A construction for girth-8 QC-LDPC codes using Golomb rulers

Inseon Kim (D) and Hong-Yeop Song ${ }^{\boxed{*}}$ (1)
School of Electrical and Electronics Engineering, Yonsei University, Seoul, Korea
Email: hysong@yonsei.ac.kr

In this paper, an algebraic construction of regular QC-LDPC codes by using the modular multiplication table $\bmod P$ and Golomb rulers are proposed. It is proved that the proposed QC-LDPC codes based on a Golomb ruler of length L have girth at least 8 if $P>2 L$. The error performance of the proposed QC-LDPC codes are simulated with various Golomb rulers. The proposed codes of length around 300 from the optimal 6-mark Golomb ruler have an additional coding gain of at least 0.1 dB over 5G NR LDPC codes, 0.5 dB over those given earlier by others, both at FER 10^{-3}. Some non-trivial techniques to increase the length of a given Golomb ruler with and without an additional mark for improving the performance of the codes from Golomb rulers up to 0.7 dB are also found.

Introduction: A Golomb ruler is a set of marks at integer positions along a ruler such that no two pairs of marks are the same distance apart [1, 2]. It was first studied by Babcock to find solutions for selecting radio frequencies to diminish the interference between communication channels in 1953 [3], and was fully studied mathematically in terms of their constructions and applications [4] and many new applications in radioastornomy [5], coding theory [6, 7], and sequences design [8].

Quasi-cyclic low-density parity-check (QC-LDPC) codes [9] are getting more and more attention because of the simple encoding scheme and parallel decoding. The QC-LDPC code \mathcal{C} is an LDPC code such that, for some fixed integer i dividing the code length, $\hat{S}^{i} \mathbf{c} \in \mathcal{C}$ whenever $\mathbf{c} \in \mathcal{C}$ where \hat{S} is the cyclic shift operator. It is a cyclic LDPC code when $i=1$. A typical description of a QC-LDPC code uses a parity-check matrix which is partitioned by some circular permutation matrices (CPM) of the same size [9].

The multiplication table methods for structured QC-LDPC codes have been proposed in various different forms [9-16]. They follow some universal scheme of first constructing an $m \times n$ exponent ma$\operatorname{trix} \mathbf{E}=[e(i, j)]$ as a multiplication $e(i, j)=e(i, 0) e(0, j)$ and then determining the parity-check matrix $\mathbf{H}=\left[\mathbf{H}_{e(i, j)}\right]$ by substituting some appropriately-shifted CPM of size P into the position (i, j) of \mathbf{E} for all i, j. The resulting code is the null space of \mathbf{H}, of length $n P$. The differences are (i) choice of the top-row and the left-most column sequences of \mathbf{E} so that some girth condition is satisfied and (ii) choice of the multiplication (ordinary or modular).

A universal condition to guarantee some girth of the proposed codes is from ref. [9] or its variation (some sufficient conditions). Here, the two sequences $\{e(i, 0) \mid i=0,1, \ldots, m-1\}$ and $\{e(0, j) \mid j=0,1, \ldots n-1\}$ should satisfy the non-existence condition [9] of a $2 c$-cycle in the Tanner graph of \mathbf{H} :

$$
\sum_{l=0}^{c-1}\left(e\left(i_{l}, 0\right) e\left(0, j_{l}\right)-e\left(i_{l}, 0\right) e\left(0, j_{l+1}\right)\right) \not \equiv 0(\bmod P)
$$

for all $i_{0}, i_{1}, \ldots, i_{c-1}$ and $j_{0}, j_{1}, \ldots, j_{c}=j_{0}$ such that $i_{l} \neq i_{l+1}$ and $j_{l} \neq$ j_{l+1} for $0 \leq l<c$.

A greatest common divisor (GCD) constraint on the finite integer sequences is one sufficient condition that guarantees the girth- 8 when the sequence with GCD constraint is used as top-row of \mathbf{E} and the leftmost column is given as $\{0,1, \ldots, m-1\}$ [12]. A 3 -free-set condition is another such condition [15]. It is known that any 3 -free-set condition implies the GCD constraints but not conversely [15]. These two constructions $[12,15]$ have the properties that (i) the left-most columns are $\{0,1, \ldots, m-1\}$ and the top-rows are either the sequences with GCD constraints or 3-free-set condition in order to guarantee the girth-8 property and (ii) multiplication is ordinary and hence the CPM size is determined by the largest element in \mathbf{E}. On the other hand, in ref. [16], (i) they
have to search for the top-row integer sequence that satisfies the condition from ref. [9] and then (ii) the multiplication is modular. All three constructions have to search for the top-row sequences to guarantee the girth-8 property in some exhaustive ways.

A set of positive integers $\left\{g_{1}, g_{2}, \ldots, g_{n}\right\}$ where $g_{1}<g_{2}<\ldots<g_{n}$ is called a Golomb ruler if the differences $g_{j}-g_{i}$'s, for $i<j$, are all distinct [2]. Usually, the first mark is placed in position $g_{1}=0$. In this case, the length of the ruler is equal to the maximum difference, $L=g_{n}-g_{1}=g_{n}$. An optimal Golomb ruler is the Golomb ruler of the smallest possible length when the number of marks is fixed to be n. We note that all distinct differences $g_{j}-g_{i}$'s implies that $g_{j}-g_{i} \neq g_{k}-g_{j}$ for any $g_{i}<g_{j}<g_{k}$. Therefore, a Golomb ruler is always a 3-free set, but not conversely.

In this paper, we propose an algebraic construction of regular QCLDPC codes by using the modular multiplication table mod P and Golomb rulers. The multiplication is done $\bmod P$ and hence we prove that $P>2 L$ guarantees the girth- 8 property, where L is the length of the Golomb ruler. We simulate the error performance of the proposed QCLDPC codes with various Golomb rulers. The proposed codes of length around 300 from the optimal 6-mark Golomb ruler have an additional coding gain of 0.1 dB over those from 5G NR LDPC code [17], 0.5 dB over those from ref. [13] and at least 2.0 dB over those from ref. [15], all at FER 10^{-3}. We also find some non-trivial techniques to increase the length of a given Golomb ruler with and without an additional mark for improving the performance of the codes up to 0.7 dB .

Properties of Golomb rulers: We will describe some techniques of getting a new Golomb ruler from any given one. The proposed construction in this paper will use any Golomb ruler regardless of its optimality. We note that when $\left\{g_{1}, g_{2}, \ldots, g_{n}\right\}$ is an n-mark Golomb ruler, any subset of size $m \leq n$ is also an m-mark Golomb ruler.
Theorem 1. Let $\left\{g_{1}, g_{2}, \ldots, g_{n-1}, g_{n}\right\}$ be an n-mark Golomb ruler. Then, $\left\{g_{1}, g_{2}, \ldots, g_{n-1}, g\right\}$ is also an n-mark Golomb ruler if $g>2 g_{n-1}$.

Proof. To prove that $\left\{g_{1}, g_{2}, \ldots, g_{n-1}, g\right\}$ is an n-mark Golomb ruler, we have to check the differences with g and g_{i} for $1 \leq i \leq n-1$, since $\left\{g_{1}, g_{2}, \ldots, g_{n-1}\right\}$ is an $(n-1)$-mark Golomb ruler. If $g-g_{i}=g-g_{j}$ for some $i \neq j$, then $g_{i}=g_{j}$, which is impossible. If $g-g_{i}=g_{j}-g_{k}$ for some $j>k$ and some i, then $g=g_{i}+g_{j}-g_{k} \leq g_{i}+g_{j} \leq 2 g_{n-1}$, which is impossible since $g>2 g_{n-1}$.

Construction of QC-LDPC codes using Golomb ruler: We will describe the main construction and the proof that it gives a girth- 8 QCLDPC code.

Main construction:

(Step 1) Choose an n-mark Golomb ruler $\mathbf{b}=\left(b_{0}, b_{1}, \ldots, b_{n-1}\right)$ of length $L=b_{n-1}-b_{0}$, where $n>3$.
(Step 2) Construct a $3 \times n$ exponent matrix $\mathbf{E}=[e(i, j)]$ where $e(i, j)=i b_{j}(\bmod P)$ for $i=1,2,3$ and $j=0,1, \ldots n-1$, where $P>$ $2 L$. The integer $e(i, j)$ must be in the range $0 \leq e(i, j) \leq P-1$.
(Step 3) Finally construct the parity-check matrix $\mathbf{H}=\left[\mathbf{H}_{e(i, j)}\right]$ by substituting an appropriate CPM of size P. For the position (i, j), the appropriate CPM is the identity matrix of size P circularly shifted by $e(i, j)$.

The binary QC-LDPC code from main construction is the null space of the parity-check matrix \mathbf{H}. The length becomes $n P$ and the code rate is at least $(n-3) / n$. We want to check whether the proposed QC-LDPC codes have girth- 8 or not.

Theorem 2. The QC-LDPC codes from main construction have girth- 8 if $P>2 L$, where P is the modulus in the construction of the exponent matrix as in (Step 2) and L is the length the Golomb ruler.

Proof. We have to show that the Tanner graph of $\mathbf{H}=\left[\mathbf{H}_{e(i, j)}\right]$ from main construction does not have 4 -cycles and 6 -cycles. Main construction uses the multiplication table method with left-most column ($1,2,3$) and the top-row $\mathbf{b}=\left(b_{0}, b_{1}, \ldots, b_{n-1}\right)$ for the exponent matrix $\mathbf{E}=$ $[e(i, j)]$. It is easy to see from the non-existence condition in Introduction that there is no 4 -cycle if $b_{i}-b_{j} \neq 0(\bmod P)$ and $2\left(b_{i}-b_{j}\right) \neq 0$ $(\bmod P)$ for all $0 \leq i \neq j<n$. Since the length of the Golomb ruler is L, we have $-L \leq b_{i}-b_{j} \leq L$ for any $i \neq j$. Therefore, the condition is satisfied since $P>2 L$.

Table 1. Golomb rulers [2] and CPM size P in main construction

\# marks	Golomb rulers	L	P
4	(0,1,4,6)	6	P>12
5	(0, 1, 4, 9,11)	11	$P>22$
	(0,2,7,8,11)		
6	(0,1,4,10,12,17)	17	$P>34$
	(0,1,4,10,15,17)		
	(0,1,8,11, 13, 17)		
	(0,1,8,12,14,17)		
7	(0,1,4,10,18,23,25)	25	$P>50$
	(0,1,7,11,20,23,25)		
	(0,1,11,16,19,23,25)		
	(0,2,3,10,16,21,25)		
	(0,2,7,13,21,22,25)		

Now, consider the case of 6-cycles. The non-existence condition for 6 -cycles can be rewritten as

$$
(2-1) b_{i}-(3-1) b_{j}+(3-2) b_{k} \neq 0(\bmod P)
$$

or

$$
b_{i}-b_{j} \neq b_{j}-b_{k}(\bmod P)
$$

for any three distinct indices i, j and k. Since the length of the Golomb ruler is L, the difference $b_{i}-b_{j}$ for any $i \neq j$ is in the range between $-L$ and L, and these differences $\left(b_{i}-b_{j}\right)$'s for all $i \neq j$ are all distinct. Therefore, the condition is satisfied since $P>2 L$.

It is noticed that one can add a constant to the left-most column or to the top-row of the multiplication table in main construction without changing the girth -8 property.

Therefore, one can use $(i, i+1, i+2)$ instead of $(1,2,3)$ for the leftmost column, and similarly, one can use ($b_{0}+j, b_{1}+j, \ldots, b_{n-1}+j$) for the top-row of the multiplication table, for any integers i and j.

Table 1 shows that the n-mark optimal Golomb rulers and corresponding CPM sizes of girth-8 QC-LDPC codes from main construction. In the table, we present only the optimal Golomb rulers whose number of marks are between 4 and 7 [2]. According to ref. [1], the researchers found optimal Golomb rulers up to 27 marks.

From any n-mark Golomb ruler, one can find the smaller number of mark ruler by taking its subset. For example, let us consider the 7 -mark Golomb ruler in Table 1. It gives the QC-LDPC code of length $7 P$ and of rate $4 / 7$. By taking its subsets for 6 -marks, 5 -marks, and 4 -marks, one can construct QC-LDPC codes of lengths $6 P, 5 P$, and $4 P$ and of rates $3 / 6,2 / 5$, and $1 / 4$, respectively.

Performance of QC-LDPC codes from main construction with various Golomb rulers: We now analyse the performance of the proposed girth8 QC-LDPC codes from main construction using sum-product decoding and max 50 iterations under the assumption of AWGN channel and BPSK modulation.

Fig. 1 shows the FER performance of the proposed half-rate codes of length $6 P=312$ from two different 6-mark Golomb rulers: one is an optimal 6-mark Golomb ruler and the other is a subset of size 6 from the 7 -mark Golomb ruler both in Table 1. Note that $P=52>2 L$ for using the Golomb ruler of length L so that both codes have girth- 8 . For comparison, we select three other half-rate QC-LDPC codes: 5G NR LDPC code of length 308 [17], the code by symmetrical construction [13] and the code from the 3 -free set $(0,2,3,7,8,10)$ [15]. The two proposed codes have almost the same performance. They have an additional coding gain of about 0.1 dB over 5G NR LDPC code, 0.5 dB over the code from [13], and more than 2.0 dB over the code from ref. [15], all at FER 10^{-3}.

We also simulated the FER performance of all the codes from five different 7-mark optimal Golomb rulers in Table 1 of length $7 P=357$

Fig. 1 Performance comparison of various half-rate codes

Fig. 2 Performance of the codes using four 6-mark Golomb rulers
and of rate 4/7. It turned out that their performances are very much the same. Here, the size $P=51$ is used.

In general, one can use the $(n-1)$-mark Golomb ruler obtained from n-mark one by taking a subset of size $n-1$. There are n ways of doing this. We check the case $n=7$ and some extensive computing simulations show that all they have some similar performance.

Given an n-mark Golomb ruler, one can obtain many others of longer length by Theorem 1. The longer ones obtained by Theorem 1 are further away from the optimal Golomb ruler, but they construct the QC-LDPC codes with the same length $n P$.

In the hope of improving the performance, we simulate four half-rate codes from 6-mark Golomb rulers. The result is shown in Fig. 2.

We take the last optimal 6-mark Golomb ruler of length 17 in Table 1: $(0,1,8,12,14,17)$. From Theorem 1, we change the last mark 17 to 30,60 , and 99 to obtain longer length 6 -mark rulers of lengths 30,60 , and 99 , respectively. We use the CPM size $P=200$ so that the code length is 1200 and the rate $3 / 6$.

The QC-LDPC codes using the ruler of length 60 shows the best performance among them. This code has an additional coding gain about 0.7 dB at FER 10^{-3} over those using the optimal ruler of length 17.

This shows an interesting trend of performance of the codes from the n-mark rulers when the last mark g_{n} increases. The performance increases as g_{n} increases up to some threshold value g^{*} and then decreases as the value g_{n} further increases beyond g^{*}. We now propose an interesting open problem: given an n-mark (optimal) Golomb ruler of length $L=g_{n}$, find the value g^{*} for the final mark g_{n} so that the performance of the code from main construction using the n-mark Golomb ruler of length g^{*} is the best.

Concluding remarks: In this paper, we propose an algebraic construction of regular QC-LDPC codes by using the modular multiplication table mod P and Golomb rulers. We prove that the proposed QC-LDPC codes based on a Golomb ruler of length L have girth at least 8 if $P>2 L$. We also proposed some deterministic ways to make some n mark Golomb rulers (and also $n+1$-mark Golomb rulers) from a given n-mark Golomb ruler without any exhaustive search.

One interesting open problem is to find a new final mark g^{*} of a given n-mark optimal Golomb ruler so that the performance of the proposed QC-LDPC code is best. We currently do not have any idea except that it must be a function of the modulus P since $2 g^{*}<P$ must be satisfied for the girth-8 property.

One final comment on the relation between the Golomb rulers and the 3 -free sets. Every Golomb ruler is a 3 -free set but not conversely For example, a 3 -free set $(0,2,3,7,8,10)$ fails to be a Golomb ruler by the relations; $3-2=8-7$ of four different terms $2,3,7,8$; or $2-0=$ $10-8$ of another four terms $0,2,8,10$; and many more. It may require further research for any theoretical support but now we just guess that the existence or non-existence of such violations in 3-free sets makes performance difference between the codes from 3-free sets and from Golomb rulers.

Acknowledgment: This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. 2020R1A2C2011969).

Conflict of interest: The authors declare no conflict of interest.

Data availability statement: Data sharing not applicable - no new data generated, or the article describes entirely theoretical research.
© 2022 The Authors. Electronics Letters published by John Wiley \& Sons Ltd on behalf of The Institution of Engineering and Technology.
This is an open access article under the terms of the Creative Commons Attribution-NonCommercial License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes.
Received: 15 January 2022 Accepted: 14 March 2022
doi: 10.1049/ell2.12531

REFERENCES

1 Golomb ruler From Wikipedia, the free encyclopedia. https://en. wikipedia.org/wiki/Golomb_ruler (2021). Accessed 11 Jan 2022

2 Dimitromanolakis, A.: Analysis of the golomb ruler and the sidon set problems, and determination of large, near-optimal golomb rulers. Master's Thesis, Technical University of Crete, Chania (2002)
3 Babcock, W.C.: Intermodulation interference in radio systems frequency of occurrence and control by channel selection. Bell Syst. Tech. J. 32(1) 63-73 (1953)
4 Bloom, G.S., Golomb, S.W.: Applications of numbered undirected graphs. Proc. IEEE 65(4), 562-570 (1977)
5 Blum, E.J., Ribes, J.C., Biraud, F.: Some new possibilities of optimum synthetic linear arrays for radioastronomy. Astron. Astrophys. 41(3-4) 409-411 (1975)
6 Robinson, J., Bernstein, A.: A class of binary recurrent codes with limited error propagation. IEEE Trans. Info. Theory 13(1), 106-113 (1967)

7 Chen, C., Bai, B., Li, Z., Yang, X., Li, L.: Nonbinary cyclic LDPC codes derived from idempotents and modular Golomb rulers. IEEE Trans. Commun. 60(3), 661-668 (2012)
8 Urbano, D.F.D., Ojeda, C.A.M., Solarte, C.A.T.: Almost difference sets from singer type Golomb rulers. IEEE Access 10, 1132-1137 (2022)
9 Fossorier, M.P.C.: Quasicyclic low-density parity-check codes from circulant permutation matrices. IEEE Trans. Info. Theory 50, 1788-1793 (2004)

10 Tanner, R.M., Sridhara, D., Sridharan, A., Fuja, T.E., Costello, D.J. LDPC block and convolutional codes based on circulant matrices. IEEE Trans. Info. Theory 50(12), 2966-2984 (2004)
11 Zhang, G., Hu, Y., Ren, D., Liu, Y., Yang, Y.: Type-II QC-LDPC codes from multiplicative subgroup of prime field. IEEE Access 8, 142459142467 (2020)
12 Zhang, G., Sun, R., Wang, X.: Construction of girth-eight QC-LDPC codes from greatest common divisor. IEEE Commun. Lett. 17(2), 369 372 (2013)
13 Tasdighi, A., Banihashemi, A.H., Sadeghi, M.-R.: Symmetrical constructions for regular girth-8 QC-LDPC codes. IEEE Trans. Comm 65(1), 14-22 (2017)
14 Xiao, X., Ryan, W.E., Vasic, B., Lin, S., Abdel-Ghaffar, K.: Reed Solomon-based quasi-cyclic LDPC codes: designs, cycle structure and erasure correction. In: Proceedings of Information Theory and Application Workshop, pp. 1-10. IEEE, Piscataway, NJ (2018)
15 Majdzade, M., Gholami, M.: On the class of high-rate QC-LDPC codes with girth-8 from sequences satisfied in GCD condition. IEEE Commun. Lett. 24(7), 1391-1394 (2020)
16 Kim, I., Song, H.-Y.: Some new constructions of girth-8 QC-LDPC codes for future GNSS. IEEE Commun. Lett. 25(12), 3780-3784 (2021)
17 3GPP TS 38.212 v16.7.0 Release 16, NR; Multiplexing and Channel Coding. https://www.etsi.org/deliver/etsi_ts/138200_138299 138212/16.07.00_60/ts_138212v160700p.pdf (2021). Accessed 29 May 2022

