{info} = (2, 3)$ since it is also a crown code.

Ring code

Theorm 2.

$$(r_1, r_2)_{info} = (2, 4)$$

Rate-optimal

The graph should be single cycle structure

Ring code

Theorm 2.

$$(r_1, r_2)_{info} = (2, 4)$$

Rate-optimal

The graph should be single cycle structure

$$(r_1, r_2)_{info} = (2, 4)$$

Not rate-optimal

Ring code

Theorm 2.

$$(r_1, r_2)_{info} = (2, 4)$$

Rate-optimal

The graph should be single cycle structure

$$(r_1, r_2)_{info} = (2, 4)$$

Not rate-optimal

$$(r_1, r_2)_{info} = (2, 4)$$

Rate-optimal

Outline

Introduction

Prior Work

BLRC with Joint Inform. Locality

Summary & Conclusion

Summary

PO POPULATION OF THE POPULATIO

Joint locality

Average localityJoint inform. locality

Code (dimension k)	Code rate	(r_1, r_2)	$\overline{r_2}$	$(r_1, r_2)_{info}$	$(\overline{r_2})_{info}$
Simplex code	$\frac{k}{2^k - 1}$	(2,3)	3	(2,3)	3
Complete graph code	$\frac{2}{k+1}$	(2,3)	3	(2,3)	3
Complete multipartite graph code (p-partite)	$\frac{2}{k - \frac{k}{p} + 2}$	(2, 4)	$3 + \frac{2\binom{k/p}{2}^2\binom{p}{2}}{\binom{n}{2}}$	(2,3)	3
Crown code	$\frac{k}{3k-5}$	(2, 4)	$3 + \frac{2k^2 - 4k - 10}{9k^2 - 33k + 30}$	(2,3)	3
Ring code	$\frac{1}{2}$	(2,4)	$4 - \frac{7}{2k-1}$	(2,4)	$4 - \frac{4}{k-1}$

Concluding Remarks

- The rate of Crown/Ring codes gives a global lower bound, since it is Rate-optimal within a framework of codes based on simple graph. How good is it?
- LRC construction not based on simple graph
- Binary LRC with joint inform. locality (r_1, r_2, r_3, r_4)
- Non-binary LRC construction with the same G for either Crown or Ring code