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Some Upper Bounds and Exact Values on Linear
Complexities Over FM of Sidelnikov

Sequences for M = 2 and 3
Min Zeng , Yuan Luo , Member, IEEE, Guo-Sheng Hu, and Hong-Yeop Song , Senior Member, IEEE

Abstract— Sidelnikov sequences, a kind of cyclotomic1

sequences with many desired properties such as low correlation2

and variable alphabet sizes, can be employed to construct a3

polyphase sequence family that has many applications in high-4

speed data communications. Recently, cyclotomic numbers have5

been used to investigate the linear complexity of Sidelnikov6

sequences, mainly about binary ones, although the limitation on7

the orders of the available cyclotomic numbers makes it difficult.8

This paper continues to study the linear complexity over FM9

of M -ary Sidelnikov sequence of period q − 1 using Hasse10

derivative, which implies q = pm , m ≥ 1 and M |(q − 1).11

The tth Hasse derivative formulas are presented in terms of12

cyclotomic numbers, and some upper bounds on the linear13

complexity for M = 2 and 3 are obtained only with some14

additional restrictions on q. Furthermore, concrete illustrations15

for several families of these sequences, such as q ≡ 1 (mod 2)16

and q ≡ 1 (mod 3), show these upper bounds are tight and17

reachable; especially for q = 2×3λ+1(1 ≤ λ ≤ 20), the exact18

linear complexities over F3 of the ternary Sidelnikov sequences19

are determined; and it turns out that all the linear complexities20

of the sequences considered are very close to their periods.21

Index Terms— Array structure, cyclotomic numbers, Hasse22

derivative, linear complexity, Sidelnikov sequences.23

I. INTRODUCTION24

PSEUDO random sequences with certain properties are25

widely used in the communication engineering and cryp-26

tography [1]. The cyclotomic sequences have a number of27
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attractive randomness properties [2]–[4]. Ding [5] studied their 28

linear complexity, minimal polynomial, and autocorrelation 29

function. 30

For q = pm where p is an odd prime and m is a 31

positive integer, Sidelnikov [6] introduced a kind of cyclotomic 32

sequence called the M -ary Sidelnikov sequence of period 33

q − 1 where M |(q − 1). Soon afterwards, Lempel, Cohn and 34

Eastman [7] re-introduced its binary form called Sidelnikov- 35

Lempel-Cohn-Eastman sequence. In the last two decades, 36

a lot of attention has been devoted to this binary sequence. 37

For example, using the cyclotomic numbers, Helleseth and 38

Yang [8] originally investigated the autocorrelation function 39

and linear complexity over F2 of the binary Sidelnikov 40

sequences. Later on, Kyureghan and Pott [9], and Meidl and 41

Winterhof [10] determined the exact linear complexity over 42

F2 of some of these sequences with well-known results on 43

cyclotomic numbers; a lower bound on the linear complexity 44

profile of these sequences was also introduced in [10], which 45

is the desirable important property of applications. Then, 46

Wang [11] and Su [12] studied the linear complexity of binary 47

cyclotomic sequences of order 6 and Legendre-Sidelnikov 48

sequences of period p(q − 1), respectively. Ye et al. [13] 49

further studied the linear complexity of a new kind of binary 50

cyclotomic sequence, with length pr, and Liang et al. [14] 51

computed the linear complexity of Ding-Helleseth generalized 52

cyclotomic sequences by using cyclotomic numbers of order 8. 53

Following the footsteps of these pioneers, Zeng et al. [15] 54

discussed the FM -linear complexity of M -ary Sidelnikov 55

sequences of period p−1 = f×Mλ where M is not just equal 56

to 2. On the other hand, using the discrete Fourier transform 57

(i.e., DFT), Helleseth et al. [16], [17] also determined the 58

linear complexity over Fp of binary Sidelnikov sequences, 59

and Garaev et al. [18] derived the lower bound of the linear 60

complexity over Fp. For the k-error linear complexity over 61

Fp of the d-ary Sidelnikov sequence, Chung and Yang [19] 62

presented many results of interest, then Aly and Meidl [20] 63

further complemented these results. 64

In this paper, we continue to study the linear complexity 65

over FM of M -ary Sidelnikov sequence of period q− 1 using 66

Hasse derivative, where q = pm, m ≥ 1 and M |(q−1). Some 67

upper bounds on the linear complexity for M = 2 and 3 are 68

obtained, and some exact values of the linear complexity for 69

several families of these sequences, such as q ≡ 1 (mod 2) 70

and q ≡ 1 (mod 3), illustrate these upper bounds are tight 71

and reachable. In particular, the exact linear complexities over 72
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F3 of the ternary Sidelnikov sequences are determined for73

q = 2 × 3λ + 1(1 ≤ λ ≤ 20), and it turns out that all the74

linear complexities of the sequences considered are very close75

to their periods. Some examples over F2 have been confirmed76

for binary Sidelnikov sequences by Helleseth and Yang.77

The rest of this paper is organized as follows. In Section II,78

after reviewing some notations and definitions, we present79

formulas for the tth Hasse derivative of the generating function80

S(x) of the M -ary Sidelnikov sequence {sn}n≥0 in terms81

of the cyclotomic numbers. In Section III, the multiplicities82

of some rth primitive roots of unity over FM as roots of83

S(x) are determined using the Hasse derivative to estimate84

the FM -linear complexity of M -ary Sidelnikov sequences for85

the two cases of q ≡ 1 (mod 2) and q ≡ 1 (mod 3). Some86

special examples are listed in Table I for q = 2× 3λ + 1(1 ≤87

λ ≤ 20). Note that this section extends our conference88

version [15] by adding Subsection III-A on the case q ≡ 189

(mod 2) which includes Theorem 1 and Examples 4 and 5,90

by supplementing a main result on the case q ≡ 1 (mod 3) in91

Theorem 2 of Subsection III-B, and by giving all proofs of the92

relevant results here. In Section IV, there are some concluding93

remarks. In addition, some known cyclotomic numbers of94

orders 2, 2r, 3, 6 and 9 are displayed in Chapter IV due to95

the need to prove the results of this paper.96

II. PRELIMINARIES97

In this section, after some notations are listed, the M -ary98

Sidelnikov sequence, the FM -linear complexity and the99

cyclotomic number are defined in Definitions 1, 3 and 4,100

respectively. Lemma 3 presents Hasse derivates in terms101

of cyclotomic numbers, and will be used to determine the102

FM -linear complexity of the M -ary Sidelnikov sequence.103

• p: an odd prime.104

• q: an odd prime power pm with m ≥ 1.105

• Fp and Fq: the finite fields with p and q elements,106

respectively.107

• M : M is a prime with M |(q − 1).108

• α: a fixed primitive element of Fq .109

• {sn}n≥0: the M -ary Sidelnikov sequence of period q−1.110

• S(x): the generating function of {sn}0≤n≤q−2.111

• FM [x]: the polynomial ring over finite field FM .112

• R(γ): the multiplicity of a primitive rth root γ of unity113

over FM as a root of S(x), where γ = ej 2π
r and114

j =
√−1.115

• LC(·): the FM -linear complexity of a sequence. It is116

written as LC for short if the context is clear.117

• Ind x: the index of x ∈ Fq to the base g modulo q [21].118

The M -ary Sidelnikov sequence is defined as follows.119

Definition 1 ([22]): For a fixed primitive element α of Fq120

and M |(q − 1), let D
(α)
k , k = 0, 1, . . . , M − 1, be the disjoint121

subsets of Fq defined as122

D
(α)
k = {αMi+k − 1 | 0 ≤ i ≤ q − 1

M
− 1}.123

The M -ary Sidelnikov sequence {sn}n≥0 of period q − 1 is124

defined as125

sn =

{
k if αn ∈ D

(α)
k ,

0 if αn = −1.
(1)126

Equivalently, 127

sn ≡ logα(αn + 1) (mod M). (2) 128

Note that
⋃M−1

k=0 D
(α)
k = Fq\{−1}, 0 ∈ D

(α)
0 , and let 129

logα(0) = 0. 130

Example 1: Let q = 7 and M = 3. For α = 3, we have 131

a ternary Sidelnikov sequence {sn}n≥0 of period 6, that is, 132

{sn}0≤n≤5 = {2, 1, 1, 0, 2, 0}. 133

Definition 2: A polynomial C(x) = xL + c1x
L−1 + · · · + 134

cL−1x+1 ∈ FM [x] is the connection polynomial of the M -ary 135

sequence {sn}n≥0 of period T = q−1 if there exist constants 136

c0 = 1, c1, . . . , cL−1, cL = 1 ∈ FM , such that 137

sj ≡ −
L−1∑
i=0

cisj−L+i (mod M), for all j ≥ L. (3) 138

Definition 3: The linear complexity over FM of {sn}n≥0 139

is defined as 140

LC({sn}n≥0) = min{deg(C(x)) : 141

C(x) is the connection polynomial of {sn}n≥0}. 142

Lemma 1 ([23]): Let S(x) = s0 + s1x + · · · + sq−2x
q−2. 143

Then C(x) is the connection polynomial of {sn}n≥0 if and 144

only if S(x)C(x) ≡ 0 mod (xq−1 − 1). 145

Therefore, the FM -linear complexity of the M -ary Sidel- 146

nikov sequence {sn}n≥0 can be determined by 147

LC({sn}n≥0) = q − 1 − deg[gcd(xq−1 − 1, S(x))], (4) 148

where S(x) is by (1) 149

S(x) =
M−1∑
k=1

k
∑

αn∈D
(α)
k

0≤n≤q−2

xn ∈ FM [x]. (5) 150

Example 2: The F3-linear complexity of the ternary Sidel- 151

nikov sequence {sn}n≥0 of period 6 in Example 1 is 5 since 152

gcd(x6 − 1, 2x4 + x2 + x + 2) = x − 1. 153

Similar to Example 2, in order to evaluate LC({sn}n≥0) 154

from (4), we will determine the multiplicity of γ as a root of 155

S(x), where γ is also a (q − 1)-th root of unity over FM or 156

in an extension field of FM , by using the cyclotomic numbers 157

defined as follows. 158

Definition 4: Let α be a primitive element in the finite field 159

Fq, and e|(q−1). Then the cyclotomic classes C
(α)
u , 0 ≤ u ≤ 160

e − 1, are defined in Fq as 161

C(α)
u = {αed+u | 0 ≤ d ≤ q − 1

e
− 1}. 162

For fixed positive integers u and v, not necessarily distinct, 163

the cyclotomic number (u, v)e is defined as the number of 164

elements zu ∈ C
(α)
u such that zu + 1 ∈ C

(α)
v , where e is 165

called the order of the cyclotomic number. 166

Example 3: Let F7 = {0, 1, 2, 3, 4, 5, 6} = {0, α, α2, α3, 167

α4, α5, α6} where α = 3 is a primitive element in F7. Let 168

e = 3. Then C
(α)
0 = {1, α3}, C

(α)
1 = {α, α4}, and C

(α)
2 = 169

{α2, α5}. It is easy to see that 1+1 = 2 = α2 and α3+1 = 0, 170

thus (0, 0)3 = 0, (0, 1)3 = 0, and (0, 2)3 = 1. Similarly, 171

(1, 0)3 = 0, (1, 1)3 = 1, (1, 2)3 = 1, (2, 0)3 = 1, (2, 1)3 = 1, 172

and (2, 2)3 = 0. 173
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Let q = f×Mλ+1 where f and λ are two positive integers.174

Then xq−1 − 1 = (xf − 1)Mλ ∈ FM [x]. Let γ be a primitive175

rth root of unity over FM or in an extension field of FM where176

r|f . Then the multiplicity of γ as a root of S(x) is i, i.e.,177

R(γ) = i,178

if S(γ) = S(γ)(1) = · · · = S(γ)(i−1) = 0 and S(γ)(i) �= 0,179

where S(x)(t) (t = 0, 1, . . . , i) is the tth Hasse derivative of180

S(x) [24], and defined as181

S(x)(t) =
M−1∑
k=1

k
∑

αn∈D
(α)
k

t≤n≤q−2

(
n

t

)
xn−t ∈ FM [x], (6)182

where the binomial coefficients
(
n
t

)
modulo M can be evalu-183

ated with the following Corollary 1.184

Lemma 2 (Lucas’ Theorem [25]): Let 0 ≤ bj ≤ aj ≤185

M − 1 for j = 0, 1, . . . , l − 1, where M is a prime. Then186 (
a0 + a1M + · · · + al−1M

l−1

b0 + b1M + · · · + bl−1M
l−1

)
187

≡
(

a0

b0

) (
a1

b1

)
· · ·

(
al−1

bl−1

)
(mod M).188

It is clear from Lemma 2 that bj ≤ aj for j = 0, 1, . . . , l−1.189

However, since there exists a convention that if x < y then190 (
x
y

)
= 0, the Lucas’ theorem can be extended to the following191

corollary.192

Corollary 1 (Extension of Lucas’ Theorem): Let M be a193

prime.194

1) Let 0 ≤ bj , aj ≤ M − 1 for j = 0, 1, . . . , l − 1. Then195 (
a0 + a1M + · · · + al−1M

l−1

b0 + b1M + · · · + bl−1M
l−1

)
196

≡
(

a0

b0

) (
a1

b1

)
· · ·

(
al−1

bl−1

)
(mod M). (7)197

2) Let n ≡ i (mod M l) where l = �logM (t)	+ 1 if t ≥ 1,198

and l = 1 if t = 0. Then199 (
n

t

)
≡

(
i

t

)
(mod M), (8)200

where
(

i
t

)
= 0 if i < t.201

Proof: First, we prove Lucas’ theorem is still true if there202

exists j such that bj > aj . To the end, we need to compare203

the coefficients of binomial expansion of (1 + x)a, where204

a =
∑l−1

j=0 ajM
j and a0, . . . , al−1 are the digits in the M -ary205

representation of a.206

Since M is a prime, it follows that207

(1 + x)Mj ≡ 1 + xMj

(mod M) for j ≥ 1. (9)208

Then we have209

(1 + x)a
210

=(1 + x)a0((1 + x)M )a1 · · · ((1 + x)Ml−1
)al−1

211

≡(1 + x)a0(1 + xM )a1 · · · (1 + xMl−1
)al−1 (mod M).212

(10)213

Let b =
∑l−1

j=0 bjM
j where b0, . . . , bl−1 are the digits in the214

M -ary representation of b. It is clear that the items of xb on215

the left and right sides of (10) should be equal by using the 216

unique M -ary representation property, 217(
a

b

)
xb =

(
a0

b0

)
xb0

(
a1

b1

)
xb1M · · ·

(
al−1

bl−1

)
xbl−1Ml−1

218

=
(

a0

b0

)(
a1

b1

)
· · ·

(
al−1

bl−1

)
xb. (11) 219

Thus, if bj ≤ aj for all 0 ≤ j ≤ l − 1, the coefficient on the 220

left of (11) must be congruent modulo M to the coefficient 221

on the right, which is exactly the result of Lucas’ theorem. 222

Otherwise, if there exists 0 ≤ j ≤ l − 1 such that bj > aj , 223

then
(
aj

bj

)
= 0, which means there is no item of xbjMj

on 224

the right of (11), leading to there is no item of xb. Then, the 225

coefficients on both sides of (11) are equal to 0, that is to say, 226

the Lucas’ theorem is also true for bj > aj (0 ≤ j ≤ l − 1). 227

So, (7) is true. 228

Secondly, we prove (8) is also true. 229

(i) If t = 0, the result is obvious. 230

(ii) If t ≥ 1, let l = �logM (t)	 + 1. Then t < M l. Let 231

n0, n1, . . . , nl−1, nl, . . . , nl′ and t0, . . . , tl−1 be the digits in 232

the M -ary representations of n and t, respectively. Then n = 233∑l′

j=0 njM
j and t =

∑l−1
j=0 tjM

j . Since n ≡ i (mod M l), 234

it follows that i =
∑l−1

j=0 njM
j . From (7), it is easy to see 235

that 236(
n

t

)
=

(
n0 + · · · + nl−1M

l−1 + nlM
l + · · · + nl′M

l′

t0 + · · · + tl−1M l−1+0 × M l + · · · + 0×M l′

)
237

≡
(

n0

t0

)
· · ·

(
nl−1

tl−1

)(
nl

0

)
· · ·

(
nl′

0

)
(mod M) 238

≡
(

i

t

)
(mod M). 239

Thus, the proof completes. � 240

Next, the tth Hasse derivatives (t = 0, 1, . . . ) in terms of 241

cyclotomic numbers are listed in the following lemma that will 242

be used to determine the multiplicities of all the f th roots of 243

unity, as the roots of S(x). 244

Lemma 3: [15] Let q = pm ≡ 1 (mod M) where p is 245

an odd prime and M is prime. Let γ be a primitive rth 246

root of unity over FM or in an extension field of FM . S(x) 247

is the generating function of an M -ary Sidelnikov sequence 248

{sn}0≤n≤q−2. Then the tth Hasse derivatives S(x)(t) ∈ FM [x] 249

(t = 0, 1, . . . ) satisfy the following identities. 250

1) 251

S(1) =
M−1∑
k=1

k

M−1∑
u=0

(u, k)M , (12) 252

where n ≡ u (mod M); 253

2) 254

S(1)(t) =
M−1∑
k=1

k

Ml−1∑
i=t

(
i

t

) Ml−1−1∑
j=0

(i, Mj + k)Ml , (13) 255

where n ≡ i (mod M l), and l = �logM (t)	 + 1 if t ≥ 1; 256

3) (see (14a) and (14b), as shown at the bottom of the next 257

page;) 258

4) (see (15a) and (15b), as shown at the bottom of the next 259

page.) 260
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Remark 1: 1) The Hasse derivative in Lemma 3 is a bridge261

across the cyclotomic number and the linear complexity.262

Using this technique, one can determine the exact FM -linear263

complexity of an M -ary Sidelnikov sequence according to264

certain cyclotomic numbers. However, the well-known results265

on cyclotomic numbers are now just limited to the orders266

e ≤ 24. This limitation hinders our ability to calculate the267

multiplicity of γ if r is large. So, it seems difficult to determine268

the exact FM -linear complexity. 2) For the proof details of269

Lemma 3, please refer to [10], [15].270

III. UPPER BOUNDS AND SOME EXACT VALUES271

This section investigates the FM -linear complexities of the272

M -ary Sidelnikov sequences. In the case of q ≡ 1 (mod 2),273

Theorem 1 shows that the F2-linear complexities of binary274

Sidelnikov sequences of period q − 1 are upper bounded by275

q − 2r if r satisfies certain conditions. In the case of q ≡ 1276

(mod 3), for the trivial root 1, the primitive 2nd root and the277

primitive 3rd root of unity over F3 or in an extension field of278

F3, the multiplicities of them as the roots of S(x) are deter-279

mined in Propositions 1, 2 and 3, respectively. Furthermore,280

the F3-linear complexities of the ternary Sidelnikov sequences281

are presented in Theorem 2 and Corollary 2.282

Note that, for the detailed meanings of the capital letters283

such as “A”, “B”, “C”, etc. in this section, please refer to284

Appendices IV.285

A. Binary Case286

The linear complexity of binary Sidelnikov sequence was287

originally investigated by Helleseth and Yang, and later288

extended by Kyureghyan and Pott, and Meidl and Winterhof.289

In the following theorem, we continue to estimate the linear290

complexity of the Sidelnikov sequence for q ≡ 1 (mod 2)291

using the technique introduced by Meidl and Winterhof, and292

the result is an extension of that in [10].293

Theorem 1: Let q = pm ≡ 1 (mod 2r) for m = uv, where294

p and r are both odd primes, u ≥ 1, v is the order of p295

modulo r, and v is even. Let 2 be a primitive root modulo r 296

and {sn}n≥0 be a binary Sidelnikov sequence of period q−1. 297

Then the linear complexity of {sn}n≥0 over F2 is less than 298

or equal to q − 2r if 299

1) u is even; or 300

2) u is odd, and 4 � v with p ≡ 3 (mod 4). 301

Proof: Let S(x) be the generating function of 302

{sn}0≤n≤q−2. The multiplicities of 1 as a root of S(x) have 303

been intensively discussed in [9] and [10]. Here we consider 304

the multiplicity of γ as a root of S(x) where γ(�= 1) is a 305

primitive rth root of unity in an extension field of F2. Note 306

that (x2r − 1)|(xq−1 − 1) since 2r|(q − 1). Let xr − 1 = 307

(x − 1)(xr−1 + xr−2 + · · · + 1) = (x − 1)Φr(x) where 308

Φr(x) =
∏

1≤k≤r
gcd (k,r)=1

(x−e2πik/r) is a cyclotomic polynomial. 309

Then Φr(x) is irreducible over F2 since 2 is a primitive root 310

modulo r [26], and Φr(γ) = 0. Let M = 2. 311

First, consider γ is a single root of S(x). Let n ≡ h 312

(mod r). Then 1 ≤ M−
h+1
r � < M . Thus, we get from (14a) 313

that 314

S(γ)=

2−1�
k=1

k

r−1�
h=0

r−1�
j=0

1�
i=0

(ir + h, 2j + k)2rγh
315

=

r−1�
h=0

(

r−1�
j=0

((h, 2j + 1)2r + (r + h, 2j + 1)2r))γh =

r−1�
h=1

T(0,h)γ
h, 316

where T(0,h) =
∑r−1

j=0((h, 2j + 1)2r + (r + h, 2j + 1)2r − 317

(0, 2j+1)2r−(r, 2j+1)2r) since Φr(γ) = 0. From Appendix 318

B, it follows that 319

T(0,h)=

r−1�
j=0

((h, 2j + 1)2r + (r + h, 2j + 1)2r − (0, 2j + 1)2r 320

−(r, 2j + 1)2r) 321

∗
= B + (2r − 1)C − rB − B − (r − 1)C ≡ C − B (mod 2) 322

=
1 − (−1)up(uv)/2

2r
, 323

where * means that for a fixed h, one and only one of h and 324

h + r is odd, and is taken once by 2j + 1 when j runs from 325

0 to r − 1. 326

S(γ) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

M−1∑
k=1

k
r−1∑
h=0

r−1∑
j=0

M−1∑
i=0

(ir + h, Mj + k)rM · γh if M �= r, (14a)

M−1∑
k=1

k

M−1∑
h=0

(h, k)M · γh if M = r, (14b)

where n = h (mod r);

S(γ)(t) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

M−1∑
k=1

k
Ml−1∑

i=t

(
i

t

) r−1∑
h=0

Ml−1r−1∑
j=0

(u(i, h), Mj + k)rMl · γh if M �= r, (15a)

M−1∑
k=1

k

Ml−1∑
i=t

(
i

t

) M−1∑
h=0

Ml−1−1∑
j=0

(u(i, h), Mj + k)Ml · γh if M = r, (15b)

where l = �logM (t)	 + 1 if t ≥ 1, and u(i, h) is (by the Chinese-Remainder-Theorem) the unique integer u satisfying
u − t ≡ h (mod r) and u ≡ i (mod M l), with 0 ≤ u ≤ rM l − 1 or 0 ≤ u ≤ M l − 1.
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Since γ, . . . , γr−1 are linear independent over F2, it follows327

that S(γ) = 0 if and only if328

T(0,h) ≡ 0 (mod 2) for h = 1, 2, . . . , r − 1,329

which means that330

p(uv)/2 ≡ (−1)u (mod 4) (16)331

≡
{

1 (mod 4) if u is even,
3 (mod 4) if u is odd.

(17)332

Then, we can get that333

1) if u is even and v is even, then p(uv)/2 ≡ 1 (mod 4),334

2) if u is odd, and v is even and 4 � v, then p(uv)/2 ≡ 3335

(mod 4) if p ≡ 3 (mod 4).336

So, in these two cases, γ is a root of S(x), and337

Φr(x)| gcd(xq−1 − 1, S(x)).338

Second, we consider whether γ is a double root of S(x)339

in the above cases. According to Lemma 3, let l = 1 since340

t = 1 < M = 2. From (15a),341

S(γ)(1) =
M−1∑
k=1

k
M−1∑
i=1

(
i

1

) r−1∑
h=0

r−1∑
j=0

(u(i, h), Mj + k)Mrγ
h

342

=
r−1∑
h=0

r−1∑
j=0

(u(1, h), 2j + 1)2rγ
h,343

where u(1, h) is the unique integer u with 0 ≤ u ≤ 2r − 1,344

u − 1 ≡ h (mod r), and u ≡ 1 (mod 2). Then we have345

u(1, h) = h + 1 if h is even, and u(1, h) = r + h + 1 if h is346

odd. So,347

S(γ)(1) =
r−1∑
h=1

T(1,h)γ
h,348

where349

T(1,h)350

=

r−1�
j=0

((u(1, h), 2j + 1)2r − (1, 2j + 1)2r)351

=

��
�

�r−1

j=0
((h + 1, 2j + 1)2r − (1, 2j + 1)2r) if h is even,

�r−1

j=0
((r + h + 1, 2j + 1)2r − (1, 2j + 1)2r) if h is odd.

352

For any fixed h, u(1, h) is always odd, and can be equal353

to 2j + 1 once with j running from 0 through r − 1. This354

means that T(1,h) = B + (r − 1)C − (B + (r − 1)C) = 0 for355

h = 1, 2, . . . , r − 1 according to Appendix B. Thus, γ is a356

double root of S(x) in the above cases. In addition, since357

q = (p(uv)/2)2 ≡ 1 (mod 4) from (17), we have S(1) =358

(0, 1)2 + (1, 1)2 = q−1
2 ≡ 0 (mod 2) according to Appendix359

A, that is to say, 1 is a root of S(x). Thus, the upper bound360

immediately follows. �361

Next, there are two examples to illustrate Theorem 1.362

Example 4: Let p = 5, u = 2, v = 2, and r = 3. Then363

we have a binary Sidelnikov sequence {sn}n≥0 of period 624.364

From the proof of Theorem 1, it is clear that 1 is a root of S(x),365

and for any γ(�= 1) being a primitive 3rd root of unity, γ is a366

double root of S(x), which means (x2 + x + 1)2|S(x). Thus,367

the linear complexity of {sn}n≥0 over F2 is LC({sn}n≥0) ≤368

619 from Theorem 1 1). In addition, from Proposition 2369

in [10], it is easy to see that the multiplicity of 1 as a root370

of S(x) is 9, so, LC({sn}n≥0) ≤ 611. Indeed, we can get 371

gcd(x624 − 1, S(x)) = (x − 1)12(x2 + x + 1)10, that is, 372

LC({sn}n≥0) = 592. 373

Example 5: Let p = 19, u = 1, v = 2, and r = 5. Then we 374

have a binary Sidelnikov sequence {sn}n≥0 of period 360. 375

Similar to example 4, it is clear that 1 is a root of S(x), 376

and for any γ(�= 1) being a primitive 5th root of unity, γ is 377

a double root of S(x), which means (x4 + x3 + x2 + x + 378

1)2|S(x). Thus, the linear complexity of {sn}n≥0 over F2 is 379

LC({sn}n≥0) ≤ 351 from Theorem 1 2). In addition, from 380

Proposition 1 in [10], it is clear that the multiplicity of 1 as a 381

root of S(x) is 2, so, LC({sn}n≥0) ≤ 350. In fact, it follows 382

that gcd(x360 − 1, S(x)) = (x − 1)2(x2 + x + 1)6(x4 + x3 + 383

x2 + x + 1)4(x6 + x3 + 1)2, that is, LC({sn}n≥0) = 318. 384

Remark 2: 1) In the proof of Theorem 1, we make full use 385

of the formulas in Appendix B for the cyclotomic numbers 386

of order 2r over Fq with q = puv ≡ 1 (mod 2r), where 387

the order v of p modulo r is only even. Unfortunately, when 388

v is odd, the cyclotomic problem is more intricate [27]. 389

2) In general, the determination of cyclotomic numbers of 390

order e is difficult if e is not small [10], meaning that we 391

can only utilize these formulas for small r. Here we consider 392

the cases r = 3 and 5 as examples. 393

B. Ternary Case 394

In this subsection, let q ≡ 1 (mod 3) where q is a prime. 395

For the trivial root 1, the primitive 2nd and 3rd roots of 396

unity, the multiplicities of them as the roots of S(x) are 397

determined in Propositions 1, 2 and 3, respectively, by using 398

the cyclotomic numbers of orders e’s (e.g, 3, 6 and 9). 399

However, if e is not small, it is very difficult to calculate 400

the cyclotomic numbers, so the determined values of the 401

multiplicity R are not very large in these propositions. For 402

all that, Theorem 2 and Corollary 2 present the F3-linear 403

complexities of the ternary Sidelnikov sequences, especially 404

in the case of q = 2 × 3λ + 1 where λ is a positive integer. 405

Firstly, we determine the multiplicities of the trivial root 1 of 406

unity, as a root of S(x), in the case of Ind 3 ≡ 0 (mod 3). 407

Proposition 1: Let q ≡ 1 (mod 3) be a prime where 408

4q = c2 + 27d2 and c ≡ 1 (mod 3). Let q = 409

(
∑5

i=0 ciξ
i)(

∑5
i=0 ciξ

−i) where ξ is a primitive 9th root 410

of unity of Fq and ci(i = 1, 2, . . . , 5) are integers. S(x) 411

is the generating function of a ternary Sidelnikov sequence 412

{sn}0≤n≤q−2. Then in the case of Ind 3 ≡ 0 (mod 3), the 413

multiplicity (R) of 1 as a root of S(x) can be determined by 414

1) R(1) = 1 is trivial; 415

2) R(1) = 2 if and only if q ≡ 1 (mod 9); 416

3) R(1) = 3 if and only if q ≡ 1 (mod 9) and d ≡ 0 417

(mod 3); 418

4) R(1) = 4 if and only if q ≡ 1 (mod 9), d ≡ 0 (mod 3), 419

and c1 + c5 ≡ 2(c2 + c4) (mod 9); 420

5) R(1) = 5 or 6 if and only if q ≡ 1 (mod 9), d ≡ 421

0 (mod 3), c1 + c5 ≡ 2(c2 + c4) (mod 9), and c4 ≡ 2c1 422

(mod 9); 423

6) R(1) = 7 if and only if q ≡ 1 (mod 9), d ≡ 0 (mod 3), 424

c1 + c5 ≡ 2(c2 + c4) (mod 9), c4 = 2c1 (mod 9), and c3 + 425

c4 + c5 ≡ 0 (mod 9); 426



ZENG et al.: SOME UPPER BOUNDS AND EXACT VALUES ON LINEAR COMPLEXITIES 5553

7) R(1) = 8 if and only if q ≡ 1 (mod 9), d ≡ 0 (mod 3),427

c1 + c5 ≡ 2(c2 + c4) (mod 9), c4 ≡ 2c1 (mod 9), c3 + c4 +428

c5 ≡ 0 (mod 9), and 1 + c0 + c2 + 2c4 ≡ 0 (mod 9);429

8) R(1) = 9 if and only if q ≡ 1 (mod 9), d ≡ 0 (mod 3),430

and c0 ≡ −1 + 2c5, c1 ≡ −c5, c2 ≡ 2c5, c3 ≡ c5, c4 ≡ −2c5431

(mod 9).432

Proof: Let M = 3. According to Appendix C, we have433

from (12) in Lemma 3 that S(1) = (0, 1)3+(1, 1)3+(2, 1)3+434

2((0, 2)3 +(1, 2)3 + (2, 2)3) = 3(B +C +D) ≡ 0 (mod 3),435

that is to say, 1 is always a root of S(x).436

According to Lemma 3, let l = 1 if t = 1 or 2. From (13),437

S(1)(1) = (1, 1)3 + 2(2, 1)3 + 2(1, 2)3 + 4(2, 2)3 = B + C +438

D = q−1
3 and S(1)(2) = (2, 1)3 + 2(2, 2)3 = 2B + D =439

q−1
3 − d. Thus, S(1)(1) = 0 if and only if q ≡ 1 (mod 9),440

and S(1)(2) = 0 if and only if q ≡ 1 (mod 9) and d ≡ 0441

(mod 3).442

Similarly, let l = 2 if t = 3, 4, 5, 6, 7, 8. From (13),443

S(1)(t) =
2∑

k=1

k

9−1∑
i=t

(
i

t

) 3−1∑
j=0

(i, 3j + k)9. (18)444

Let q = (
∑5

i=0 ciξ
i)(

∑5
i=0 ciξ

−i) where ξ is a primitive 9th445

root of unity of Fq and ci(i = 1, 2, . . . , 5) are integers. In the446

case Ind 3 ≡ 0 (mod 3), according to Appendix E, it follows447

that448

S(1)(3)449

≡(3, 1)9 + (3, 4)9 + (3, 7)9 + (4, 1)9 + (4, 4)9 + (4, 7)9+(5, 1)9450

+(5, 4)9 + (5, 7)9 + 2(6, 1)9 + 2(6, 4)9 + 2(6, 7)9+2(7, 1)9451

+2(7, 4)9 + 2(7, 7)9 + 2(8, 1)9 + 2(8, 4)9 + 2(8, 7)9+2(3, 2)9452

+2(3, 5)9 + 2(3, 8)9 + 2(4, 2)9 + 2(4, 5)9 + 2(4, 8)9+2(5, 2)9453

+2(5, 5)9 + 2(5, 8)9 + (6, 2)9 + (6, 5)9 + (6, 8)9 + (7, 2)9454

+(7, 5)9 + (7, 8)9 + (8, 2)9 + (8, 5)9 + (8, 8)9 (mod 3)455

≡B + 2C + 2E + F + 2J + K + M + 2N + 2P + 2Q + 2R456

(mod 3)457

≡ c1 − 2c2 − 2c4 + c5

3
(mod 3), (19)458

S(1)(4)459

≡(4, 1)9 + (4, 4)9 + (4, 7)9 + 2(5, 1)9 + 2(5, 4)9 + 2(5, 7)9460

+2(7, 1)9 + 2(7, 4)9 + 2(7, 7)9 + (8, 1)9 + (8, 4)9 + (8, 8)9461

+2(4, 2)9 + 2(4, 5)9 + 2(4, 8)9 + (5, 2)9 + (5, 5)9 + (5, 8)9462

+(7, 2)9 + (7, 5)9 + (7, 8)9 + 2(8, 2)9 + 2(8, 5)9 + 2(8, 8)9463

(mod 3)464

≡2B + 2C + E + F + 2K + M + 2P + R (mod 3)465

≡−2c1 + c4

3
(mod 3), (20)466

S(1)(5)467

≡(5, 1)9 + (5, 4)9 + (5, 7)9 + 2(8, 1)9 + 2(8, 4)9 + 2(8, 7)9468

+2(5, 2)9 + 2(5, 5)9 + 2(5, 8)9 + (8, 2)9 + (8, 5)9 + (8, 8)9469

(mod 3)470

≡B + 2E + J + K + N + Q + 2R (mod 3)471

≡3c1 − 2c2 − 3c4 + c5

6
(mod 3), (21) 472

S(1)(6) 473

≡(6, 1)9 + (6, 4)9 + (6, 7)9 + (7, 1)9 + (7, 4)9 + (7, 7)9 + (8, 1)9 474

+(8, 4)9 + (8, 7)9 + 2(6, 2)9 + 2(6, 5)9 + 2(6, 8)9 + 2(7, 2)9 475

+2(7, 5)9 + 2(7, 8)9 + 2(8, 2)9 + 2(8, 5)9 + 2(8, 8)9 (mod 3) 476

≡2B + C + J + 2M + N + Q + R (mod 3) 477

≡ c1 + 2c2 − 2c3 − c4 − 3c5

6
(mod 3), (22) 478

S(1)(7) 479

≡(7, 1)9 + (7, 4)9 + (7, 7)9 + 2(8, 1)9 + 2(8, 4)9 + 2(8, 7)9 480

+2(7, 2)9 + 2(7, 5)9 + 2(7, 8)9 + (8, 2)9 + (8, 5)9 + (8, 8)9 481

(mod 3) 482

≡B + C + K + 2N + O + P + Q + S (mod 3) 483

≡2 + 2c0 − 4c1 − 4c2 − c3 + 5c4 + 2c5

18
(mod 3), (23) 484

S(1)(8) 485

≡(8, 1)9 + (8, 4)9 + (8, 7)9 + 2(8, 2)9 + 2(8, 5)9 + 2(8, 8)9 486

≡2B + 2J + 2K + N + 2O (mod 3) 487

≡−2 − 2c0 + 7c1 − 2c2 + 4c3 − 5c4 + c5

9
(mod 3). (24) 488

So, S(1)(3) = 0 if and only if c1 + c5 ≡ 2(c2 + c4) (mod 9). 489

S(1)(4) = 0 if and only if 2c1 ≡ c4 (mod 9). S(1)(5) = 0 if 490

and only if c2 + c5 ≡ 3(c2 + c4 − c1) (mod 18). Fortunately, 491

S(1)(3) = 0 and S(1)(4) = 0 imply that S(1)(5) = 0. 492

S(1)(6) = 0 if and only if c4 + c5 − c1 ≡ 2(c2 − c3 − c5) 493

(mod 18). However, it follows from (19), (20), and (22) that 494

c3 + c4 + c5 ≡ 0 (mod 9). S(1)(7) = 0 if and only if 495

2(1+c0+c5)+c4 ≡ 4(c1+c2−c4)+c3 (mod 54). From (19), 496

(20), (22), and (23), it can be reduced to 1+c0 +c2 +2c4 ≡ 0 497

(mod 9). S(1)(8) = 0 if and only if 2(1 + c0 + c2) + 5c4 ≡ 498

7c1+4c3+c5 (mod 27). Similarly, from (19), (20), (22), (23), 499

and (24), we have c0 ≡ −1 + 2c5, c1 ≡ −c5, c2 ≡ 2c5, c3 ≡ 500

c5, c4 ≡ −2c5 (mod 9). � 501

Secondly, note that if q ≡ 1 (mod 2), then 2q−1 − 1 ≡ 0 502

(mod 3), which implies that 2 is a root of xq−1 − 1 over 503

F3 = {0, 1, 2}. In the following proposition, the multiplicity 504

of 2 as a root of S(x) is presented for the case that q ≡ 1 505

(mod 6) where q = a2 + 3b2 and a ≡ 1 (mod 3). 506

Proposition 2: Let q = 6f + 1 be a prime where q = a2 + 507

3b2 and a ≡ 1 (mod 3). Let γ (�= 1) be a primitive 2nd 508

root of unity over F3. S(x) is the generating function of a 509

ternary Sidelnikov sequence {sn}0≤n≤q−2. Then in the case 510

of f being even, the multiplicity (R) of γ as a root of S(x) 511

can be determined by 512

1) R(γ) = 1 or 2 if and only if b ≡ 0 (mod 3); 513

2) (see the bottom line of the next page.) 514

Proof: Let q = 6f + 1 where f is even. Since γ �= 1 and 515

γ2 = 1, 1 + γ = 0. The Appendix D lists the cyclotomic 516

numbers of order 6, which distinguish among the following 517

three cases: Ind 2 ≡ 0 (mod 6), Ind 2 ≡ 2 or 5 (mod 6), 518

and Ind 2 ≡ 1 or 4 (mod 6). Let M = 3 and r = 2. 519



5554 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 68, NO. 8, AUGUST 2022

We will determine the multiplicities of γ as a root of S(x)520

using Appendix D.521

1) First, consider the case R(γ) = 1. From (14a), it follows522

that523

S(γ) =
3−1∑
k=1

k
2−1∑
h=0

2−1∑
j=0

3−1∑
i=0

(2i + h, 3j + k)6γh
524

=
1∑

h=0

1∑
j=0

2∑
i=0

((2i+h, 3j+1)6+2(2i+h, 3j+2)6)γh
525

=
1∑

h=1

T(0,h)γ
h,526

where T(0,h) =
∑1

j=0

∑2
i=0((2i+h, 3j+1)6 +2(2i+h, 3j+527

2)6−(2i, 3j+1)6−2(2i, 3j+2)6). According to Appendix D,528

T(0,1) ≡ (1, 1)6 + 2(1, 2)6 − (0, 1)6 − 2(0, 2)6 + (3, 1)6529

+2(3, 2)6 − (2, 1)6 − 2(2, 2)6 + (5, 1)6+2(5, 2)6530

−(4, 1)6 − 2(4, 2)6 + (1, 4)6+2(1, 5)6 − (0, 4)6531

−2(0, 5)6 + (3, 4)6 + 2(3, 5)6 − (2, 4)6−2(2, 5)6532

+(5, 4)6 + 2(5, 5)6 − (4, 4)6 − 2(4, 5)6533

≡ B − F − H + I (mod 3)534

=

⎧⎨
⎩

b if Ind 2 ≡ 0 (mod 6)
b if Ind 2 ≡ 2 or 5 (mod 6)
b if Ind 2 ≡ 1 or 4 (mod 6)

535

≡ 0 (mod 3) for all cases if b ≡ 0 (mod 3),536

which implies that γ is a single root of S(x) if and only if537

b ≡ 0 (mod 3).538

Second, consider the case R(γ) = 2. From (15a), it follows539

that540

S(γ)(1)541

=
3−1∑
k=1

k

3−1∑
i=1

(
i

1

) 2−1∑
h=0

2−1∑
j=0

(u(i, h), 3j + k)6γh
542

=
1∑

h=0

2∑
i=1

(
i

1

) 1∑
j=0

((u(i, h), 3j+1)6+2(u(i, h), 3j+2)6)γh
543

=
1∑

h=1

T(1,h)γ
h,544

where u(i, h) is the unique integer u with 0 ≤ u ≤ 5,545

u − 1 ≡ h (mod 2), and u ≡ i (mod 3); T(1,h) =546 ∑1
j=0((u(1, h), 3j+1)6+2(u(1, h), 3j+2)6+2(u(2, h), 3j+547

1)6+4(u(2, h), 3j+2)6−(1, 3j+1)6−2(1, 3j+2)6−2(5, 3j+548

1)6−4(5, 3j+2)6). According to Appendix D, it follows that549

T(1,1) ≡
1∑

j=0

((4, 3j + 1)6 + 2(4, 3j + 2)6 + 2(2, 3j + 1)6550

+4(2, 3j + 2)6 − (1, 3j + 1)6 − 2(1, 3j + 2)6 551

−2(5, 3j + 1)6 − 4(5, 3j + 2)6) 552

≡ J − G + E − F + C − B (mod 3) 553

=

⎧⎨
⎩

0 if Ind 2 ≡ 0 (mod 6)
0 if Ind 2 ≡ 2 or 5 (mod 6)
0 if Ind 2 ≡ 1 or 4 (mod 6)

554

≡ 0 (mod 3), 555

which implies that if γ is a root of S(x), it must be a double 556

root of S(x). 557

2) Consider the case R(γ) = 3. Similar to above, 558

S(γ)(2) 559

=
3−1∑
k=1

k

3−1∑
i=2

(
i

2

) 2−1∑
h=0

2−1∑
j=0

(u(i, h), 3j+k)6γh
560

=
1∑

h=0

2∑
i=2

(
i

2

) 1∑
j=0

((u(i, h), 3j+1)6+2(u(i, h), 3j+2)6)γh
561

=
1∑

h=0

1∑
j=0

((u(2, h), 3j + 1)6 + 2(u(2, h), 3j + 2)6)γh
562

=
1∑

h=1

T(2,h)γ
h, 563

where T(2,h) =
∑1

j=0((u(2, h), 3j + 1)6 + 2(u(2, h), 3j + 564

2)6 − (u(2, 0), 3j + 1)6 − 2(u(2, 0), 3j + 2)6). According to 565

Appendix D, it follows that 566

T(2,1) 567

=
1∑

j=0

((5, 3j+1)6+2(5, 3j+2)6−(2, 3j+1)6−2(2, 3j+2)6) 568

≡E − B + G − J (mod 3) 569

=

⎧⎨
⎩

−2b
3 if Ind 2 ≡ 0 (mod 6)

−a+b
3 if Ind 2 ≡ 2 or 5 (mod 6)

−2a−2b
3 if Ind 2 ≡ 1 or 4 (mod 6)

570

≡

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0 (mod 3) if Ind 2≡0 (mod 6) and b≡0 (mod 9)
0 (mod 3) if Ind 2 ≡ 2 or 5 (mod 6)

and a ≡ b (mod 9)
0 (mod 3) if Ind 2 ≡ 1 or 4 (mod 6)

and a ≡ −b (mod 9),

571

which completes the proof. � 572

Thirdly, it is worth noting from Proposition 1 that q ≡ 1 573

(mod 9) is one of necessary and sufficient conditions of 574

1 as a multiple root of S(x). Then, we are interested in the 575

multiplicity of γ (a primitive 3rd root of unity in an extension 576

field of F3) as a root of S(x). 577

Proposition 3: Let q ≡ 1 (mod 9) be a prime 578

where 4q = c2 + 27d2 and c ≡ 7 (mod 9). 579

R(γ) = 3 if and only if

⎧⎨
⎩

b ≡ 0 (mod 9) if Ind 2 ≡ 0 (mod 6),
a ≡ b (mod 9) and b ≡ 0 (mod 3) if Ind 2 ≡ 2 or 5 (mod 6),

a ≡ −b (mod 9) and b ≡ 0 (mod 3) if Ind 2 ≡ 1 or 4 (mod 6),

where Ind 2 means the index of 2 to a base g modulo q.
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Let q = (
∑5

i=0 ciξ
i)(

∑5
i=0 ciξ

−i) where ξ is a primitive 9th580

root of unity of Fq and ci(i = 1, 2, . . . , 5) are integers. Let581

γ (�= 1) be a primitive 3rd root of unity in an extension field582

of F3. S(x) is the generating function of a ternary Sidelnikov583

sequence {sn}0≤n≤q−2. Then, the multiplicity (R) of γ as a584

root of S(x) can be determined by585

1) R(γ) = 1 if and only if c ≡ 7 (mod 18) and d ≡ 1586

(mod 2), or c ≡ 16 (mod 18) and d ≡ 0 (mod 2);587

2) R(γ) = 2 or 3 if and only if c ≡ 7 (mod 18) and d ≡ 3588

(mod 6), or c ≡ 16 (mod 18) and d ≡ 0 (mod 6);589

3) R(γ) = 4 if and only if c ≡ 7 (mod 18) and d ≡ 3590

(mod 6)(or c ≡ 16 (mod 18) and d ≡ 0 (mod 6)), and c4 ≡591

2c1 (mod 9) and c5 ≡ 3c1 + 2c2 (mod 18);592

4) R(γ) = 5 if and only if c ≡ 7 (mod 18) and d ≡ 3593

(mod 6)(or c ≡ 16 (mod 18) and d ≡ 0 (mod 6)), and c1 ≡594

c2 ≡ c4 ≡ c5 ≡ 0 (mod 9).595

Proof: Since γ (�= 1) is a primitive 3rd root of unity,596

1 + γ + γ2 = 0.597

1) From (14b), we get598

S(γ) =
3−1∑
k=1

k

3−1∑
h=0

(h, k)3γh =
2∑

h=0

((h, 1)3 + 2(h, 2)3)γh
599

=
2∑

h=1

T(0,h)γ
h,600

where T(0,h) = (h, 1)3 + 2(h, 2)3 − (0, 1)3 − 2(0, 2)3. Let601

T(0,1), T(0,2) ≡ 0 (mod 3), and then according to Appendix602

C,603 {
T(0,1) = 2+c

3 ≡ 0 (mod 3)
T(0,2) = 2+c−9d

6 ≡ 0 (mod 3).
604

Then, S(γ) = 0 if and only if c ≡ 7 (mod 18) and d ≡ 1605

(mod 2), or c ≡ 16 (mod 18) and d ≡ 0 (mod 2).606

2) According to Lemma 3, let l = 1 since t = 1. Then607

M l−1 − 
k+1
M � = 0. From (15b),608

S(γ)(1) =
3−1∑
k=1

k

3−1∑
i=1

(
i

1

) 3−1∑
h=0

(u(i, h), k)3γh
609

=
2∑

h=0

2∑
i=1

(
i

1

)
((u(i, h), 1)3 + 2(u(i, h), 2)3)γh

610

=
2∑

h=1

2∑
i=1

(
i

1

)
((u(i, h), 1)3 + 2(u(i, h), 2)3611

− (u(i, 0), 1)3 − 2(u(i, 0), 2)3)γh
612

=
2∑

h=1

T(1,h)γ
h,613

where u(i, h) is the unique integer u with 0 ≤ u ≤ 2, u −614

1 ≡ h (mod 3), and u ≡ i (mod 3). Let T(1,1) = 0 and615

T(1,2) = 0. It follows from Appendix C that616

T(1,1) = −(1, 1)3 − 2(1, 2)3 + 2(2, 1)3 + 4(2, 2)3617

≡ B − C (mod 3)618

≡ −d (mod 3),619

T(1,2) = −(1, 1)3 − 2(1, 2)3620

≡ −C − 2D (mod 3) 621

≡ −2q − c − 3d

6
(mod 3). 622

Thus, S(γ)(1) = 0 if and only if d ≡ 0 (mod 3) and −2q − 623

c − 3d ≡ 0 (mod 18). From S(γ) = 0 and S(γ)(1) = 0, 624

it follows that R(γ) = 2 if and only if c ≡ 7 (mod 18) and 625

d ≡ 1 (mod 2), or c ≡ 16 (mod 18) and d ≡ 0 (mod 2). 626

Similarly, let l = 1 since t = 2. It follows from (15b) that 627

S(γ)(2) =
2∑

k=1

k

2∑
i=2

(
i

2

) 2∑
h=0

(u(i, h), k)3γh
628

=
2∑

h=0

((u(2, h), 1)3 + 2(u(2, h), 2)3)γh
629

=
2∑

h=1

T(2,h)γ
h, 630

where T(2,h) = (u(2, h), 1)3 + 2(u(2, h), 2)3 − (u(2, 0), 1)3 − 631

2(u(2, 0), 2)3. Let T(2,h) = 0 (h = 1, 2). Then 632

T(2,1) = T(2,2) = −(2, 1)3 − 2(2, 2)3 633

≡ −D − 2B (mod 3) 634

≡ −q − 1 − 3d

3
(mod 3). 635

Thus, S(γ)(2) = 0 if and only if q − 1 − 3d ≡ 0 (mod 9), 636

that is, S(γ)(2) = 0 if and only if d ≡ 0 (mod 3). It is clear 637

that S(γ)(1) = 0 implies S(γ)(2) = 0. 638

3) According to Lemma 3, let l = 2 since t = 3. From (15b), 639

S(γ)(3) 640

=
2∑

k=1

k

8∑
i=3

(
i

3

) 2∑
h=0

3−1∑
j=0

(u(i, h), 3j + k)9γh
641

=
2∑

h=0

2∑
j=0

8∑
i=3

(
i

3

)
((u(i, h), 3j+1)9+2(u(i, h), 3j+2)9)γh

642

=
2∑

h=1

T(3,h)γ
h, 643

where 644

T(3,h) 645

=
2∑

j=0

8∑
i=3

(
i

3

)
((u(i, h), 3j + 1)9 + 2(u(i, h), 3j + 2)9 646

− (u(i, 0), 3j + 1)9 − 2(u(i, 0), 3j + 2)9), 647

where u(i, h) is the unique integer u with 0 ≤ u ≤ 8, u−1 ≡ 648

h (mod 3), and u ≡ i (mod 9). Let T(3,h) = 0 for h = 1, 2. 649

According to Appendix E, 650

T(3,1) 651

=
2∑

j=0

(
(

4
3

)
(4, 3j + 1)9+

(
7
3

)
(7, 3j+1)9+2

(
4
3

)
(4, 3j+2)9 652

+ 2
(

7
3

)
(7, 3j+2)9 −

(
3
3

)
(3, 3j+1)9−

(
6
3

)
(6, 3j+1)9 653
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− 2
(

3
3

)
(3, 3j+2)9−2

(
6
3

)
(6, 3j+2)9)654

≡2C + F + J − 2M + N − P + Q (mod 3)655

=
−c1 − 2c2 − c4 + c5

6
656

≡0 (mod 3),657

T(3,2)658

=
2∑

j=0

(
(

5
3

)
(5, 3j + 1)9+

(
8
3

)
(8, 3j + 1)9+2

(
5
3

)
(5, 3j+2)9659

+ 2
(

8
3

)
(8, 3j + 2)9−

(
3
3

)
(3, 3j + 1)9 −

(
6
3

)
(6, 3j+1)9660

− 2
(

3
3

)
(3, 3j + 2)9 − 2

(
6
3

)
(6, 3j + 2)9)661

≡B + 2E + J + K + N + Q − R (mod 3)662

=
3c1 − 2c2 − 3c4 + c5

6
663

≡0 (mod 3).664

Thus, S(γ)(3) = 0 if and only if c4 ≡ 2c1 (mod 9) and665

c5 ≡ 3c1 + 2c2 (mod 18).666

4) Similar to 3), let l = 2 since t = 4. From (15b),667

S(γ)(4)668

=
2∑

k=1

k

8∑
i=4

(
i

4

) 2∑
h=0

3−1∑
j=0

(u(i, h), 3j+k)9γh
669

=
2∑

h=0

2∑
j=0

8∑
i=4

(
i

4

)
((u(i, h), 3j+1)9 + 2(u(i, h), 3j+2)9)γh

670

=
2∑

h=1

T(4,h)γ
h.671

Let T(4,h) = 0 for h = 1, 2.672

T(4,1)673

=
2∑

j=0

(
(

5
4

)
(5, 3j + 1)9+

(
8
4

)
(8, 3j+1)9+2

(
5
4

)
(5, 3j+2)9674

+ 2
(

8
4

)
(8, 3j + 2)9−

(
4
4

)
(4, 3j + 1)9−

(
7
4

)
(7, 3j+1)9675

− 2
(

4
4

)
(4, 3j + 2)9−2

(
7
4

)
(7, 3j + 2)9)676

≡2B−2C+E−F+J+2K−M +N−2P−2Q+R (mod 3)677

=
c1 + 4c2 + c4 − 5c5

6
678

≡0 (mod 3),679

T(4,2)680

=
2∑

j=0

(
(

6
4

)
(6, 3j+1)9+2

(
6
4

)
(6, 3j+2)9−

(
4
4

)
(4, 3j+1)9681

−
(

7
4

)
(7, 3j+1)9−2

(
4
4

)
(4, 3j+2)9−2

(
7
4

)
(7, 3j+2)9) 682

≡− 2C − F − J + 2M − N − 2P − Q (mod 3) 683

=
2c1 + c2 − c4 − 2c5

3
684

≡0 (mod 3). 685

Thus, S(γ)(4) = 0 if and only if c1 + c4 − c5 ≡ 4(c5 − c2) 686

(mod 18) and 2(c1 − c5) ≡ c4 − c2 (mod 9). Solving the 687

simultaneous equations c4 ≡ 2c1 (mod 9), c5 ≡ 3c1 + 2c2 688

(mod 18), c1+c4−c5 ≡ 4(c5−c2) (mod 18) and 2(c1−c5) ≡ 689

c4 − c2 (mod 9), we get c1 ≡ c2 ≡ c4 ≡ c5 ≡ 0 (mod 9), 690

which completes the proof. � 691

Combining Propositions 1 and 3 yields the following 692

theorem. 693

Theorem 2: Let q ≡ 1 (mod 9) be a prime where 694

4q = c2 + 27d2 and c ≡ 7 (mod 9). Let q = 695

(
∑5

i=0 ciξ
i)(

∑5
i=0 ciξ

−i) where ξ is a primitive 9th root 696

of unity of Fq. Then, in the case of Ind 3 ≡ 0 (mod 3), 697

the F3-linear complexity of the ternary Sidelnikov sequence 698

{sn}n≥0 of period q − 1 is 699

1) LC ≤ q − 4 if d ≡ 0 (mod 3); 700

2) LC ≤ q − 10 if c ≡ 16 (mod 18) and d ≡ 0 (mod 6), 701

or c ≡ 7 (mod 18) and d ≡ 3 (mod 6); 702

3) LC ≤ q − 15 if c ≡ 16 (mod 18) and d ≡ 0 (mod 6), 703

or c ≡ 7 (mod 18) and d ≡ 3 (mod 6); and c4 ≡ 2c1 704

(mod 9) and c5 ≡ 3c1 + 2c2 (mod 18); 705

4) LC ≤ q − 17 if c ≡ 16 (mod 18) and d ≡ 0 (mod 6), 706

or c ≡ 7 (mod 18) and d ≡ 3 (mod 6); and c1 ≡ c2 ≡ c4 ≡ 707

c5 ≡ 0 (mod 9). 708

Proof: Let q = 9f + 1. Then xq−1 − 1 ≡ (x3 − 1)3f
709

(mod 3). It is clear that f ≥ 2. Thus, the multiplicities of the 710

3rd roots γ (γ3 = 1) as roots of xq−1 − 1 are at least 6. Let 711

q = (
∑5

i=0 ciξ
i)(

∑5
i=0 ciξ

−i) where ξ is a primitive 9th root 712

of unity of Fq. 713

1) It is clear from Proposition 1 3). 714

2) From Proposition 3 2), it follows by solving the simul- 715

taneous equations c + 2 ≡ 0 (mod 9), d ≡ 0 (mod 3), and 716

2 + c − 9d ≡ 0 (mod 18). 717

3) From Proposition 1 5) and Proposition 3 3), we have 718

c4 ≡ 2c1 (mod 9) and c5 ≡ 3c1 + 2c2 (mod 18), which 719

imply that c1 + c5 ≡ 2(c2 + c4). Thus, the result is true. 720

4) It is clear from Proposition 1 5) and Proposition 3 4). � 721

Example 6: Let q = 73 and M = 3. Then a ternary 722

Sidelnikov sequence {sn}n≥0 of period 72 defined by α = 723

5 of F73 is represented as {2, 2, 1, 2, 2, 2, 1, 2, 0, 1, 0, 1, 0, 724

0, 0, 2, 1, 0, 1, 0, 2, 2, 2, 1, 2, 1, 2, 0, 1, 1, 2, 2, 0, 2, 1, 0, 0, 725

1, 0, 0, 1, 1, 2, 2, 0, 0, 0, 0, 0, 2, 1, 2, 0, 2, 1, 1, 0, 2, 1, 2, 726

0, 2, 2, 1, 1, 1, 1, 0, 1, 2, 2, 1}, and 2 = α8 and 3 = α6 over 727

F73 = {0, 1, 2, 3, . . . , 72}, i.e., Ind 2 ≡ 2 (mod 6) and Ind 728

3 ≡ 0 (mod 3). From 4q = c2 + 27d2 and c ≡ 1 (mod 3), 729

we have c = 7 and d = −3. Then, according to Proposition 1 730

3) and Theorem 2 1), 1 is a triple root of S(x). In addition, 731

although 2 is a root of x72−1, it is clear that 2 is not a root of 732

S(x) because S(2) ≡ 2 (mod 3), which can also be further 733

confirmed from Proposition 2 since 73 = (−5)2 + 3× 42 and 734

4 ≡ 1 (mod 3). Thus, the linear complexity of this sequence 735
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TABLE I

THE F3-LINEAR COMPLEXITIES OF TERNARY SIDELNIKOV SEQUENCES OF PERIOD q − 1 = 2 × 3λ FOR 1 ≤ λ ≤ 20

is LC ≤ 69. In fact, we know that its linear complexity is736

exactly 69 since gcd(x72 − 1, S(x)) = (x− 1)3, which means737

this upper bound is reachable.738

Finally, for the special case of q = 2×3λ +1 where λ is an739

integer, the following corollary can be obtained, and Table I740

lists all examples for 1 ≤ λ ≤ 20. From this table, it is easy741

to see that the linear complexities of all sequences considered742

are extremely close to their periods.743

Corollary 2: Let a prime q = 2 × 3λ + 1 (λ ≥ 1).744

Let q have the decompositions q = a2 + 3b2 and 4q =745

c2 + 27d2 where a ≡ 1 (mod 3) and c ≡ 1 or 7 (mod 9).746

Let q = (
∑5

i=0 ciξ
i)(

∑5
i=0 ciξ

−i) where ξ is a primitive747

9th root of unity of Fq. Then, the F3-linear complexity of748

ternary Sidelnikov sequence {sn}n≥0 of period q− 1 satisfies749

1) LC = q − 2 if q = 7;750

2) LC = q − 3 if q ≡ 1 (mod 9) and b, d �= 0 (mod 3);751

3) LC = q − 5 if q ≡ 1 (mod 9), b ≡ 0, d �= 0 (mod 3),752

and Ind 2 ≡ 0 (mod 3);753

4) LC ≤ q− 6 if q ≡ 1 (mod 9), b ≡ d ≡ 0 (mod 3), and754

Ind 2 ≡ Ind 3 ≡ 0 (mod 3). More precisely, it follows that755

4-1) LC = q − 7 if c1 + c5 ≡ 2(c2 + c4) (mod 9),756

4-2) LC = q−9 if c1+c5 ≡ 2(c2+c4), c4 ≡ 2c1 (mod 9),757

4-3) LC = q − 10 if c1 + c5 ≡ 2(c2 + c4), c4 ≡ 2c1,758

c3 + c4 + c5 ≡ 0 (mod 9),759

4-4) LC = q − 11 if c1 + c5 ≡ 2(c2 + c4), c4 ≡ 2c1,760

c3 + c4 + c5 ≡ 0, 1 + c0 + c2 + 2c4 ≡ 0 (mod 9),761

4-5) LC ≤ q − 12 if c0 ≡ −1 + 2c5, c1 ≡ −c5, c2 ≡ 762

2c5, c3 ≡ c5, c4 ≡ −2c5 (mod 9); 763

5) LC ≤ q−7 if q ≡ 1 (mod 9), b ≡ 0 (mod 9) and d ≡ 0 764

(mod 3), and Ind 2 ≡ Ind 3 ≡ 0 (mod 3). More precisely, 765

it follows that 766

5-1) LC = q − 8 if c1 + c5 ≡ 2(c2 + c4) (mod 9), 767

5-2) LC = q − 10 if c1 + c5 ≡ 2(c2 + c4), c4 ≡ 2c1 768

(mod 9), 769

5-3) LC = q − 11 if c1 + c5 ≡ 2(c2 + c4), c4 ≡ 2c1, 770

c3 + c4 + c5 ≡ 0 (mod 9), 771

5-4) LC = q − 12 if c1 + c5 ≡ 2(c2 + c4), c4 ≡ 2c1, 772

c3 + c4 + c5 ≡ 0, 1 + c0 + c2 + 2c4 ≡ 0 (mod 9), 773

5-5) LC ≤ q − 13 if c0 ≡ −1 + 2c5, c1 ≡ −c5, c2 ≡ 774

2c5, c3 ≡ c5, c4 ≡ −2c5 (mod 9). 775

IV. CONCLUSION 776

The main purpose of this paper is to give the Hasse 777

derivative formulas to determine the multiplicity of γ, the 778

primitive rth root of unity over FM or in an extension field 779

of FM , as a root of S(x) which is the generating function of 780

an M -ary Sidelnikov sequence {sn}0≤n≤q−2. In general, this 781

proposed method can be used to determine the exact FM -linear 782

complexity of the M -ary Sidelnikov sequence whenever the 783

value of certain cyclotomic numbers and the factorization of 784

xq−1−1 over FM are known. However, the well-known results 785

on cyclotomic numbers are currently limited to the orders 786
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e ≤ 24. This limitation hinders our ability to calculate the787

multiplicity of γ if r is large. On the other hand, it is not788

easy to factorize the polynomial xq−1 − 1 over FM . Based789

on the above, it seems that the determination of the exact790

FM -linear complexity of the M -ary Sidelnikov sequence is791

a difficult problem, especially when the characteristic of the792

field is a factor of the period of Sidelnikov sequence [9].793

Nevertheless, one may determine the Z4-linear complexity of794

4-ary Sidelnikov sequences when q = 3 · 4λ + 1 [28].795

APPENDICES796

APPENDIX A797

THE CYCLOTOMIC NUMBERS OF ORDER 2798

Let q = ef + 1 be a prime power. When e = 2, the799

cyclotomic numbers are given in [25] by800

(1) f even: (0, 0)2 = (f − 2)/2; (0, 1)2 = (1, 0)2 =801

(1, 1)2 = f/2;802

(2) f odd: (0, 0)2 = (1, 0)2 = (1, 1)2 = (f−1)/2; (0, 1)2 =803

(f + 1)/2.804

APPENDIX B805

THE CYCLOTOMIC NUMBERS OF ORDER 2r806

Let q = pm ≡ 1 (mod 2r) for any prime p such that m =807

uv, u ≥ 1, v is the order of p modulo r and v is even. Then,808

the cyclotomic numbers of order 2r over Fq are given in [27]809

by:810

(1) (0, j)2r = (j, 0)2r = (j, j)2r ;811

(2) 4r2A := 4r2(0, 0)2r = q − 6r + 1 − (4r2 − 6r +812

2)(−1)uq1/2;813

(3) 4r2B := 4r2(0, j)2r = q − 2r + 1 + 2(r − 1)(−1)uq1/2
814

for j �= 0 (mod 2r);815

(4) 4r2C := 4r2(i, j)2r = q+1−2(−1)uq1/2 for i, j, i−j �=816

0 (mod 2r).817

APPENDIX C818

THE CYCLOTOMIC NUMBERS OF ORDER 3819

Let q = ef + 1 be a prime. When e = 3 and 4q = c2 +820

27d2 with c ≡ 1 (mod 3), the cyclotomic numbers are given821

in [25] by822

(1) A := (0, 0)3 = (q − 8 + c)/9;823

(2) B := (0, 1)3 = (1, 0)3 = (2, 2)3 = (2q−4−c−9d)/18;824

(3) C := (0, 2)3 = (1, 1)3 = (2, 0)3 = (2q−4−c+9d)/18;825

(4) D := (1, 2)3 = (2, 1)3 = (q + 1 + c)/9.826

APPENDIX D827

THE CYCLOTOMIC NUMBERS OF ORDER 6828

Let q = ef + 1 be a prime. When e = 6 and q =829

a2 + 3b2 with a ≡ 1 (mod 3), the cyclotomic numbers830

(u, v)6 when f is even are given in Table II [29] by831

I. Case Ind 2 ≡ 0 (mod 6)832

(1) 36A := (0, 0)6 = q − 17 − 20a,833

(2) 36B := (0, 1)6 = q − 5 + 4a + 18b,834

(3) 36C := (0, 2)6 = q − 5 + 4a + 6b,835

(4) 36D := (0, 3)6 = q − 5 + 4a,836

TABLE II

CYCLOTOMIC NUMBERS OF ORDER 6 AND f EVEN

(5) 36E := (0, 4)6 = q − 5 + 4a − 6b, 837

(6) 36F := (0, 5)6 = q − 5 + 4a − 18b, 838

(7) 36G := (1, 2)6 = q + 1 − 2a, 839

(8) 36H := (1, 3)6 = q + 1 − 2a, 840

(9) 36I := (1, 4)6 = q + 1 − 2a, 841

(10) 36J := (2, 4)6 = q + 1 − 2a; 842

II. Case Ind 2 ≡ 2(or 5) (mod 6) 843

(1) 36A := (0, 0)6 = q − 17 − 8a − 6b, 844

(2) 36B := (0, 1)6 = q − 5 + 4a + 6b, 845

(3) 36C := (0, 2)6 = q − 5 − 8a, 846

(4) 36D := (0, 3)6 = q − 5 + 4a + 6b, 847

(5) 36E := (0, 4)6 = q − 5 + 4a + 6b, 848

(6) 36F := (0, 5)6 = q − 5 + 4a − 12b, 849

(7) 36G := (1, 2)6 = q + 1 − 2a + 6b, 850

(8) 36H := (1, 3)6 = q + 1 − 2a − 12b, 851

(9) 36I := (1, 4)6 = q + 1 − 2a + 6b, 852

(10) 36J := (2, 4)6 = q + 1 + 10a− 6b; 853

III. Case Ind 2 ≡ 1(or 4) (mod 6) 854

(1) 36A := (0, 0)6 = q − 17 − 8a + 6b, 855

(2) 36B := (0, 1)6 = q − 5 + 4a + 12b, 856

(3) 36C := (0, 2)6 = q − 5 + 4a− 6b, 857

(4) 36D := (0, 3)6 = q − 5 + 4a − 6b, 858

(5) 36E := (0, 4)6 = q − 5 − 8a, 859

(6) 36F := (0, 5)6 = q − 5 + 4a − 6b, 860

(7) 36G := (1, 2)6 = q + 1 − 2a− 6b, 861

(8) 36H := (1, 3)6 = q + 1 − 2a − 6b, 862

(9) 36I := (1, 4)6 = q + 1 − 2a + 12b, 863

(10) 36J := (2, 4)6 = q + 1 + 10a + 6b. 864

APPENDIX E 865

THE CYCLOTOMIC NUMBERS OF ORDER 9 866

Let q = ef + 1 be a prime. When e = 9 and 4q = 867

c2 + 27d2 with c ≡ 7 (mod 9), the cyclotomic numbers 868

(u, v)9 are given in Table III [21]. Each cyclotomic num- 869

ber is expressed as a constant plus a linear combination of 870

q, c, d, c0, c1, c2, c3, c4, and c5 where 871

q = (
5∑

i=0

ciξ
i)(

5∑
i=0

ciξ
−i) 872

is a factorization of q in the field of 9th roots of unity, and 873

ξ is a primitive 9th root of unity. The following cyclotomic 874

numbers are only for Ind 3 ≡ 0 (mod 3). 875
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TABLE III

CYCLOTOMIC NUMBERS OF ORDER 9

(1) 162A := 2q − 52 + 2c + 108c0 − 54c3.876

(2) 162B := 2q−16−c+9d−12c0+42c1−12c2+24c3−877

30c4 + 24c5.878

(3) 162C := 2q−16−c−9d−12c0+24c1+42c2−12c3−879

12c4 − 12c5.880

(4) 162D := 2q − 16 + 2c − 18c0 + 36c3.881

(5) 162E := 2q−16−c+9d−12c0−12c1+24c2+24c3 +882

42c4 − 12c5.883

(6) 162F := 2q−16−c−9d−12c0−12c1−30c2−12c3−884

12c4 + 42c5.885

(7) 162G := 2q − 16 + 2c − 18c0 − 18c3.886

(8) 162H := 2q−16−c+9d−12c0−30c1−12c2+24c3−887

12c4 − 12c5.888

(9) 162I := 2q−16− c−9d−12c0−12c1−12c2−12c3 +889

24c4 − 30c5.890

(10) 162J := 2q + 2 + 2c − 18c1 + 18c2.891

(11) 162K := 2q + 2− c + 9d + 6c0 + 6c1 − 12c2− 12c3 +892

6c4 + 6c5.893

(12) 162M := 2q + 2− c− 9d + 6c0 − 12c1 + 6c2 + 6c3 +894

6c4 + 6c5.895

(13) 162N := 2q + 2 + 2c + 18c1 − 18c4 − 18c5.896

(14) 162O := 2q + 2− c + 9d + 6c0 − 12c1 + 6c2 − 12c3 +897

6c4 + 6c5.898

(15) 162P := 2q + 2 − c− 9d + 6c0 + 6c1 − 12c2 + 6c3 +899

6c4 + 6c5.900

(16) 162Q := 2q + 2 + 2c − 18c2 + 18c4 + 18c5.901

(17) 162R := 2q + 2− c + 9d + 6c0 + 6c1 + 6c2 − 12c3 −902

12c4 − 12c5.903

(18) 162S := 2q + 2 − c − 9d + 6c0 + 6c1 + 6c2 + 6c3 −904

12c4 − 12c5.905

(19) 162T := 2q + 2 + 2c.906
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