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LDPC Code Construction with
Low Error Floor Based on the IPEG Algorithm
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Abstract— We propose a modification on the improved
progressive-edge-growth(IPEG) algorithm. Proposed modifica-
tion increases the connectivity of variable nodes using extrinsic
message degree of variable nodes, which results in reducing the
small stopping sets. Through computer simulation, we confirm
that the codes constructed by the proposed algorithm have
lower error floor than those constructed by the original IPEG
algorithm.

Index Terms— Progressive-edge-growth (PEG) algorithm, stop-
ping set, extrinsic message degree(EMD).

I. INTRODUCTION

LDPC codes are known to achieve near capacity perfor-
mance with infinite block length (cycle-free case) [1][2].

In practice, however, we cannot avoid cycles due to the
restriction on the block length. The belief propagation (BP)
algorithm is optimum decoding for cycle-free case [3]. If
cycles exist, the independence of each updated message cannot
be maintained. Hence, it is reasonable to make cycles as
large as possible to reduce the dependency between messages.
In this point of view, the progressive-edge-growth (PEG)
algorithm makes each variable node have the maximum local
girth so as to construct LDPC codes with better performance
than randomly constructed codes [4].

Performance of LDPC codes is dependent on the connectiv-
ity of variable nodes over binary erasure channel (BEC), since
the connectivity is related to stopping sets that make iterative
decoding fail over BEC. The connectivity can be calculated by
extrinsic message degree (EMD) or approximate cycle EMD
(ACE)[6]. Improved PEG (IPEG) algorithm [7] introduces the
concept of ACE to PEG algorithm so that it can improve the
performance of irregular LDPC codes at high SNR.

In this paper, we propose a modification on the IPEG
algorithm. Proposed modification increases the connectivity
of variable nodes using extrinsic message degree of variable
nodes, which reduces the small stopping sets. Section II
provides a brief overview of stopping sets and describes the
connectivity of variable nodes in terms of EMD and ACE.
Section III outlines the IPEG algorithm and explains the
proposed modification. Section IV presents the simulation
results.
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Fig. 1. Parity check matrix and bipartite graph.

II. THE CONNECTIVITY OF VARIABLE NODES

The parity check matrix and bipartite graph have one-to-
one correspondence as shown Fig. 1. A column(row, resp.)
in the parity-check matrix corresponds to a variable(check,
resp.) node in the bipartite graph. There exists an edge between
variable node and check node if and only if hij = 1 where
hij denotes the element of parity check matrix in the ith row
and jth column.

Definition 1: (Stopping sets [5]) A subset S of variable
nodes is said to form a stopping set if all its neighboring
check nodes are connected to S at least twice.

For example, the subset of variable nodes A = {v3, v5, v6}
form a stopping set in Fig. 1. However the subset B =
{v1, v2, v3} is not a stopping set, since B has two neighboring
check nodes, c3 and c4 which are connected to B only once. In
parity check matrix, the stopping sets also can be determined
by the ordinary (not mod 2) sum of the columns over S. S is
stopping set if 1 does not appear in the sum [8]. The sum of
columns over A is [0 2 2 2]T and there is no 1’s in it.

It is proved that preventing small stopping sets prevents
small minimum distance [6]. To avoid small stopping sets, we
have to make the subset of variable nodes have many extrinsic
edges. The quantities of these extrinsic edges are defined as
follows.

Definition 2: (EMD [6]) An extrinsic check node of a
variable node set is a check node that is singly connected
to this set. The EMD of a variable node set is the number of
extrinsic check nodes of this variable node set.

It can be easily shown that EMD of a stopping set is zero
and the number of 1’s in the sum of the columns over subset
of variable nodes is equal to EMD. In the above example, the
column sum over B is [2 2 1 1]T , so the EMD of B is 2.

Definition 3: (ACE [6]) The ACE of a length 2d cycle is∑
i(di − 2), where di is the degree of the ith variable node

in this cycle.
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When variable nodes and their neighboring check nodes
compose of a single cycle, the EMD of these variable nodes
is equal to the ACE. However, if they compose of multi-cycles,
the ACE becomes an upper bound of EMD. In Fig. 1, variable
nodes {v2, v3, v4} and their neighboring check nodes compose
of 6-cycle and ACE is one. However, EMD of these variable
nodes is zero since this 6-cycle contains a 4-cycle. In next
section, we propose the modified IPEG algorithm using these
properties of EMD and ACE.

III. MODIFICATION ON IPEG ALGORTIHM

Standard PEG algorithm with n variable nodes and m check
nodes is as following [4]. (We use same notation in [4].)
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where E is the kth edge incident to s and c is

one check node picked from the set N having
the lowest check node degree

In above algorithm, dj is the degree of variable node sj .
Ek

sj
presents the kth edge incident on sj and Esj

is the set
of edges incident on sj . Finally, N l

sj
means the subset of

check nodes reached by a tree spreading from variable node
sj within depth l and N̄ l

sj
is complement of N l

sj
.

Let the set of the candidate check nodes corresponding to
the kth edge of symbol node sj be Ωk

sj
. When the cardinality

of Ωk
sj

is lager than one, PEG algorithm selects a check node
in Ωk

sj
at random. However IPEG algorithm introduces the

idea of ACE and proposes the criterion for selection. IPEG
algorithm chooses a check node in Ωk

sj
that maximizes the

minimum ACE for the new cycles. Similar to PEG algorithm,
IPEG algorithm picks a check node at random if there are
more than two check nodes that have same ACE condition.
Instead of selecting at random in IPEG algorithm, we propose
an algorithm that determines which check node is better to
increase the connectivity of variable nodes.

Let Φk
sj

be the subset of check nodes classified by IPEG
criterion. It is obvious that Φk

sj
is the subset of Ωk

sj
. When

there are more than two elements in Φk
sj

, we can extract
subgraphs that are subsets of tree-expanded PEG graph. Each
subgraph is constituted by back-tracking from a check node
in Φk

sj
to root sj . Hence, we know which variable nodes are

contained in each subgraph and we can easily check which

3
3

ACE
EMD

3
1

ACE
EMD

Fig. 2. Tree-expanded PEG graph and extracted subgraphs.
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Fig. 3. FER/BER performance (length 2000).

subgraphs have higher EMD by counting the number of 1’s
in the column sum over the variable nodes in each subgraph.
In the end, we are able to choose a check node in Φk

sj
with

higher EMD. Figure 2 is an example of selecting a check
node among two candidate check nodes that have the same
ACE but different EMD. These two check nodes are regarded
as equivalent in IPEG algorithm criterion. However, we can
make better selection by the proposed algorithm. In Fig. 2,
left-hand side candidate check node is selected since it has
the higher EMD than the right-hand side. It is possible there
also exist more than two check nodes in Φk

sj
that have the

same EMD condition. In this case, we select the check node
whose corresponding subgraph has more variable nodes and
if we cannot determine which check node is better using all
these criteria (girth, ACE, EMD and more variables), then we
pick a check node at random.

IV. SIMULATION RESULTS

We construct four irregular LDPC codes with block length
2000 and 3000. For each block length, one is constructed
by IPEG algorithm and the other is constructed by proposed
algorithm with good variable nodes degree distribution in [2],
λ1(x) for block length 2000 and λ2(x) for block length 3000.
We use BP algorithm with maximum number of iteration 200
in AWGN channel.
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Fig. 4. FER/BER performance (length 3000)

λ1(x) = 0.21991x + 0.23328x2 + 0.02058x3

+0.08543x5 + 0.06540x6 + 0.04767x7

+0.01912x8 + 0.08064x18 + 0.2279819

λ2(x) = 0.19606x + 0.24039x2 + 0.00228x5

+0.05516x6 + 0.16602x7 + 0.04088x8

+0.01064x9 + 0.00221x27 + 0.28636x29

Figure 3 show the frame error rate (FER) and bit error rate
(BER) curves for block length 2000. The code constructed
by the proposed algorithm shows better performance at high
SNR region than that constructed by IPEG algorithm. At low
SNR region, proposed algorithm has no loss in performance
compared to IPEG algorithm. In Fig. 4 with block length 3000,

we confirmed the similar results. The codes constructed by
IPEG algorithm show error floor at FER 10−5 with block
length 2000 and at FER 10−4 with block length 3000. Note
that the codes constructed by proposed algorithm does not at
these FER region.

V. CONCLUSION

In this paper, we discuss the connectivity of variable nodes
and propose more specific conditions to determine which
check node is better to prevent small stopping sets in the subset
classified by IPEG algorithm. From computer simulation, we
confirm that proposed algorithm constructs LDPC codes to
have lower error floor than IPEG algorithm.
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