Binary Locally Repairable Codes from Complete Multipartite Graphs

Jung-Hyun Kim, Mi-Young Nam, and Hong-Yeop Song

International Conference on ICT Convergence
Oct. 28-30, 2015, Jeju, Korea

- Distributed Storage System (DSS)
 - Frequent node failure
 - Node failure: A disk fault or a node in use
 - Locality: The number of nodes accessed to repair a single node failure

- Locally repairable code (LRC)
 - Codes with good (small) locality
 - Locality (Generalized definition)
 - ℓ-locality ($r_ℓ$): locality for ℓ symbols repair
 - 1-locality (r_1) is the same with “locality” in the previous definition
 - Symbol set
 - Codeword:

- Complete Graph (CG) codes
 - K_6 complete graph ($k = 6$)
 - Generator matrix of $[21, 6, 6]_2$ code

- Theorem: It has $d_{min} = k$ and
 1) $r_1 = 2$ for $k = d_{min} \geq 2$.
 2) $r_2 = 3$ for $k = d_{min} \geq 3$.
 3) $r_ℓ \leq \min(2ℓ, k)$ for $d_{min} \geq 2$ and $ℓ = 1, 2, 3, ...$

- Complete Multipartite Graph (CMG) codes (p-partite)
 - Note that p can be any (positive) divisor of k.
 - $p = k$ (CG codes) ↔ lowest code rate
 - p is the smallest non-trivial prime factor of k. (CMG codes) ↔ highest code rate
 - $p = 1 ↔ G = I$ and $d_{min} = 1$ (trivial)
Joint locality
- A set of numbers of symbols for repairing various erasure patterns of symbols

Q1. Can we design a Binary LRC with joint locality (2, 3) or (2, 4)?

One choice would be binary simplex codes with the parameter \(n = 2^k - 1, k, d_S = 2^{k-1} \)

\[
G_{S_k} = \begin{pmatrix}
1000 & 111000 & 1110 & 1 \\
0100 & 100110 & 1101 & 1 \\
0010 & 010101 & 1011 & 1 \\
0001 & 001011 & 0111 & 1
\end{pmatrix}
\]

for \(k = 4 \) \(r_p \leq \ell + 1 \) (Rawat-14)

- It has \((r_1, r_2) = (2, 3)\). – proof is straightforward

Simplex codes
- Code rate: \(R_S = \frac{k}{2^{k-1}} \) (VERY LOW)

Q2. Can we improve the rate maintaining joint locality (2, 3) or (2, 4)?

\[
G = \begin{pmatrix}
1000 & 111000 & 1110 & 1 \\
0100 & 100110 & 1101 & 1 \\
0010 & 010101 & 1011 & 1 \\
0001 & 001011 & 0111 & 1
\end{pmatrix}
\]

for \(k = 4 \)

- This code STILL has \((r_1, r_2) = (2, 3)\).
- How to describe the code?
 ✓ Its generator matrix has all the columns of weight 1 and weight 2 ONLY.

Complete 2-partite graph
\((p = 2, k = 6) \)

Generator matrix of \([15, 6, 4]_2 \) code

- **Code rate**: \(R = \frac{2}{k-p+2} \geq R_S = \frac{k}{2^{k-1}} \)
- **Minimum distance**: \(d = k - \frac{k}{p} + 1 \leq d_S = 2^{k-1} \)

Theorem: It has \(d_{\text{min}} = k - \frac{k}{p} + 1 \) and

1. \(r_1 = 2 \) for \(d_{\text{min}} \geq 2 \).
2. \(r_2 = \begin{cases} 3, & \text{for } p = k \text{ and } d_{\text{min}} \geq 3, \\ 4, & \text{for } p < k \text{ and } d_{\text{min}} \geq 3. \end{cases} \)
3. \(r_\ell \leq \min(2\ell, k) \) for \(d_{\text{min}} \geq 2 \) and \(\ell = 1, 2, 3, ... \)

Concluding Remarks
- The rate of CG/CMG codes gives a global lower bound. How good is it?
- LRC construction **not based on** simple graph
- Binary LRC with joint locality \((r_1, r_2, r_3, r_4)\)
- **Non-binary LRC** construction with the same \(G \) for either CG or CMG code