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In this Letter, a new parity-check-concatenated (PCC) polar code
construction that considers the number of minimum Hamming
weight (MHW) codewords is proposed. The parity bits to reduce the
number of MHW codewords as much as possible is successively con-
structed. The proposed construction can reduce the number of MHW
codewords more than other codes. The results show that the proposed
codes can outperform the other codes at a high signal-to-noise region.
Introduction: After Arikan [1] proposed the polar codes and successive
cancellation (SC) decoding, Tal and Vardy [2] improved the perform-
ance using a SC list (SCL) decoding and cyclic-redundancy-check
(CRC) aided SCL (CA-SCL) decoding. Li et al. [3] found that the
CRC codes effectively eliminate the minimum Hamming weight
(MHW) codewords of polar codes. Recently, an optimal CRC construc-
tion for polar codes was proposed in [4]. The authors optimised CRC
codes to minimise the number of MHW codewords (NMHC). In [5],
polar codes of a new type, parity-check-concatenated (PCC) polar
codes, were proposed. The authors concatenated single-parity-check
codes instead of CRC codes. They constructed the PCC polar codes
with a (burst-error-based) heuristic technique and showed that the
PCC polar codes could outperform (standard) CRC-concatenated
polar codes (CRC polar codes). Because the CRC codes are a subclass
of parity-check codes, the PCC polar codes have more optimisation
potential than the CRC polar codes [5].

In this Letter, we successively construct the parity-check bits to
reduce NMHC as much as possible. To the best of the authors’ knowl-
edge, this is the first construction of PCC polar codes that considers
MHW codewords. Simulation results show that the proposed PCC
polar codes can further reduce the number of MHW codewords, and
they outperform the other polar codes.

CRC polar codes: We briefly review the CRC polar codes [1, 2, 4]. We
denote u = (u1, . . . , uN ) as an N bit input vector of the encoder. The
input vector u is composed of M message bits, P CRC parities, and
N-M-P zeros. A CRC encoder appends P parities to the end of
message vector m = (m1, . . . , mM ), and then a CRC codeword
w = (w1, . . . , wK ) is produced, where K =M + P. The bits of
(w1, . . . , wK ) and N-K zeros are placed into u according to the index
set F and Fc, where F and Fc are the index sets of the frozen and
unfrozen bits, respectively. The function u = p(w) represents the bit
mapping according to F and Fc. A codeword is generated as
x = (x1, . . . , xN ) = uG, where G is the generator matrix of the polar
code without a bit-reversal operation.

The CA-SCL decoding is performed using the received vector
y = (y1, . . . , yN ) and the number of list L. We denote ûi(l) and ûi1(l)
as an estimate of the ith input bit of the lth list and the estimated bit
sequence (path) from û1(l) to ûi(l), respectively. The decoder succes-
sively calculates the path metric PMi(l) of ûi1(l). Using PMi−1(l) and
ûi−1
1 (l), l = 1, . . . , L, the decoder calculates the path metrics for 2L can-

didates of ûi(l) = 0 or 1. It should be noted that if i [ F , then only
ûi(l) = 0, as one candidate. For each l, the two path metrics of the can-
didates are obtained by

PMi−1(l) if ûi(l) = h ai(l)
( )

PMi−1(l)− |ai(l)| otherwise,

{
(1)

where

ai(l) = log
Pr [y, ûi−1

1 (l)|ui = 0]

Pr [y, ûi−1
1 (l)|ui = 1]

and h(ai)= 0 if ai . 0 or i[ F
1 otherwise

{

We take only the L most reliable paths among the 2L candidates and
update ûi1(l) and PMi(l) using these L paths. After ûN1 (l) and PMN (l)
are obtained, we find the most reliable path that satisfies the CRC test.
If there is no such a satisfied path, then decoding is failed.

Zhang et al. [4] optimised the CRC codes to reduce NMHW. They
showed that the optimised CRC codes could improve the performance
at a high signal-to-noise ratio (SNR) region. Even though the perform-
ance could be improved by the optimised CRC codes, it could be further
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improved by relaxing the CRC constraint. This will be discussed in a
later section.

PCC polar codes: In this section, we introduce the PCC polar codes in
[5]. The PCC polar codes exploit P parity-check codes instead of CRC
codes. For j = 1, . . . , P, we denote cj and pj [ Fc as the jth parity bit
and its bit index in u, respectively. A set Tj is a subset of Fc, and all of its
elements are smaller than pj. Each parity bit cj is obtained by
cj =

∑
i[Tj

uimod 2, and upj becomes cj. Fig. 1 depicts an example
of u containing one parity-check bit, where the grey and white
squares represent frozen and unfrozen bits, respectively. In this
example, the parity bit c1 is obtained using message bits of
T1 = {4, 8}, and it is placed at u11, where p1 = 11. We note that T1
is a subset of Fc, and all of the elements in T1 are smaller than p1 = 11.

c1 = u4 + u8 (mod 2)
p1 = 11

u1 u2 u3 u4 u5 u6 u7 u8 u9 u10 u11 u12 u13 u14 u15 u16

Fig. 1 Example of one parity-check bit c1

The decoding of the PCC polar codes is almost the same as the
CA-SCL decoding. The only difference is that the decoder checks P
parity-check bits in the middle of the decoding, instead of using the
CRC check at the end of the decoding. When the decoder updates the
path metric of one parity bit, i.e. i = pj , the decoder decides that
ĉj(l) =

∑
i′[Tj

ûi′ (l)mod 2, and ûi(l) is fixed as ĉj(l). Then, the path
metric is updated by (1), where h(ai(l)) is replaced by ĉj(l). It should
be noted that this is almost the same as the path metric update of the
frozen bit, except the bit is decided by ĉj(l).

Wang et al. [5], also proposed a heuristic construction technique. First,
they investigated the bitwise error probability of Fc, and found P
burst-error blocks. Then, they constructed the parity bits pj as follows.
Principle 1: Each burst-error block has one parity bit. Principle 2:
Every element in Tj should be selected from a different burst-error
block. Principle 3: An unfrozen bit channel with high error probability
has a higher priority to be selected as an element of Tj. Moreover, there
are no duplicated elements in every Tj, where j = 1, . . . , P.

The results in [5] show that the PCC polar codes can outperform the
(standard) CRC polar codes. In the simulation results section, we will
show that the burst-error-based construction can reduce NMHC more
than the (standard) CRC polar codes. We note that the construction
does not consider the MHW, and hence there is room for improvement
in terms of the number of MHW codewords.

Proposed construction of PCC polar codes: In this section, we propose
a construction of PCC polar codes based on the MHW codewords. The
main objective of this construction is reducing NMHC as much as possi-
ble. Because finding a set of optimal single-parity-check codes without
any constraint requires huge complexity, we construct the parity-check
codes one by one in each of the blocks.

Let us denote bj, j = 1, . . . , P, as the last index of P blocks in
w = (w1, . . . , wK ). Each block (w1, . . . , wbj ) is defined by
b j+1 − bj = t for j = 1, . . . , P − 1, where b0 = 0, bP = K, and
t = ⌊K/P⌋. It should be noted that every block starts from w1. Let us
assume that an all-zero codeword is transmitted. We denote
Ad = {x|x [ C, wt(x) = d} as a set of codewords with d Hamming
weight, where C is the codebook of the (PCC) polar code and the func-
tionwt(x) returns the Hamming weight of the vector x. Its corresponding
message vectors that produce the codewords of Ad are denoted by
Vd = {w|u = p(w), x = uG, x [ Ad}. Let us define two functions
as f (w, a, j) = |{i|wi = ai = 1, i ≤ bj}| and wt(w, j) = |{i|wi = 1,
i ≤ bj}|. We denote dmin as the non-zero MHW. The pseudo code of
the proposed construction algorithm is described in the following.

1: Input: G, G, F , b1, . . . , bp
2: for j = 1: P do
3: Generate a PCC polar code using G, p j′ , and T j′ , for j′ , j
4: Find dmin, construct Admin

and Vdmin

5: a = (a1, . . . , aK ) � 0K and s = (s1, . . . , sK ) � 0K
6: continue � true
7: while continue = true do
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8: if a = 0K then
9: W = {w|w [ Vdmin

, wt(w, j)− wt(w, j − 1) . 0}
10: else
11: W = {w|w [ Vdmin

, f (w, a, j) = 0, wt(w, j) . 0}
12: end if
13: if W = ∅ and a = 0K then
14: continue � false
15: else if W = ∅ and a = 0K then
16: si � 1 with probability a for i ≤ bj
17: a � s
18: continue � false
19: else
20: v � argminw[W wt(w, j)
21: i � last non-zero index of (v1, . . . , vbj )
22: si � 1
23: a � a+ v
24: end if
25: end while
26: if wt(s) = 1 and wt(a) is an odd number larger than 2 then
27: s � a
28: else if wt(s) = 1 then
29: si � 1 with probability a for i ≤ bj, if ai = 0
30: end if
31: pj � last non-zero index of s
32: Tj � {i|si = 1, i ≤ bj, i = pj}
33: end for

The key idea of the proposed algorithm is that if there is no vector with 1
at the same position in a vector set, all of the non-zero vectors in the set
can be removed from the codebook of one single-parity-check code. In
other words, if every vector in a subset of Vdmin

has disjoint supports,
then the subset can be removed from Vdmin

by one parity bit, where
the support means an index set of non-zero elements in a given
vector. Let W be a set of vectors v composing a in line 20. Because
we only place one 1 from each vector in W into s, it is always true
that v · s = 1 for all v [ W. Then, every vector in W can be removed
from Vdmin

(and the corresponding vectors in Admin
) by the parity bit con-

structed by s. To make the size of W as large as possible, we add the
lowest weight vectors first. It should be noted that we have applied
wt(w, j)− wt(w, j − 1) . 0 in line 9 to uniformly distribute the parity
bits in b j−1 , pj ≤ bj , j = 1, . . . , P. If a is the only single element in
W and it has an odd weight >2, then a becomes s, because a · a = 1.
For the other cases, we construct s randomly by inserting 1 with prob-
ability a. For a · s = 1, we have considered the positions i of ai = 0
in line 29. Throughout this Letter, a = 0.5 is applied.
Simulation results: For the simulations, M/N = 1/2, N = 27, . . . , 210,
and binary phase shift keying over additive white Gaussian channel
are considered. The sets F and Fc are obtained using the Gaussian
approximation method with Eb/N0 = 1.5 dB [6]. We exploit the stan-
dard CRC codes (S.CRC) in [4]. We optimise the CRC codes (O.
CRC) using the method in [4]. The burst-error-based PCC polar codes
(B.PCC) are constructed using the heuristic construction in [5]. The
bitwise error probabilities are obtained from the simulation
results of the SCL decoding with L = 32, at Eb/N0 = 1.5 dB. The
proposed MHW-based PCC polar codes (H.PCC) are constructed
with L = 10,000. Every Ad is obtained using the method in [3].

The investigated |Ad| values are given in Table 1. We omit some results
of different numbers of parity bits P, because they did not have the best
performance in our simulations. The table shows that the B.PCC and
O.CRC have fewer MHW codewords than the S.CRC. The table also
shows that the H.PCC have further reduced NMWC. The effect of the
reduced |Ad| can be found in Fig. 2, where L = 32 is applied. In the
figure, the proposed codes show the best frame error rate (FER) perform-
ance for every N. For N = 128, the H.PCC outperforms the other codes in
the entire SNR region. For the other lengths, the performance gain is
increased at a higher SNR. This result is agreed with the reduced
NMHC in Table 1. Because we have reduced NMHC, we can obtain a
performance gain at a higher SNR. We note that the PCC polar codes
require more parity bits P than O.CRC, and hence the PCC polar codes
should overcome a rate loss of inner polar code. Even though the
B.PCC has less NMHC than O.CRC, they cannot outperform the
O.PCC in our simulations. It suggests that we should carefully construct
the PCC polar codes to obtain the best performance.
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Fig. 2 FER performances of S.CRC, O.CRC, B.PCC, and H.PCC polar codes

Table 1: Number of codewords |Ad | for d = 8, 12, 16
S

N

6

Type (P)
th July 2
L

017
|A8|
Vo
|A12|
l. 53
|A16|
128
S.CRC (8)
 40,000
 131
 92
 88
O.CRC (6)
 40,000
 105
 0
 211
B.PCC (12)
 40,000
 19
 0
 654
H.PCC (12)
 40,000
 0
 0
 2256
256
S.CRC (8)
 40,000
 84
 0
 675
O.CRC (8)
 40,000
 75
 0
 761
B.PCC (12)
 40,000
 0
 0
 231
H.PCC (20)
 40,000
 0
 0
 227
512
S.CRC (8)
 40,000
 20
 0
 1329
O.CRC (9)
 40,000
 20
 0
 1305
B.PCC (12)
 40,000
 0
 0
 213
H.PCC (24)
 40,000
 0
 0
 56
1024
S.CRC (8)
 30,000
 0
 0
 1939
O.CRC (9)
 30,000
 0
 0
 1812
B.PCC (16)
 30,000
 0
 0
 135
H.PCC (28)
 30,000
 0
 0
 54
Concluding remarks: In this Letter, we propose a MHW-based construc-
tion of PCC polar codes. It constructs the parity bits to reduce NMHC as
much as possible. The results show that the proposed construction reduces
NMHC. Consequently, the FER performance is improved at a high SNR.

Finally, we comment that the proposed algorithm is also heuristic and
does not guarantee the optimal performance. Finding an optimal con-
struction algorithm will be an important future research topic.
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