
IEEE COMMUNICATIONS LETTERS, VOL. 26, NO. 6, JUNE 2022 1211

Some Short-Length Girth-8 QC-LDPC Codes From Primes of the Form t2 + 1

Inseon Kim , Graduate Student Member, IEEE, Tetsuya Kojima , Member, IEEE,

and Hong-Yeop Song , Senior Member, IEEE

Abstract— We propose a simple algebraic construction for
girth-8 regular QC-LDPC codes of short lengths, a few hundreds,
based on the square matrix from some prime integers of the form
t2 + 1 = P and a multiplication table method. We generalize
the conventional multiplication table method in a way that the
size T of the circular permutation matrix (CPM) can be different
from the modulus M in the calculation of the exponent matrix.
We classify and suggest the parameters P ≤ M ≤ T with
M = kP so that the resulting codes have girth 8. In particular,
we prove the existence of a threshold T0 so that the resulting
code will always have girth 8 if T > T0 is used, given that
M = kP . Finally, we present various simulation results and
theoretical analysis, one of which shows that the proposed codes
of length around 250 have an additional coding gain of about
0.4 dB over the 5G NR LDPC codes.

Index Terms— Regular LDPC codes, QC-LDPC codes, Girth-8
codes, 5G NR channel codes, Algebraic constructions.

I. INTRODUCTION

THE Quasi-Cyclic Low-Density Parity-Check (QC-LDPC)
codes is one of the important family of LDPC codes [1]

since they have simple encoding and parallel decoding imple-
mentation. They were recently adopted as various communica-
tions standards for the error-correcting codes, in particular, 5G
NR [2], etc. Wireless communication systems such as global
navigation satellite systems (GNSS) and 5G ultra-reliable and
low latency communication (URLLC) require transmission
and reception of short data packets for the reliable and low-
latency communications [3], [4]. In this letter, we would like to
focus on constructing QC-LDPC codes of short lengths about
a few hundreds.

5G NR communication system uses two types of error
correcting codes; QC-LDPC codes for the data channel and
polar codes for the control channel [2]. For 5G NR LDPC
codes, various lengths and rates can be obtained by selecting
some submatrices of a given parity-check matrix. For 5G NR
polar codes, it is known that some good decoding performance
can be obtained if CRC-aided successive cancellation list
(CA-SCL) decoding with list size up to 8 [5], [6]. We will
compare in this letter the error performance of the proposed
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codes with some of 5G NR codes (both LDPC and polar) of
similar parameters.

Tanner graph is an important tool for design and analysis
of QC-LDPC codes. The length of the shortest cycle in its
Tanner graph, called girth, is closely related with its error
performance. One of the popular constructions for the codes
with large girth has been the multiplication table methods
[7]–[12]. Tanner proposed constructions using the multiplica-
tive table for the first time [7] and it was verified much later [8]
that QC-LDPC codes using Tanner’s construction have girth 6.
Regular QC-LDPC codes of girth 8 were proposed in [9] and
the symmetrical structure was utilized to reduce the search
space. Xiao et. al. proposed QC-LDPC codes using Reed-
Solomon (RS) parity-check matrix [10] which was using also
a multiplication table method. Recently, [11], [12] proposed
constructions for girth-8 QC-LDPC codes using a multiplica-
tion table and [12] further expanded it into the construction
for type-II QC-LDPC codes.

This letter is organized as follows. Section II introduces
the square matrix from the primes of the form t2 + 1 and the
multiplication table method. Section III describes the proposed
construction for girth-8 regular QC-LDPC codes of short
lengths, a few hundreds, based on the square matrix from
some prime integers of the form t2 + 1 and a multiplication
table method. We generalize the conventional multiplication
table method in a way that the size T of circular permutation
matrix (CPM) can be different from the modulus M in the
calculation of the exponent matrix. We present all possible
parameters for the proposed QC-LDPC codes for some short
lengths up to 500. We also prove the existence of a threshold
T0 on the size T of CPM so that the resulting code will have
girth 8 if T > T0 is used. In Section IV, we present various
simulation results, one of which shows that the proposed
codes of length around 250 have an additional coding gain
of about 0.4 dB over the 5G NR LDPC codes of comparable
parameters. Section V discusses some concluding remarks.

II. PRELIMINARIES

Let t ≥ 3 be an integer such that t2 + 1 = P is a prime.
Let α be a primitive root mod P . Then, we may construct a
square matrix of size t×t over the integers mod P as follows:

⎡
⎢⎢⎢⎣

1 αt α2t · · · α(t−1)t

α αt+1 α2t+1 · · · α(t−1)t+1

...
...

...
. . .

...
αt−1 α2t−1 α3t−1 · · · αt2−1

⎤
⎥⎥⎥⎦ (1)

In this matrix, all the elements are distinct mod P . In
our main construction later, we will use its 3× n submatrix
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for P ≥ 17. It is an open problem that there exist an infinitely
many primes of the form t2 + 1 [13], [14]. Some known
primes P of the form t2 + 1 for small values of t are the
followings [13]:

(t, P ) = (4, 17), (6, 37), (10, 101), (14, 197), (16, 257), . . .

We would like to briefly review the construction for
QC-LDPC codes using the multiplication table methods [7],
[11]. For some integer P , the first step is to choose
two integer sequences a = (a0, a1, . . . , am−1) and b =
(b0, b1, . . . , bn−1). Next is to construct an exponent matrix
E = [e(i, j)] with e(i, j) = aibj (mod P ). Finally, a parity-
check matrix H = [He(i,j)] is obtained by substituting CPM
shifted by e(i, j) into E. Usually the size of CPM has been
selected to be P which is the modulus in the calculation of
e(i, j) above. The condition for the existence of a 2c-cycle [1]
now becomes

c−1�
l=0

(e(il, jl) − e(il, jl+1)) ≡ 0 (mod P ) (2)

for some i0, i1, . . . , ic−1 and j0, j1, . . . , jc where j0 = jc,
il �= il+1 and jl �= jl+1 for 0 ≤ l ≤ c − 1. We note here that
the modulus must be the same as the size of CPM.

In 2004 [7], Tanner et al. have used a = (1, c, c2, . . . , cm−1)
and b = (1, d, d2, . . . , dn−1) where c and d are elements of
order m and n, respectively, where m and n are some divisors
of P − 1 for some prime P . Recently, Kim and Song [11]
have used top three rows of the matrix (1) with CPM size
T = P, P + 1, . . . and constructed some QC-LDPC codes of
girth 8. The girth property was checked only by computer in
a case-by-case manner. In this letter, we will use some 3 × n
submatrix of (1) and generalize the calculation of the exponent
matrix using modulus M = kP for some positive integer k,
further generalize the construction of H by using the CPM of
size T ≥ M and finally investigate the girth property of the
resulting codes in detail. In some sense, therefore, this letter is
a full generalization of [11] in the construction steps as well
as in the investigation of their girth property.

III. MAIN CONSTRUCTIONS AND GIRTH PROPERTY

We first propose an algebraic construction for QC-LDPC
codes based on the square matrix (1). Then, we discuss various
parameters of the resulting codes, and investigate various
conditions for girth-8 in detail. In the following, (x)K is the
unique integer in the range from 0 to K − 1 that is congruent
to x mod K .

Main construction:

1) Let P = t2 + 1 be a prime with t ≥ 3, α be a primitive
root mod P and consider the square matrix of size t× t
as shown in (1).

2) For some n ≤ t, choose any 3 × n submatrix of (1)
consisting of three consecutive rows, and denote it by
D = [d(i, j)], where i = 0, 1, 2 and j = 0, 1, . . . , n− 1.

3) Construct the 3 × n exponent matrix E = [e(i, j)] by
keeping the left-most column and the top row of D and
then using the multiplication table method. That is, for

TABLE I

SOME PARAMETERS OF MAIN CONSTRUCTION

TABLE II

THRESHOLD Eb/N0 OF THE PROPOSED CODES BY DENSITY EVOLUTION

all i and j we use e(i, 0) = (d(i, 0))P and e(0, j) =
(d(0, j))P , and finally

e(i, j) = (e(i, 0)e(0, j))M

for M = kP for some integer k > 0.
4) The parity-check matrix H = [He(i,j)] is now obtained

by substituting e(i, j)-shifted CPM of size T , for some
T ≥ M .

Theorem 1: Main construction above gives a parity-check
matrix H of a (3, n) regular QC-LDPC code of length nT
and rate ≥ (n − 3)/n.

The regular QC-LDPC codes of various lengths and rates
can be obtained by selecting the parameters (P, M, T ). In the
rest of this letter, we will consider the first three rows and first
n columns of (1) in Step 2) of Main construction without loss
of generality.

The target length must be of the form L = nT where
n is the number of columns of E and T is the size of
CPM. We have the target rate ≈ (n − 3)/n and we must
find an integer t ≥ n such that t2 + 1 = P is a prime
and P ≤ T . Divide T by P and obtain T = qP + r.
Then M = kP for k = 1, 2, . . . , q are all possible values
of M . We list all these cases for the target lengths L =
200, 250, 300, 350, 400, 450 and 500 in Table I. We note that
only three pairs (t, P ) = (4, 17), (6, 37) and (10, 101) are used
in the table.

Remark 1: In all cases shown in Table I, the codes are
(3, n) regular, with values of n equals to only 4, 5, or 6, which
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are in fact the constant degrees of check-nodes. Together with
the target rate, this determines threshold value of Eb/N0 (from
density evolution) shown in Table II. [15]

We will now investigate various conditions for the resulting
codes to have girth 8. We have checked by computer the girth
of all the codes in Table I and those of lengths less than
200 mentioned above. As we have noted earlier, when n < t,
we use the left-most n columns and top 3 rows in Step 2).
Further, we use α = 5 for P = 17 and α = 2 for P = 37 and
101. First, all the codes in Table I turn out to have girth at
least 8. For the lengths less than 200, lots (but not all) of cases
have girth 8, which will be described in the remaining of this
section.

Remark 2: Let P = t2 + 1 be a prime with some t = n ≥
3 and α be a primitive root mod P . Assume that T = M = P
in Main construction. Then, E = D and the elements are
all distinct mod M . This rules out the existence of a 4-cycle.
Furthermore, when

(P, α) = (17, 5), (37, 2), (101, 2), (197, 2), (257, 13), (3)

we check that all the regular QC-LDPC codes from Main
construction do not have a 6-cycle. This takes care of the
cases when T = M = P .

The next case is when T = M = kP for some positive
integer k > 1. It is obvious that if x �≡ 0 (mod P ) then
x �≡ 0 (mod kP ). This gives the following:

Remark 3: For the parameters (P, α) listed in (3), it is not
difficult to show that, when we change the parameters T =
M = kP for any positive integer k ≥ 1, the resulting code of
Main construction does not have 4-cycles and 6-cycles.

In the remaining of this section, we consider the final and
most general case when T ≥ M = kP .

Remark 4: Main construction is a generalized version of
the multiplication table method in that the modulus M in the
calculation of E and the size T of CPM in H can be different.
When they are different, the condition (2) has to be computed
mod T (instead of mod M or P ).

Note that it is enough to consider the case of n = t as
long as the girth of the resulting code is concerned. For the
parameters (t, P ) = (4, 17), the lengths of the resulting codes
are multiples of 4 from 68, corresponding to the CPM size
T = 17, 18, . . .. Among these, we check that the cases of
T = 17, 21, 25, 26 and all 28 ≤ T ≤ 10000 have girth at
least 8. For the parameters (t, P ) = (6, 37), the lengths of the
resulting codes are multiples of 6 from 222, corresponding
to the CPM size T = 37, 38, . . .. Surprisingly, we found that
the cases of all 37 ≤ T ≤ 10000 have girth at least 8. From
these results, we are able to prove that there exists a lower
bound T0 such that the resulting codes all have girth at least
8 whenever T > T0 for (t, P ) if (P, α) listed in (3) is used.

Lemma 1: Let P = t2 + 1 be a prime with t ≥ 3, and let
α be a primitive root mod P . For (P, α) listed in (3), the
QC-LDPC codes from Main construction have girth 8 if

T > T0 =
	
2 max{(α)P , (α2)P } + 1



(P − 1), (4)

where 0 ≤ (x)K < K is the integer congruent to x mod K ,
which are shown in Table III.

TABLE III

SOME THRESHOLD VALUES T0 FROM LEMMA 1

We recall that the cases of 28 ≤ T ≤ 272 for (P, α) =
(17, 5) and 37 ≤ T ≤ 324 for (P, α) = (37, 2) have been
checked by computer. This computer check and Lemma 1
gives the following:

Theorem 2: Assume that we use (P, α) in (3) and let
T0 be the integer given in (4). Then, Main construction with
(P, M = kP, T > T0) gives a QC-LDPC code of girth at
least 8. Furthermore, it gives a girth-8 code when T ≥ 28 for
(P, α) = (17, 5) and T ≥ 37 for (P, α) = (37, 2).

Now, we will prove Lemma 1. We have to show that Tanner
graph of H = [He(i,j)] from Main construction does not have
4-cycles and 6-cycles.

Consider the case of 4-cycles. We know that there exists a
4-cycle if

e(0, i)− e(0, j) + e(1, j) − e(1, i) ≡ 0 (mod T ),
or e(0, i)− e(0, j) + e(2, j) − e(2, i) ≡ 0 (mod T ),
or e(1, i)− e(1, j) + e(2, j) − e(2, i) ≡ 0 (mod T ) (5)

for some 0 ≤ i �= j < n.
We will concentrate on the first relation in (5). Its LHS can

be easily upper-bounded by 2(M − 1) since every term is an
integer less than M = kP .

e(0, i) − e(0, j) + e(1, j) − e(1, i) < e(0, i) + e(1, j)
< 2(M − 1). (6)

In fact, we note that e(0, i) is an integer less than P . Note
also that e(1, j) = (αe(0, j))M and the product of (α)P and
e(0, j) cannot be bigger than M = kP if k is large enough.
In this case, we may have

e(1, j) ≤ (α)P e(0, j) ≤ (α)P (P − 1).

Combining these two upper-bounds, if k is large enough,

e(0, i)− e(0, j) + e(1, j) − e(1, i)
< e(0, i) + e(1, j)
< P − 1 + (α)P (P − 1) = ((α)P + 1)(P − 1).

Similarly, by upper-bounding the LHS of the second and third
relations in (5), we have

e(0, i)−e(0, j) + e(2, j) − e(2, i) < ((α2)P + 1)(P − 1),
e(1, i)−e(1, j) + e(2, j)−e(2, i) < ((α)P +(α2)P )(P − 1),

for any i �= j and if k is large enough. Finally, combining all
three together, we have the overall upper-bound T0 in (4) of
the LHS of any of the three relations in (5).

How large is the value k for the above bounds? It is not
difficult to show that the upper-bound is true when

k ≥ max{(α)P , (α2)P }.
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Fig. 1. Performance comparison of some half-rate codes.

For k less than this value, we simply use the upper bound
2(M − 1) in (6). Now, it is straightforward to show that
2(M − 1) is less than T0 in this case.

Finally, Remark 3 in which T = M = kP implies that, for
any i �= j, the LHS of the relations in (5) cannot be 0 mod T
or mod kP . This implies that the LHS of the relations in (5)
cannot be 0.

Therefore, all three relations (5) cannot be satisfied if
T > T0 where T0 is given in (4). This takes care of the
non-existence of a 4-cycle.

Now, consider the case of 6-cycles. We know that there
exists a 6-cycle if

e(0, i) − e(0, j) + e(2, j) − e(2, l) + e(1, l) − e(1, i)
≡ 0 (mod T )

for some three distinct indices i, j and l. This case can be
taken care of easily and in the same manner as the case of
4-cycles. This finishes the proof of Lemma 1.

Remark 5: The complexity of Main construction with The-
orem 2 is very low in that one has to calculate 3n elements
E and 3n substitutions of CPMs for H. Therefore, the com-
putational complexity is almost negligible compared with the
cases in which one has to check in addition the girth conditions
exhaustively when constructing the exponent matrix E in most
of the previous reports [7]–[12], without which there is no
guarantee of girth at least 8.

IV. PERFORMANCE OF THE PROPOSED CODES

In this section, we analyze the performance of the pro-
posed codes using sum-product decoding with the maximum
50 iterations under the additive white Gaussian noise (AWGN)
channel and binary phase shift keying (BPSK) modulation.

We first compare the performance of the proposed code of
length around 250 with some other LDPC codes and a polar
code in Fig.1. The half-rate 5G NR QC-LDPC code has length
264 [2] and it shows an error-floor after FER < 10−3. It is
also known that it has girth 6 [16]. The proposed code of
girth 8 and target rate 1/2 with (P, M, T ) = (37, 37, 43) has
length 258 (the exact rate 0.508) and shows no error-floor until
FER > 10−5 and an additional coding gain of about 0.4 dB
over the 5G NR LDPC code at FER 10−5. The half-rate girth-
8 QC-LDPC code from the symmetrical construction [9] has

Fig. 2. Performance of some proposed codes of target rate 1/4.

TABLE IV

CYCLE DISTRIBUTION, MINIMUM DISTANCE AND RATE

length 312 that is much larger than 258, but with much worse
performance than the proposed code. The half-rate 5G NR
polar code with CA-SCL decoding [5] has comparable length
256 with the proposed code and performs well better with a
coding gain of 0.4 dB relative to the proposed code at FER
10−5. It would be an interesting future work to investigate
further this comparison of LDPC codes and polar codes, both
of short lengths.

We simulate the performance of the proposed codes of
lengths 176, 300 and 500. For each of these lengths, multiples
parameters can be selected with target rate 1/4, and selected
the best two choices as shown in Fig. 2. We have determined
the cycle distributions, minimum distances and the exact rates
of all these six codes and presented in Table IV. Here, the code
with bigger P (with ∗ in the table) becomes slightly better.

In Table IV,
�

i≥i0
gix

i implies that the code has gi i-cycles
in its Tanner graph for i ≥ i0. Due to the space limitation we
show only the terms for i ≤ 12 here. Note that the code
of length 500 constructed with P = 101 has girth 10. The
minimum distance was estimated by calculating some small
but random portions of the codewords. It is interesting that
the values here are much less than those of the optimal linear
codes reported in various sources. For example, the minimum
distance of an optimum [176, 44] linear code is known to be
46 ∼ 62 [17, p.336]. For the lengths 300 and 500, we were
able to find only an upper bound using MAGMA. It seems
that the performance is not much related with the minimum
distance considering the decoding algorithm. The exact rate
turned out be slightly increased from the target rate. For
practical application, this will not be any problem since, for
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Fig. 3. Performance of QC-LDPC codes for M = P = 37 as T increases.

example, some number of zero-padding or puncturing can be
used.

Remark 6: We present in Figs. 1 and 2 the performance
of those codes with FER > 10−5. It is evident to see that the
proposed codes show no error floor phenomenon in this range.

Finally, we would like to discuss and present some trend
of Main construction for given parameters P and M as T
gets larger and larger. This is one key contribution of this
letter that T can be any larger than M or P for large lengths,
hoping that the performance gets better and better. It turned
out that it is NOT true that increasing T gives better and
better performance. On the other hand, we found that the
performance increases for a while and then decreases after
some value of T . We may conjecture that there exists an
optimal value of T for the best performance. The evidence
is shown in Fig. 3. All these curves are the performance of
the half-rate and girth-8 codes with parameters M = P = 37
(t = n = 6) and 3×6 exponent matrices. Therefore, the length
is given as L = 6T for each T in the figure. It would be
interesting to find the optimal value of T for the performance
and its relation with the lower bound T0 for girth-8 as in
Lemma 1 and Theorem 2.

V. CONCLUDING REMARKS

In this letter, we propose a simple algebraic construction
for girth-8 regular QC-LDPC codes of short lengths, a few
hundreds, based on the square matrix from some prime inte-
gers of the form t2 + 1 and a multiplication table method.
We generalize the conventional multiplication table method
in a way that the size T of CPM can be much larger than
the modulus M in the calculation of the exponent matrix.
Various parameters of the resulting codes are determined and
the performance of some example codes are simulated and
compared with various other codes with FER up to 10−5.
Threshold Eb/N0, minimum distance, cycle distribution and
exact rates of these codes are investigated.

We note that one could choose M as any integer between P
and T . In fact, [11] uses M = P and T = P, P +1, P +2, . . .

without any guarantee that the girth of the resulting code is at
least 8, except for the case-by-case computer check. We didn’t
mention in this letter, but we have also constructed lots of
codes for some values of P < M < T , with values of M
other than kP , and found that the performances are very much
similar whenever the girth is at least 8. The choice T = M =
kP gives an advantage that the resulting code is easily shown
to have girth at least 8 if the code from T = M = P has
girth at least 8 (Remark 3). Finally, we choose M = kP with
(P, α) in (3) and T > T0 for the guarantee of the girth 8
(Theorem 2).

The performance of the proposed regular QC-LDPC code
is slightly worse than those of 5G NR polar code (Figure 1).
Various efforts to improve the performance of the QC-LDPC
codes would be also an interesting future work.
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