5548

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 68, NO. 8, AUGUST 2022

Some Upper Bounds and Exact Values on Linear
Complexities Over [F;; of Sidelnikov
Sequences for M = 2 and 3

Min Zeng™, Yuan Luo

Abstract—Sidelnikov sequences, a kind of cyclotomic
sequences with many desired properties such as low correlation
and variable alphabet sizes, can be employed to construct a
polyphase sequence family that has many applications in high-
speed data communications. Recently, cyclotomic numbers have
been used to investigate the linear complexity of Sidelnikov
sequences, mainly about binary ones, although the limitation on
the orders of the available cyclotomic numbers makes it difficult.
This paper continues to study the linear complexity over Fas
of M-ary Sidelnikov sequence of period g — 1 using Hasse
derivative, which implies ¢ = p™, m > 1 and M|(q — 1).
The tth Hasse derivative formulas are presented in terms of
cyclotomic numbers, and some upper bounds on the linear
complexity for M = 2 and 3 are obtained only with some
additional restrictions on g. Furthermore, concrete illustrations
for several families of these sequences, such as ¢ = 1 (mod 2)
and ¢ = 1 (mod 3), show these upper bounds are tight and
reachable; especially for ¢ = 2x 3*+1(1 < A < 20), the exact
linear complexities over 3 of the ternary Sidelnikov sequences
are determined; and it turns out that all the linear complexities
of the sequences considered are very close to their periods.

Index Terms— Array structure, cyclotomic numbers, Hasse
derivative, linear complexity, Sidelnikov sequences.

I. INTRODUCTION

SEUDO random sequences with certain properties are
widely used in the communication engineering and cryp-
tography [1]. The cyclotomic sequences have a number of
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attractive randomness properties [2]-[4]. Ding [5] studied their
linear complexity, minimal polynomial, and autocorrelation
function.

For ¢ = p™ where p is an odd prime and m is a
positive integer, Sidelnikov [6] introduced a kind of cyclotomic
sequence called the M-ary Sidelnikov sequence of period
g — 1 where M|(q — 1). Soon afterwards, Lempel, Cohn and
Eastman [7] re-introduced its binary form called Sidelnikov-
Lempel-Cohn-Eastman sequence. In the last two decades,
a lot of attention has been devoted to this binary sequence.
For example, using the cyclotomic numbers, Helleseth and
Yang [8] originally investigated the autocorrelation function
and linear complexity over Fy of the binary Sidelnikov
sequences. Later on, Kyureghan and Pott [9], and Meidl and
Winterhof [10] determined the exact linear complexity over
Fy of some of these sequences with well-known results on
cyclotomic numbers; a lower bound on the linear complexity
profile of these sequences was also introduced in [10], which
is the desirable important property of applications. Then,
Wang [11] and Su [12] studied the linear complexity of binary
cyclotomic sequences of order 6 and Legendre-Sidelnikov
sequences of period p(q — 1), respectively. Ye er al. [13]
further studied the linear complexity of a new kind of binary
cyclotomic sequence, with length p”, and Liang et al. [14]
computed the linear complexity of Ding-Helleseth generalized
cyclotomic sequences by using cyclotomic numbers of order 8.
Following the footsteps of these pioneers, Zeng et al. [15]
discussed the [Fj;-linear complexity of M-ary Sidelnikov
sequences of period p—1 = f x M* where M is not just equal
to 2. On the other hand, using the discrete Fourier transform
(i.e., DFT), Helleseth et al. [16], [17] also determined the
linear complexity over F, of binary Sidelnikov sequences,
and Garaev et al. [18] derived the lower bound of the linear
complexity over [F,. For the k-error linear complexity over
IF), of the d-ary Sidelnikov sequence, Chung and Yang [19]
presented many results of interest, then Aly and Meidl [20]
further complemented these results.

In this paper, we continue to study the linear complexity
over Fj; of M-ary Sidelnikov sequence of period g — 1 using
Hasse derivative, where ¢ = p™, m > 1 and M|(¢—1). Some
upper bounds on the linear complexity for M = 2 and 3 are
obtained, and some exact values of the linear complexity for
several families of these sequences, such as ¢ = 1 (mod 2)
and ¢ = 1 (mod 3), illustrate these upper bounds are tight
and reachable. In particular, the exact linear complexities over
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3 of the ternary Sidelnikov sequences are determined for
g =2x3"+1(1 < X\ < 20), and it turns out that all the
linear complexities of the sequences considered are very close
to their periods. Some examples over Fy have been confirmed
for binary Sidelnikov sequences by Helleseth and Yang.

The rest of this paper is organized as follows. In Section II,
after reviewing some notations and definitions, we present
formulas for the ¢th Hasse derivative of the generating function
S(xz) of the M-ary Sidelnikov sequence {sy},>0 in terms
of the cyclotomic numbers. In Section III, the multiplicities
of some rth primitive roots of unity over [, as roots of
S(z) are determined using the Hasse derivative to estimate
the [F/-linear complexity of M-ary Sidelnikov sequences for
the two cases of ¢ = 1 (mod 2) and ¢ = 1 (mod 3). Some
special examples are listed in Table I for ¢ = 2 x 3* + 1(1 <
A < 20). Note that this section extends our conference
version [15] by adding Subsection III-A on the case ¢ = 1
(mod 2) which includes Theorem 1 and Examples 4 and 3,
by supplementing a main result on the case ¢ = 1 (mod 3) in
Theorem 2 of Subsection III-B, and by giving all proofs of the
relevant results here. In Section IV, there are some concluding
remarks. In addition, some known cyclotomic numbers of
orders 2,2r,3,6 and 9 are displayed in Chapter IV due to
the need to prove the results of this paper.

II. PRELIMINARIES

In this section, after some notations are listed, the M-ary
Sidelnikov sequence, the Fj;-linear complexity and the
cyclotomic number are defined in Definitions 1, 3 and 4,
respectively. Lemma 3 presents Hasse derivates in terms
of cyclotomic numbers, and will be used to determine the
Fpr-linear complexity of the M-ary Sidelnikov sequence.

e p: an odd prime.

e ¢: an odd prime power p™™ with m > 1.

e [, and F,: the finite fields with p and ¢ elements,

respectively.

e M: M is a prime with M|(qg — 1).

e «: a fixed primitive element of [F,.

o {sn}n>0: the M-ary Sidelnikov sequence of period ¢— 1.

o S(x): the generating function of {s, }o<n<q—2.

o Fs[z]: the polynomial ring over finite field Fy,.

o R(7): the multiplicity of a primitive rth root  of unity
over Fp; as a root of S(z), where v = e?%F and
j=v-1

e LC(:): the Fps-linear complexity of a sequence. It is
written as LC' for short if the context is clear.

e Ind z: the index of x € I, to the base g modulo ¢ [21].

The M-ary Sidelnikov sequence is defined as follows.

Definition I ([22]): For a fixed primitive element o of T,
and M|(g—1),let D), k= 0,1,..., M — 1, be the disjoint
subsets of IF, defined as

DY) = {oMith _ 1 | ogig%—l}.
The M-ary Sidelnikov sequence {s,}n>o of period ¢ — 1 is
defined as

(1

.k ifame D,
"0 ifar =1
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Equivalently,
sp, = log, (a” +1)

Note that UQ/I:Bl D,ia) = FN\{-1}, 0 € D(()a), and let
log,,(0) = 0.

Example 1: Let ¢ = 7 and M = 3. For a = 3, we have
a ternary Sidelnikov sequence {s,,},,>0 of period 6, that is,
{Sn}0§n§5 = {2, 1, 1, 0, 2, 0}

Definition 2: A polynomial C(x) =zl + cjzt=t + ... +
cr—1x+1 € Fps[x] is the connection polynomial of the M -ary
sequence {s, }n>0 of period T' = g — 1 if there exist constants
co=1,¢c1,...,c—1,c, =1 € Fyy, such that

(mod M). 2)

—1
s; = — Z ¢iSj—r+i (mod M), forall j > L. 3)
i=0

Definition 3: The linear complexity over Fas of {s,}n>0

is defined as
LC({sn}n>0) = min{deg(C(x)) :
C'(z) is the connection polynomial of {s,}n>0}.

Lemma 1 ([23]): Let S(x) = so + s12 + -+ + 84_229 2.
Then C(z) is the connection polynomial of {sy},>0 if and
only if S(x)C(r) =0 mod (z7! —1).

Therefore, the IFj;-linear complexity of the M-ary Sidel-
nikov sequence {s,},>0 can be determined by

LC({sn}n>0) = ¢ — 1 —deg[ged(z?™ ! — 1,8(2))], (4

where S(z) is by (1)

M-—1
Sx)=>k Y a"eFyla 5)
k=1 nep(®
0<n<q—2

Example 2: The [F3-linear complexity of the ternary Sidel-
nikov sequence {s,},>0 of period 6 in Example 1 is 5 since
ged(2® — 1,228 + 22 + 2 +2) =2 — 1.

Similar to Example 2, in order to evaluate LC({sp }n>0)
from (4), we will determine the multiplicity of ~ as a root of
S(x), where ~y is also a (¢ — 1)-th root of unity over Fp; or
in an extension field of [F;, by using the cyclotomic numbers
defined as follows.

Definition 4: Let a be a primitive element in the finite field
FF,, and e|(g—1). Then the cyclotomic classes C® 0<u<
e — 1, are defined in [F, as

O = farttu o< g < T2 1y,
e

For fixed positive integers u and v, not necessarily distinct,
the cyclotomic number (u,v). is defined as the number of
elements z, € C'* such that z, + 1 € C'*, where e is
called the order of the cyclotomic number.

Example 3: Let F; = {0, 1,2, 3,4, 5, 6} = {0, a, a2, a3,
at, ab, aG} where o = 3 is a primitive element in F7. Let
e = 3. Then Coa) = {1,a?}, C{a) = {a,a'}, and CQQ) =
{a?,a}. Ttis easy to see that 1+1 =2 = o? and a®+1 = 0,
thus (0,0); = 0, (0,1)3 = 0, and (0,2)5 = 1. Similarly,
(LO)& =0, (1a 1)3 =1, (1a 2)3 =1, (270)3 =1, (27 1)3 =1,
and (2,2)3 = 0.
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Let ¢ = fx M*+1 where f and ) are two positive integers.
Then 271 — 1 = (2f — 1)M" € Fy[z]. Let ~ be a primitive
rth root of unity over [Fj; or in an extension field of [F,; where
r|f. Then the multiplicity of  as a root of S(z) is i, i.e.,

R(v) =1,

if S(7) = S(1)® =--- = S()0" =0 and S(v)® # 0,
where S(2)® (t = 0,1,...,i) is the tth Hasse derivative of
S(xz) [24], and defined as

M—1
n
S =>"k > (t>x"_tEIFM[x], (6)
k=1  nep(®
r,gnqu—z

where the binomial coefficients (') modulo M can be evalu-

ated with the following Corollary 1.
Lemma 2 (Lucas’ Theorem [25]): Let 0 < b; < a; <
M —1forj=0,1,...,1—1, where M is a prime. Then

ap+arM +---+ al_lMl_l
bo+ b1 M+ -+ b M1

=) (5)~ (5] weaan

It is clear from Lemma 2 that b; < a; for j =0,1,...,[-1.
However, since there exists a convention that if x < y then
(’yc) = 0, the Lucas’ theorem can be extended to the following
corollary.

Corollary 1 (Extension of Lucas’ Theorem): Let M be a
prime.

1) Let 0 < bj,a; <M —1for j=0,1,..

< ap+ar M+ +a_ M1 )

., — 1. Then

bo+ b1 M+ -+ b M1

=() (o) (o

2) Let n =i (mod M) where [ = |log,,(t)| +1ift > 1,
and [ = 1 if t = 0. Then

(=)

where (}) = 0if i < t.
Proof: First, we prove Lucas’ theorem is still true if there
exists j such that b; > a;. To the end, we need to compare
the coefficients of binomial expansion of (1 + z)%, where
a= Zé;é ajM7 and ag, ...,a;_ are the digits in the M-ary
representation of a.
Since M is a prime, it follows that

(1+2)™ =1 + 2™ (mod M) for j > 1. )

) (mod M).  (7)

Then we have
(I+x)*
(14 2)((1+2)M)* - (14 z)M
=(1+2)°(1+2M)" (142 )@t (mod M).
(10)

Let b = E;_:B bj M7 where by, ...,b_1 are the digits in the
M -ary representation of b. It is clear that the items of x® on
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the left and right sides of (10) should be equal by using the
unique M -ary representation property,

ay b @0\ bo (A1), oM [ G=1N b Mt
G = GGG
agp\ (a1 a—-1\
= e . 11
(bO) (b1> (bH) (o

Thus, if b; < a; for all 0 < j <1 — 1, the coefficient on the
left of (11) must be congruent modulo M to the coefficient
on the right, which is exactly the result of Lucas’ theorem.

Otherwise, if there exists 0 < j < [ — 1 such that b; > aj,
then (Z?) = 0, which means there is no item of z% %’
J

on

the right of (11), leading to there is no item of 2b. Then, the
coefficients on both sides of (11) are equal to 0, that is to say,
the Lucas’ theorem is also true for b; > a; (0 < j <[l —1).
So, (7) is true.

Secondly, we prove (8) is also true.

(i) If ¢t = 0, the result is obvious.

(i) If t > 1, let I = |logy,(t)] + 1. Then t < M. Let
N, N1y e vy Np—1,M0, ...,y and to,...,¢;—1 be the digits in
the/M -ary representations of n and ¢, respectively. Then n =
Zi:o n;jM7 and t = Zé;t t;M7. Since n = i (mod M'),
it follows that i = E;_:B njM7. From (7), it is easy to see
that

ny no+ -+ M 4 M g MY
t)  \to+- -+t M1H0 X M4+ 0x MV

B () (3) e
_ C) (mod M).

Thus, the proof completes. 0

Next, the tth Hasse derivatives (¢ = 0,1,...) in terms of
cyclotomic numbers are listed in the following lemma that will
be used to determine the multiplicities of all the fth roots of
unity, as the roots of S(x).

Lemma 3: [15] Let ¢ = p™ = 1 (mod M) where p is
an odd prime and M is prime. Let v be a primitive rth
root of unity over [y, or in an extension field of Fy,. S(z)
is the generating function of an M-ary Sidelnikov sequence
{sn}o<n<q—2. Then the tth Hasse derivatives S(x)®) € Fy;[z]

(t=0,1,...) satisfy the following identities.
1y
M—-1 M-1
S =S"kS (w k), (12)

k=1 u=0
where n = u (mod M);
2)

M—-1 M'—1 , M'"'-1

SMO = "k <z> (i, M+ k)ppe,  (13)
k=1 i=t =0

where n =i (mod M), and I = [log,,(t)] + 1 if t > 1;

3) (see (14a) and (14b), as shown at the bottom of the next
page:)

4) (see (15a) and (15b), as shown at the bottom of the next
page.)

J
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Remark 1: 1) The Hasse derivative in Lemma 3 is a bridge
across the cyclotomic number and the linear complexity.
Using this technique, one can determine the exact Fy,-linear
complexity of an M-ary Sidelnikov sequence according to
certain cyclotomic numbers. However, the well-known results
on cyclotomic numbers are now just limited to the orders
e < 24. This limitation hinders our ability to calculate the
multiplicity of «y if 7 is large. So, it seems difficult to determine
the exact [Fj/-linear complexity. 2) For the proof details of
Lemma 3, please refer to [10], [15].

III. UPPER BOUNDS AND SOME EXACT VALUES

This section investigates the [F;,-linear complexities of the
M -ary Sidelnikov sequences. In the case of ¢ = 1 (mod 2),
Theorem 1 shows that the Fy-linear complexities of binary
Sidelnikov sequences of period ¢ — 1 are upper bounded by
q — 2r if r satisfies certain conditions. In the case of ¢ = 1
(mod 3), for the trivial root 1, the primitive 2nd root and the
primitive 3rd root of unity over F3 or in an extension field of
5, the multiplicities of them as the roots of S(x) are deter-
mined in Propositions 1, 2 and 3, respectively. Furthermore,
the F'3-linear complexities of the ternary Sidelnikov sequences
are presented in Theorem 2 and Corollary 2.

Note that, for the detailed meanings of the capital letters
such as “A”, “B”, “C”, etc. in this section, please refer to
Appendices IV.

A. Binary Case

The linear complexity of binary Sidelnikov sequence was
originally investigated by Helleseth and Yang, and later
extended by Kyureghyan and Pott, and Meidl and Winterhof.
In the following theorem, we continue to estimate the linear
complexity of the Sidelnikov sequence for ¢ = 1 (mod 2)
using the technique introduced by Meidl and Winterhof, and
the result is an extension of that in [10].

Theorem 1: Let g =p™ =1 (mod 2r) for m = uv, where
p and r are both odd primes, v > 1, v is the order of p
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modulo r, and v is even. Let 2 be a primitive root modulo r
and {s,, }»>0 be a binary Sidelnikov sequence of period g — 1.
Then the linear complexity of {sy},>0 over Fs is less than
or equal to g — 2r if

1) u is even; or

2) u is odd, and 4 1 v with p =3 (mod 4).

Proof:  Let S(x) be the generating function of
{8n}o<n<q—2. The multiplicities of 1 as a root of S(z) have
been intensively discussed in [9] and [10]. Here we consider
the multiplicity of v as a root of S(x) where v(# 1) is a
primitive rth root of unity in an extension field of [F5. Note
that (2" — 1)[(z9! — 1) since 2r|[(q — 1). Let 2" — 1 =
(x =)@ t+a" 2+ +1) = (z — 1)®.(x) where
O, (z) =] Lk (z— 2™/ is a cyclotomic polynomial.
Then @, (z ) is irreducible over Fo since 2 is a primitive root
modulo r [26], and ®,(y) = 0. Let M = 2.

First, consider v is a single root of S(x). Let n = h
(mod r). Then 1 < M —[2E] < M. Thus, we get from (14a)
that

— r—1r—1 1

Zkzzz ir+ h,25 + k) gr'y

k=1 h=07=01i=0

r—1 r—1 r—1

=3 O ((h 25+ Dar + (r + b, 25 + Do)V =D Tiom)v",

h=0 j=0 =
where Tion) = Y- —o((h, 25 + 1)27" + (r+ h,2j + 1)a, —
(0,2541)2,— (1,254 1)2,) since ®,-(y) = 0. From Appendix
B, it follows that

To,n)= Z (h,25 + V)ar + (r + h, 25 + )2 — (0,25 + 12y

j=0

—(r,2j + 1)2r)

LB+(@2r—1)C—rB—-B-—

1— (=1)uplww)/2
2r

(r—1)C=C—-B (mod 2)

)

where * means that for a fixed h, one and only one of i and
h + r is odd, and is taken once by 25 + 1 when j runs from
0tor—1.

M—-1 r—1r—1M-1
Zkzz > (ir 4 h, Mj+k)ear -y" i M #£, (14a)
. k=1 h=0j=0 i=0
S(v) = M—-1 M-1
kY (h k) -A" if M =r, (14b)
k=1  h=0
where n = h (mod r);
M—-1 M'—1 r—1M'""1r—1
ZkZ()Z > (i h), Mj+k)pap " i M #£ (15a)
(t) _ k=1 =t h=0 j=0
5(v) M—-1 M'—1 M—-1M'"1-1
Zkz<> W), Mj+ k) A" i M=, (15b)
k=1  i=t h=0 j=0

where [ = [log,,(¢t)] + 1 if ¢ > 1, and u(i, h) is (by the Chinese-Remainder-Theorem) the unique integer u satisfying
u—t=h (modr)and u=i (mod M!), with0 <u <rM!'—Tor0<u<M —1.
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Since v, ...,7" ! are linear independent over Fy, it follows
that S(v) = 0 if and only if

T, =0 (mod2)forh=1,2,...,r -1,
which means that
pW)/2 = (—1)*  (mod 4) (16)
_ 1 (mod 4) if u is even, a7
- 3 (mod4) if uis odd.

Then, we can get that
1) if w is even and v is even, then p(v?)/2 =1 (mod 4),
2) if w is odd, and v is even and 4 { v, then p(“v)/2 =3
(mod 4) if p =3 (mod 4).
So, in these two cases,
®,. ()| ged(z971 — 1, 9(x)).
Second, we consider whether v is a double root of S(z)
in the above cases. According to Lemma 3, let [ = 1 since
t=1< M = 2. From (15a),

~v is a root of S(z), and

M—-1 — N r—1r—1
5 zkz () X S5+ e
i= h=0 j=0
r—1r—1
= ZZ(U(]- h)72j+1)2r’yhﬂ
h=0 j=0

where u(1, h) is the unique integer u with 0 < u < 2r — 1,
u—1 = h (modr), and u = 1 (mod 2). Then we have

u(l,h) =h+1if his even, and u(1,h) =r+ h+ 1 if his
odd. So,
7™ Z Ta,my",
where
Ta.n)

= ST R), 2+ D — (1,2] + 1)ay)

1
Z :0((h+ 1,25 + L)or — (1,25 + 1)2r)
B Z 7;((7‘+h+ 1,25 + 1)or — (1,25 + 1)2,) if h is odd.

For any fixed h, u(1l,h) is always odd, and can be equal
to 27 + 1 once with j running from O through r — 1. This
means that T(; ) = B+ (r —1)C — (B + (r — 1)C) = 0 for
h =1,2,...,r — 1 according to Appendix B. Thus, ~ is a
double root of S(z) in the above cases. In addition, since
q = (p"™)/2)2 = 1 (mod 4) from (17), we have S(1) =
(0,1)2 4+ (1,1)2 = Tl = 0 (mod 2) according to Appendix
A, that is to say, 1 is a root of S(x). Thus, the upper bound
immediately follows. U
Next, there are two examples to illustrate Theorem 1.
Example 4: Let p = 5, u = 2, v = 2, and » = 3. Then
we have a binary Sidelnikov sequence {s,, } ,>0 of period 624.
From the proof of Theorem 1, it is clear that 1 is a root of S(x),
and for any «(# 1) being a primitive 3rd root of unity, v is a
double root of S(z), which means (2% +z +1)?|S(z). Thus,
the linear complexity of {s, },>0 over Fa is LC({s, }n>0) <
619 from Theorem 1 1). In addition, from Proposition 2
in [10], it is easy to see that the multiplicity of 1 as a root

if h is even,
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of S(z) is 9, so, LC({sp}n>0) < 611. Indeed, we can get
ged(z% — 1,8()) = (z — 1)*2(2% + 2 + 1)'°, that is,

Example 5: Letp =19, u =1, v =2, and r = 5. Then we
have a binary Sidelnikov sequence {sy},>0 of period 360.
Similar to example 4, it is clear that 1 is a root of S(z),
and for any (s 1) being a primitive 5th root of unity, v is
a double root of S(z), which means (z* + 23 + 22 + o +
1)2|S(x). Thus, the linear complexity of {s, },>0 over Fy is
LC({sn}n>0) < 351 from Theorem 1 2). In addition, from
Proposition 1 in [10], it is clear that the multiplicity of 1 as a
root of S(z) is 2, s0, LC'({sn}n>0) < 350. In fact, it follows
that ged (230 — 1, S(2)) = (x — 1)?(2? + 2+ 1)%(2* + 23 +
22+ 2+ 1D)*(ab + 23 + 1), that is, LO ({55, }n>0) = 318.

Remark 2: 1) In the proof of Theorem 1, we make full use
of the formulas in Appendix B for the cyclotomic numbers
of order 2r over F, with ¢ = p"¥ = 1 (mod 2r), where
the order v of p modulo 7 is only even. Unfortunately, when
v is odd, the cyclotomic problem is more intricate [27].
2) In general, the determination of cyclotomic numbers of
order e is difficult if e is not small [10], meaning that we
can only utilize these formulas for small r. Here we consider
the cases » = 3 and 5 as examples.

B. Ternary Case

In this subsection, let ¢ = 1 (mod 3) where ¢ is a prime.
For the trivial root 1, the primitive 2nd and 3rd roots of
unity, the multiplicities of them as the roots of S(z) are
determined in Propositions 1, 2 and 3, respectively, by using
the cyclotomic numbers of orders e’s (e.g, 3, 6 and 9).
However, if e is not small, it is very difficult to calculate
the cyclotomic numbers, so the determined values of the
multiplicity R are not very large in these propositions. For
all that, Theorem 2 and Corollary 2 present the [Fs-linear
complexities of the ternary Sidelnikov sequences, especially
in the case of ¢ = 2 x 3* + 1 where \ is a positive integer.

Firstly, we determine the multiplicities of the trivial root 1 of
unity, as a root of S(z), in the case of Ind 3 =0 (mod 3).

Proposition 1: Let ¢ = 1 (mod 3) be a prime where
4g = * +27d*> and ¢ = 1 (mod3). Let ¢ =
(30 i) (X7 ci€™") where € is a primitive 9th root
of unity of F, and ¢;(i = 1,2,...,5) are integers. S(z)
is the generating function of a ternary Sidelnikov sequence
{$n}o<n<q—2. Then in the case of Ind 3 = 0 (mod 3), the
multiplicity (R) of 1 as a root of S(z) can be determined by

1) R(1) =1 is trivial;

2) R(1) =2 if and only if ¢ =1 (mod 9);

3) R(1) = 3 if and only if ¢ = 1 (mod 9) and d = 0
(mod 3);

4) R(1) =4 ifand only if g =1 (mod 9),d =0 (mod 3),
and ¢ + ¢5 = 2(c2 + c4) (mod 9);

5) R(1) = 5 or 6 if and only if ¢ = 1 (mod 9), d =
0 (mod 3), ¢1 + ¢5 = 2(c2 + ¢4) (mod 9), and ¢4 = 2¢4
(mod 9);

6) R(1) =T7ifand only if g =1 (mod 9),d =0 (mod 3),
1+ c5 =2(ca + ¢q) (mod 9), ¢4 = 2¢1 (mod 9), and ¢35 +
¢4 +¢5 =0 (mod 9);
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7) R(1) =8ifandonlyif g =1 (mod 9),d =0 (mod 3),
c1+c5 =2(c2+cq) (mod 9), ¢y =2¢; (mod 9), c3+ ¢4+
¢5 =0 (mod 9), and 1+ ¢o + c2 +2¢4 =0 (mod 9);

8) R(1) =9 ifandonly if ¢ =1 (mod 9),d =0 (mod 3),
and cg = —1 4+ 2¢5,¢1 = —c5,02 = 205,03 = C5,04 = —205
(mod 9).

Proof: Let M = 3. According to Appendix C, we have
from (12) in Lemma 3 that S(1) = (0,1)3+(1,1)54+(2,1)5+
2((0,2)3+(1,2)3+(2,2)3) =3(B+C+D) =0 (mod 3),
that is to say, 1 is always a root of S(x).

According to Lemma 3, let [ =1 if t = 1 or 2. From (13),
S(® = (1,1)3+2(2,1)3 +2(1,2)3 +4(2,2)3 = B+C +
= &1 and S(1)® = (2,1)3 +2(2,2)3 = 2B+ D =
421 — d. Thus, S(1)™ = 0 if and only if ¢ = 1 (mod 9),
and S(1)® = 0 if and only if ¢ = 1 (mod 9) and d = 0
(mod 3).

Similarly, let [ = 2 if ¢ = 3,4,5,6,7,8. From (13),

2 9—-1 i 3—1
S = Zkz@ > (0,35 + ko.
k=1

=0

>

(18)

Let ¢ = (Z?:o cifi)(ZfZO c;£7%) where € is a primitive 9th
root of unity of F, and ¢;(i = 1,2,...,5) are integers. In the
case Ind 3 =0 (mod 3), according to Appendix E, it follows
that

S(1)®

=(3,1)9 4+ (3,4)9 + (3, 7)o + (4, 1)g + (4,4)9 + (4, 7)o+ (5, 1)
+(5,4)0 + (5,7)9 +2(6,1)0 + 2(6,4)9 + 2(6,7)o+2(7,1)9
+2(7,4)9 +2(7,7)9 +2(8,1)9 + 2(8,4)9 + 2(8,7)9+2(3,2)9
+2(3,5)9 + 2(3,8)9 + 2(4,2)9 + 2(4,5)9 + 2(4,8)9+2(5,2)9
+2(5,5)9 +2(5,8)9 + (6,2)9 + (6,5)9 + (6,8)9 + (7,2)9
+(7,5)0 + (7,8)9 + (8,2)9 + (8,5)9 + (8,8)9 (mod 3)

=B+4+2C+2E+F+2J+ K+ M +2N 4+ 2P +2Q + 2R

(mod 3)

_a — 2¢2 — 2¢4 + C5

- (19)

(mod 3),
S(®
=(4,1)0 + (4,4)9 + (4,7)9 + 2(5,1)g + 2(5,4)9 + 2(5, 7)o
+2(7,1)9 +2(7,4)9 + 2(7,7)0 + (8, 1)9 + (8,4)9 + (8,8)9
+2(4,2)9 +2(4,5)9 +2(4,8)9 + (5,2)9 + (5,5)9 + (5, 8)9
+(7,2)9 + (7,5)9 + (7,8)9 + 2(8,2)9 + 2(8,5)9 + 2(8,8)9
(mod 3)

=2B+2C+E+F+2K+M+2P+R

E% (mod 3),

S(l)(s)
=(5,1)0 + (5,4)9 + (5, 7)9 + 2(8,1)g + 2(8,4)9 + 2(8,7)9
+2(5,2)9 +2(5,5)9 + 2(5,8)9 + (8,2)9 + (8,5)0 + (8,8)9
(mod 3)
=B+4+2E+J+K+N+Q+2R

(mod 3)
(20)

(mod 3)
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:301 — 2¢2 — 3c4 + 5
B 6

(mod 3), (21
S(1)@
=(6,1)9 + (6,4)9 + (6,7)o + (7, 1)0 + (7,4)9 + (7, 7)o + (8, 1)

+(8,4)9 + (8,7)9 + 2(6,2)9 + 2(6,5)9 + 2(6,8)9 + 2(7,2)9

+2(7,5)0 +2(7,8)9 + 2(8,2)9 + 2(8,5)9 + 2(8,8)9 (mod 3)
=2B+C+J+2M+N+Q+ R (mod 3)
Ecl + 2¢o — 2¢3 — ¢4 — 3¢5 (mod 3), 22)

6
S(l)m

=(7,1)9 + (7,4)0 + (7, 7)o + 2(8,1)9 + 2(8,4)9 + 2(8,7)g
—1—2(7, 2)9 =+ 2(7, 5)9 =+ 2(7, 8)9 + (8, 2)9 =+ (8, 5)9 + (8, 8)9
(mod 3)

=B+C+K+2N+O0+P+Q+S (mod3)

_2+2¢0 — 4oy *4102703+5C4+205 (mod 3), (23)
S(l)(g)

=(8, 1) + (8, 4)o + (8, o +2(8, 2)o +2(8,5)0 + 2(8, 8)o

=2B+2J +2K + N +20 (mod 3)

——2-feodla 2o tde Bute (3. (4

9

So, S(1)® = 0 if and only if ¢; + c5 = 2(c2 4 ¢4) (mod 9).
S(1)® = 0 if and only if 2¢; = ¢4 (mod 9). S(1)®) = 0 if
and only if co + ¢5 = 3(ca + ¢4 — ¢1) (mod 18). Fortunately,
S(1)®) = 0 and S(1)® = 0 imply that S(1)® = 0.
S(1)® = 0 if and only if ¢4 + c5 — c1 = 2(co — ¢3 — ¢5)
(mod 18). However, it follows from (19), (20), and (22) that
c3 +cy+cs = 0 (mod9). S(1)M = 0 if and only if
2(1+co+cs)+cq = 4(c1+ca—cq)+es (mod 54). From (19),
(20), (22), and (23), it can be reduced to 1 4+co+co+2c4 =0
(mod 9). S(1)® = 0 if and only if 2(1 4 co + ¢2) + 5ey =
Ter+4es+es (mod 27). Similarly, from (19), (20), (22), (23),
and (24), we have ¢cg = —1 + 2¢5,¢1 = —c¢5,00 = 205,03 =
s, ¢4 = —2¢5 (mod 9). O

Secondly, note that if ¢ = 1 (mod 2), then 2¢~1 —1 =0
(mod 3), which implies that 2 is a root of x9~1 — 1 over
Fs = {0,1,2}. In the following proposition, the multiplicity
of 2 as a root of S(x) is presented for the case that ¢ = 1
(mod 6) where ¢ = a® + 3b% and a = 1 (mod 3).

Proposition 2: Let ¢ = 6f + 1 be a prime where ¢ = a? +
30 and @ = 1 (mod 3). Let v (# 1) be a primitive 2nd
root of unity over 5. S(z) is the generating function of a
ternary Sidelnikov sequence {s, }o<n<q—2. Then in the case
of f being even, the multiplicity (R) of « as a root of S(z)
can be determined by

1) R(y) =1 or 2 if and only if b= 0 (mod 3);

2) (see the bottom line of the next page.)

Proof: Let ¢ =6f 4+ 1 where f is even. Since v # 1 and
~% =1, 1+~ = 0. The Appendix D lists the cyclotomic
numbers of order 6, which distinguish among the following
three cases: Ind 2 = 0 (mod 6), Ind 2 = 2 or 5 (mod 6),
and Ind2 = 1 or 4 (mod 6). Let M = 3 and r = 2.
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We will determine the multiplicities of + as a root of S(z) +4(2,35+2)6 — (1,35 + 1) — 2(1,35 + 2)6
using Appendix D. —2(5,35 + 1)s — 4(5,35 + 2)¢)
1) First, consider the case R(y) = 1. From (14a), it follows = J-G4E-F+C—-B (mod3)
that B .
0 Yitizt oy
B . . h = if Ind 2 =2 or mo
St = Zk 22(21+h’3j+k)671 0 ifInd2=1or4 (mod®6)
k=1 h=0j=0 ¢=0 =
11 2 = 0 (mod 3),
- Z Z Z ((2i+h,3j+1)s+2(2i+h, 3j+2)6)7" which implies that if 7 is a root of S(x), it must be a double
h=05=0+= root of S(z).
! h 2) Consider the case R(y) = 3. Similar to above,
= Z To.m"
h=1 S(y )(2)

w

-1

w
l\')
;-.

where T ) = Y;_o Yor_o((2i+h, 3+ 1) +2(2i+ h, 3j+
2)6—(21,35+1)6—2(24,3j+2)6). According to Appendix D,

Ty = (1,1)6+2(1,2)6 — (0,1)6 — 2(0,2)6 + (3, 1)s

—1 i —-12—
<2> u(i, h), 3j+k)ey

h o;:o

E
I
—

1
lM

M
1M
'M~

193, 2)5 — (2,1)5 — 22, 2)s + (5, 1)6+2(5, 2)s >~ (5) Dol 1), 37+ o201, 35+ 20
—(4,1)6 — 2(4,2)6 + (1,4)+2(1,5)6 — (0,4)g S

=2(0,5)6 + (3,4)6 +2(3,5)6 — (2.4)6=2(2,5)s =" "((u(2,h),35 + 1) + 2(u(2, h), 3] + 2)6)7"

+(5,4)6 +2(5,5)6 — (4,4)s — 2(4,5)6 h=0 j=0

B—-F—-H+1 (mod3)
b ifInd2=0 (mod 6)

M-

TamY",

= b ifInd2=2o0r5 (mod 6) =t
b ifInd2=1or4 (mod 6) where T(o ) = Z o((w(2,h),3j + 1) + 2(u(2,h),.3j +
= 0 (mod 3) for all cases if b=0 (mod 3), 2)6 — (u(2,0),3) + 1)5 = 2(u(2,0),3j + 2)s). According to

Appendix D, it follows that
which implies that 7 is a single root of S(z) if and only if

b=0 (mod 3). Ti2)
Second, consider the case R(vy) = 2. From (15a), it follows ! . ) )
that =2 (5,3 +1)6+2(5,3j+2)5— (2, 3j+1)s—2(2,3j+2)o)
7=0
1
Sy =F—-B+G—-J (mod3)
STt ete ) =26 ifInd2=0 (mod 6)
=> k i,h),35 + k)" 3 : =
kz::l p (1) "o jZO(U(Z )33+ ey =q =2t ifInd2=2o0r5 (mod6)

1 2, 1 =20=2b jfInd2=1or4 (mod 6)
=22 <Z> > ((uli, h), 3j+1)e+2(u(i, h), 3j+2))" 0 (mod 3) if Ind2=0 (mod 6) and b=0 (mod 9)
' 0

hoim \b §=0 (mod 3) ifInd2=2o0r5 (mod 6)
1 = and a =b (mod 9)
= Z Ta.my" 0 (mod3) ifInd2=1or4 (mod6)
h=1 and a = —=b (mod 9),
where u(i,h) is the unique integer u with 0 < uw < 5, which completes the proof. 0
u—1 = h(mod2), and u = i (mod3); T1p = Thirdly, it is worth noting from Proposition 1 that ¢ = 1
Zl—o(( (1,h),3j+1)64+2(u(1,h),35+2)6+2(u(2,h),3j+ (mod 9) is one of necessary and sufficient conditions of
1)6+4(u(2 h),3j+2)6—(1,35+1)6—2(1,35+2)s—2(5,35+ 1 as a multiple root of S(x). Then, we are interested in the
1)6 —4(5,3j +2)). According to Appendix D, it follows that  multiplicity of + (a primitive 3rd root of unity in an extension
1 field of [F3) as a root of S(x).
Tany = Z((4’ 35+ 1)6 +2(4,35 + 2)6 +2(2,35 + 1)6 Proposition 3: Let ¢ = 1 (mod9) be a prime
=0 where 4g = ¢® + 27d*> and ¢ = 7 (mod9).
b=0 (mod9) ifInd2=0 (mod 6),

R(y)=3ifand only if{ a=b (mod9)and b=0 (mod 3) ifInd2=2or5 (mod 6),
a=-b (mod9)andb=0 (mod3) ifInd2=1or4d (mod 6),

where Ind 2 means the index of 2 to a base g modulo gq.
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Let ¢ = (30, ci€)) (37, i€ ~7) where € is a primitive 9th
root of unity of F, and ¢;(4 = 1,2,...,5) are integers. Let
v (# 1) be a primitive 3rd root of unity in an extension field
of F5. S(x) is the generating function of a ternary Sidelnikov
sequence {s;, }o<n<g—2. Then, the multiplicity (R) of v as a
root of S(x) can be determined by

1) R(y) = 1 if and only if ¢ = 7 (mod 18) and d = 1
(mod 2), or ¢ =16 (mod 18) and d =0 (mod 2);

2) R(y) =2or 3 if and only if c=7 (mod 18) and d = 3
(mod 6), or ¢ =16 (mod 18) and d =0 (mod 6);

3) R(vy) = 4 if and only if ¢ = 7 (mod 18) and d = 3
(mod 6)(or ¢ =16 (mod 18) and d = 0 (mod 6)), and ¢4 =
2¢1 (mod 9) and ¢5 = 3¢1 + 2¢2 (mod 18);

4) R(y) = 5 if and only if ¢ = 7 (mod 18) and d = 3
(mod 6)(or ¢ = 16 (mod 18) and d = 0 (mod 6)), and ¢; =
ca=cs4=c5 =0 (mod 9).

Proof:  Since v (# 1) is a primitive 3rd root of unity,
l+y++2=0.

1) From (14b), we get

3—1 —

Zkz h, k)3

= ZT(O,h)’Yh7
h=1

where T(O h) = (h, 1)3 + 2(}1,2)3 - (0, 1)3 2(0, 2)3. Let
T0,1), T(0,2) = 0 (mod 3), and then according to Appendix

{ T(o,1> = e

Then, S(v) = 0 if and only if ¢ = 7 (mod 18) and d = 1
(mod 2), or ¢ =16 (mod 18) and d =0 (mod 2).
2) According to Lemma 3, let [ = 1 since ¢ = 1. Then

2
S(7) = ((h.1)5+2(h,2)s)Y"
h=0

M=t — [E£1] = 0. From (15b),
3—1 3-1 i 3—-1
s =S5 () et

k=1 1i=1 h=0
2 2 i

=33 ()t 1) )0+ 2t ), 2
h=0 i=1

_ (i)((u(i h),1)s + 2(u(i, h),2)
h=11i=1

where u(i, h) is the unique integer u with 0 < u < 2, u —
1 = h (mod 3), and v = 4 (mod 3). Let T{;,;) = 0 and
T(1,2) = 0. It follows from Appendix C that

—(1,1)5 —2(1,2)3+2(2,1)3 + 4(2,2)3
B—-C (mod 3)

—d (mod 3),

_(L 1)3 - 2(17 2)3

T(1,0)

T2 =

5555

=—-C—-2D (mod 3)
—2q—c—3d
- cma (mod 3).
6
Thus, S(7)) = 0 if and only if d = 0 (mod 3) and —2¢ —
¢ —3d = 0 (mod 18). From S(y) = 0 and S(v) = 0,
it follows that R(y) = 2 if and only if ¢ = 7 (mod 18) and
d=1 (mod 2), or c=16 (mod 18) and d =0 (mod 2).
Similarly, let [ = 1 since ¢ = 2. It follows from (15b) that

éki <;> hz:)(u(z h

= Z((U(Q, h),1)s + 2(u(2, h), 2)3)7}1/

h=0

2
= Z T(Q,h)’yhlv
h=1

(U’(2a h)7 1)3 + 2(“’(25 h)7 2)3 -
.Let T5 ) = 0 (h =1,2). Then

SM® =

where T(3 ) =

2(“(2a 0)7 2)3

(U(Z, O)a 1)3 -

T2,y = T2, —(2,1)3 —2(2,2)3
= —D-2B (mod 3)
—1-3d
= —% (mod 3).

Thus, S(7)® = 0 if and only if ¢ — 1 — 3d = 0 (mod 9),
that is, S(7)? = 0 if and only if d = 0 (mod 3). It is clear
that S(v)™) = 0 implies S(7) = 0.

3) According to Lemma 3, let | = 2 since ¢ = 3. From (15b),

S

1 =3 h=0j=0
2 8/
=32 523 (5 (o354 0200035210
h=0 7=0 i=
2
= Z Tiam
h=1
where
Tiz.n)
2 8 /.
= (3) ((u(d, h), 35 + 1)g + 2(u(4, h), 3j + 2)o
j=0i=3

where (i, h) is the unique integer u with 0 < u < 8, u—1=
h (mod 3), and u =4 (mod 9). Let T(3 ) =0 for h = 1,2.
According to Appendix E,

2
=2

> (;L) (4,3 + )+ (;) (7,3 +1)9+2 (g) (4,374 2)

+ 2(2) (7,35 +2)0 — @) (3,3j+1)g— <§) (6,3j+1)g

Tis,)
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2 (2) (3,3j+2)9—2 (g) (6,3j+2)9)

=20+F+J—-2M+ N —-P+Q (mod 3)

—C1 — 2c0 — ¢4 + 5

6
(mod 3),

:i((g) (5,35 + 1)g+ (2) (8,35 + 1)9”(2) (5,37 42)0

+ 2(2) (8,3) +2)o— (2) (3,3j + 1)g — (g) (6,3j+1)o
- 2(2’) (3,3 +2)o — 2@ (6,3 + 2)o)

=B+2E+J+K+N+Q—-R (mod 3)

_3(31 —2¢c9 — 3cq4 + c5

=0

6
(mod 3).

Thus, S(7)®) = 0 if and only if ¢4 = 2¢; (mod 9) and
¢5 = 3c1 + 2¢o (mod 18).
4) Similar to 3), let [ = 2 since ¢t = 4. From (15b),

:i((i) (5.3j + 1)o+ (i) (8, 3j+1)9+2(i> (5,3j+2)o

T 2(2) (8,35 +2)g— (i) (4,35 + 1)g— (D (7,3j+1)9

- 2(1) (4,35 + 2)9—26) (7,37 +2)o)

9B 20+ E—F+J+2K—M+N—2P—2Q+R (mod3)
_c1+4ea+ ey —bes

=0

6
(mod 3),

Tia,2)

J

2

0

() 03323 ) 0,35+ 200 () 0,374
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7 4 7
= (§) a2 (3) @ aiei-2() 3142
=-20-F—-J+2M - N —-2P—-(@ (mod 3)
~2¢1+ e —cq— 25
- 3
=0 (mod 3).

Thus, S('y)(4) = 0 if and only if ¢1 + ¢4 — ¢5 = 4(c5 — ¢2)
(mod 18) and 2(c1 — ¢5) = ¢4 — ¢ (mod 9). Solving the
simultaneous equations ¢y = 2¢; (mod 9), c5 = 3c¢1 + 2co
(mod 18), c14+c4—c5 = 4(cs—c2) (mod 18) and 2(c1—c5) =
¢y — ¢ (mod 9), we get ¢; = ca = ¢4 = ¢5 =0 (mod 9),
which completes the proof. 0

Combining Propositions 1 and 3 yields the following
theorem.

Theorem 2: Let ¢ = 1 (mod9) be a prime where
4qg = ¢ + 27d*> and ¢ = 7 (mod9). Let ¢ =
(Z?:o cifi)(z;lo c;£7%) where ¢ is a primitive 9th root
of unity of F,. Then, in the case of Ind 3 = 0 (mod 3),
the Fs-linear complexity of the ternary Sidelnikov sequence
{8n}n>0 of period ¢ — 1 is

1) LC <q—4ifd=0 (mod 3);

2) LC < ¢g—10if ¢ =16 (mod 18) and d = 0 (mod 6),
or ¢ =7 (mod 18) and d = 3 (mod 6);

3) LC<qg—-15if c =16 (mod 18) and d = 0 (mod 6),
or ¢ = 7 (mod 18) and d = 3 (mod 6); and ¢4 = 2¢4
(mod 9) and ¢5 = 3¢y + 2¢2 (mod 18);

4) LC < q—17if ¢ =16 (mod 18) and d =0 (mod 6),
or c=7 (mod 18) and d =3 (mod 6); and ¢1 = co = ¢4 =
¢5 =0 (mod 9).

Proof: Let ¢ = 9f + 1. Then 277! — 1 = (2 — 1)/
(mod 3). It is clear that f > 2. Thus, the multiplicities of the
3rd roots v (72 = 1) as roots of 97! — 1 are at least 6. Let
q= (Z?:o cifi)(Zfzo c;£7%) where ¢ is a primitive 9th root
of unity of F,.

1) It is clear from Proposition 1 3).

2) From Proposition 3 2), it follows by solving the simul-
taneous equations ¢+ 2 = 0 (mod 9), d = 0 (mod 3), and
24+¢—9d=0 (mod 18).

3) From Proposition 1 5) and Proposition 3 3), we have
¢y = 2¢1 (mod 9) and ¢5 = 3¢1 + 2¢2 (mod 18), which
imply that ¢; 4+ ¢5 = 2(ca + ¢4). Thus, the result is true.

4) It is clear from Proposition 1 5) and Proposition 3 4). [J

Example 6: Let ¢ = 73 and M = 3. Then a ternary

Sidelnikov sequence {s;}n>0 of period 72 defined by o =
5 of Fs is represented as {2, 2, 1,2,2,2,1,2,0,1,0, 1, 0,
0,0,2,1,0,1,0,2,2,2,1,2,1,2,0,1,1,2,2,0,2, 1, 0, 0,
1,0,0,1,1,2,2,0,0,0,0,0,2,1,2,0,2,1, 1,0, 2, 1, 2,
0,2,2,1,1,1,1,0,1,2,2, 1}, and 2 = o® and 3 = af over

Frs = {0,1,2,3,. ..,72}, ie., Ind 2 = 2 (mod 6) and Ind
3 =0 (mod 3). From 4q = ¢? 4+ 27d? and ¢ = 1 (mod 3),
we have ¢ = 7 and d = —3. Then, according to Proposition 1
3) and Theorem 2 1), 1 is a triple root of S(z). In addition,
although 2 is a root of 272 — 1, it is clear that 2 is not a root of
S(z) because S(2) = 2 (mod 3), which can also be further
confirmed from Proposition 2 since 73 = (—5)2 + 3 x 42 and
4 =1 (mod 3). Thus, the linear complexity of this sequence
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TABLE I
THE F3-LINEAR COMPLEXITIES OF TERNARY SIDELNIKOV SEQUENCES OF PERIOD ¢ — 1 = 2 x 3* FOR1 < A < 20

1 g=2x31+1 LC from Corollary 2 comments
1 7 5 1) b=d=1
2 19 16 2) b=d=1
3 55 - no prime
4 163 160 2) b=7,d=1
5 487 484 2) b=1,d=17
6 1459 1454 3) b=15,d=10
a =3, and Ind,2 = 723
7 4375 - - no prime
8 13123 - - no prime
39367 39362 3) b=33,d=22
a =3, and Ind,2 = 19674
10 118099 - - no prime
11 354295 - - no prime
12 1062883 - - no prime
13 3188647 - - no prime
14 9565939 - - no prime
15 28697815 - - no prime
16 86093443 86093440 2) b =1591,d =2423
17 258280327 qg'?-1<LC<q-7 5) b=7281,d=4854, a =5

Ind,2 = 159499944, and
Ind,3 = 104564853

18 774840979 - no prime

19 2324522935 - no prime

20 6973568803 - no prime

Note: Ind, x is the index of x € F to the base @ modulo g.
is LC < 69. In fact, we know that its linear complexity is 4-5) LC < g —12 if ¢g = —1 4 2¢5,¢1 = —c5,c0 =
exactly 69 since ged(z™ — 1, S(z)) = (z —1)3, which means  2cs5, c3 = ¢5,c4 = —2¢5 (mod 9

this upper bound is reachable.

Finally, for the special case of ¢ = 2 x 3% +1 where \ is an
integer, the following corollary can be obtained, and Table I
lists all examples for 1 < A < 20. From this table, it is easy
to see that the linear complexities of all sequences considered
are extremely close to their periods.

Corollary 2: Let a prime ¢ = 2 x 3* +1 (A > 1).
Let ¢ have the decompositions ¢ = a? + 3b% and 4q =
c? + 27d* where a = 1 (mod 3) and ¢ = 1 or 7 (mod 9).
Let ¢ = (30 i) (X0 i€ ") where € is a primitive
9th root of unity of F,. Then, the Fs-linear complexity of
ternary Sidelnikov sequence {s, } >0 of period g — 1 satisfies
H)LC=q-2ifq=T,

2) LC=q—3if ¢g=1 (mod 9) and b,d # 0 (mod 3);

3HLC=q—5if¢g=1 (mod9),b=0,d+# 0 (mod 3),
and Ind 2 =0 (mod 3);

4)LC<q—6if¢g=1 (mod 9),b=d =0 (mod 3), and
Ind 2=1Ind 3 =0 (mod 3). More precisely, it follows that

4-1) LC = q—Tif ¢; + ¢5 = 2(ca + ¢4) (mod 9),

4-2) LC = q—9if c1+c5 = 2(ca+c4), ca = 2¢1 (mod 9),

43) LC = q—10if ¢1 + ¢5 = 2(ca + c4), ¢4 = 2cq,
c3+cy+c5 =0 (mod 9),
4-4) LC = q— 11 if ¢1 + ¢5 = 2(ca + ca), ¢4 = 2cq,

cstci+ces=0,14¢o+c2+2¢4 =0 (mod 9),

);
5) LC < q—T7if¢g=1 (mod 9),b=0 (mod 9) andd =0
(mod 3), and Ind 2 = Ind 3 = 0 (mod 3). More precisely,
it follows that
5-1) LC =q—8if ¢ + ¢5 = 2(ca + ¢4) (mod 9),
5-2) LC = q—10if &1 + ¢5 = 2(c2 + 1), ¢4 =
(mod 9),
53) LC = g—11if ¢y + ¢c5 =
cs+c4+c5 =0 (mod9),

201

2(ca + ¢4), ¢4 = 2¢q,

54) LC = q — 12 if ¢1 + ¢5 = 2(e2 + 1), ¢4 = 2¢4,
cs+ca+ce5=0,14c¢o+ca+2c4 =0 (mod 9),
5-5) LC < q—13if ¢g = —1 + 2¢5,¢1 = —c5,00 =

2¢5, 03 = 5,04 = —2¢5 (mod 9).

IV. CONCLUSION

The main purpose of this paper is to give the Hasse
derivative formulas to determine the multiplicity of ~, the
primitive rth root of unity over [F); or in an extension field
of s, as a root of S(x) which is the generating function of
an M -ary Sidelnikov sequence {s, }o<n<q—2. In general, this
proposed method can be used to determine the exact [F 5;-linear
complexity of the M-ary Sidelnikov sequence whenever the
value of certain cyclotomic numbers and the factorization of
29~1—1 over F;; are known. However, the well-known results
on cyclotomic numbers are currently limited to the orders
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e < 24. This limitation hinders our ability to calculate the
multiplicity of « if r is large. On the other hand, it is not
easy to factorize the polynomial 29~ — 1 over IFj;. Based
on the above, it seems that the determination of the exact
Fr-linear complexity of the M-ary Sidelnikov sequence is
a difficult problem, especially when the characteristic of the
field is a factor of the period of Sidelnikov sequence [9].
Nevertheless, one may determine the Z4-linear complexity of
4-ary Sidelnikov sequences when ¢ = 3 - 4* + 1 [28].

APPENDICES

APPENDIX A
THE CYCLOTOMIC NUMBERS OF ORDER 2

Let ¢ = ef + 1 be a prime power. When e¢ = 2, the
cyclotomic numbers are given in [25] by
(1 f even: (050)2 = (f - 2)/27 (071)2 = (150)2 -

(1,1)2 = f/2;
(2) f odd: (0,0)2 = (1,0)2 = (1,1)y = (f—1)/2; (0,1)5 =
(f+1)/2.

APPENDIX B
THE CYCLOTOMIC NUMBERS OF ORDER 27

Let ¢ = p™ =1 (mod 2r) for any prime p such that m =
uv, u > 1, v is the order of p modulo r and v is even. Then,
the cyclotomic numbers of order 2r over I, are given in [27]
by:

(1) (Ovj)Qr = (,7 0)27" - (] j)QT”

(2) 4r2A = 4r%(0,0)2, = ¢ — 6r + 1 — (47 — 6r +
2)(_1)uq1/2;

(3) 47°B == 41%(0,j)2r = q — 2r + 14+ 2(r — 1)(—1)"¢"/?
for j #0 (mod 2r);

(4)472C := 472(i, j)or = q+1—-2(—
0 (mod 2r).

1)uq1/2 fOI‘i,j, 1_j #

APPENDIX C
THE CYCLOTOMIC NUMBERS OF ORDER 3
Let ¢ = ef + 1 be a prime. When e = 3 and 4¢ = % +
27d* with ¢ =1 (mod 3), the cyclotomic numbers are given
in [25] by

() A= (0,0)3 = (¢ —8+¢)/9;
(2)B:=(0,1)3 = (1,0)3 = (2,2)3 = (2¢—4—c—9d)/18;
3 C:= (Oa 2)3 = (1a 1)3 (270)3 = (2(] 4- C+9d)/18
@ D:=(1,2)5=(2,1)3=(¢g+ 1+ ¢)/9.

APPENDIX D

THE CycLOTOMIC NUMBERS OF ORDER 6

Let ¢ = ef + 1 be a prime. When e = 6 and ¢ =
a? 4+ 3b% with @ = 1 (mod 3), the cyclotomic numbers
(u,v)s when f is even are given in Table II [29] by

I. Case Ind 2 =0 (mod 6)

) 36A (0,0)6 = ¢ — 17 — 20a,

= (0,1)6 = ¢ — 5+ 4a + 18b,
(3) 36C := (0,2)5 = q — 5 + 4a + 6b,
=(0,3)6 =q— 5 +4a,

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 68, NO. 8, AUGUST 2022

TABLE II
CYCLOTOMIC NUMBERS OF ORDER 6 AND f EVEN

u v

0 1 2 3 4 5
0 A B C D E F
1 B F G H I G
2 C G E 1 J H
3 D H I D H 1
4 E 1 J H C G
5 F G H I G B

(5) 36 = (0,4) — ¢ — 5 + 4a — 6b,
(6) 36F 2(0,5)6—(]—5—!-4@—18(),
(7) 36G := (1,2)s = ¢ + 1 — 2a,
(8) 36H :=(1,3)s =q¢+1—2a

9) 361 :=(1,4)s =q+1— 2a,

(10) 36J := (2,4)6 = ¢+ 1 — 2q;

II. Case Ind 2 = 2(or 5) (mod 6)

(1) 364 := (0,0)5 = g — 17 — 8a — 6b,
(2) 368 := (0, 1) = q — 5 + 4a + 6b,
(3) 36C := (0,2)6 = g — 5 — 8a,

@) 36D := (0,3) = ¢ — 5 + 4a + 6b,
(5) 36E := (0,4)6 = g — 5+ 4a + 6b,
(6) 36F := (0,5)5 = q — 5 + da — 120,

(7) 36G == (1,2)6 = q + 1 — 2a + 6b,
(8) 36H := (1,3) = ¢ + 1 — 2a — 12b,
)6

9) 361 :=(1,4)6 = q+1—2a+6b,
(10) 36 := (2,4)6 = q + 1 + 10a — 6b;
III. Case Ind 2 = 1(or 4) (mod 6)

(1) 364 := (0,0) = q — 17 — 8a + 6b,
(2) 36B :=(0,1)s = q — 5+ 4a + 120,
(3) 36C := (0,2)6 = ¢ — 5 + 4a — 6b,
(4) 36D :=(0,3)6 = ¢ — 5 + 4a — 6b,
(5) 36E :=(0,4)6 =q¢—5—8a

(6) 36F := (0,5)5 = q — 5+ 4a — 6b
(7) 36G := (1,2)6 = q+ 1 —2a — 6b
(8) 36H := (1,3)s = g+ 1 — 2a — 6b,
(9) 361 := (1, =q+1—2a+12b,

)6
(10) 36.J := (2,4)6 = ¢ + 1 + 10a + 6b.

APPENDIX E
THE CYCLOTOMIC NUMBERS OF ORDER 9

Let ¢ = ef + 1 be a prime. When e = 9 and 4¢ =
c? + 27d% with ¢ = 7 (mod 9), the cyclotomic numbers
(u,v)g are given in Table III [21]. Each cyclotomic num-
ber is expressed as a constant plus a linear combination of
q,c¢,d,cg, c1,co,c3,c4,and c5 where

5 5
g=0 ) at™)
i=0 i=0
is a factorization of ¢ in the field of 9th roots of unity, and
& is a primitive 9th root of unity. The following cyclotomic
numbers are only for Ind 3 =0 (mod 3).
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TABLE III
CYCLOTOMIC NUMBERS OF ORDER 9

<
<

o
—
[\
w
~
W
(o)}
N
oo

0 NN R W NN = O
-~ n QMmO w >
“« O ZZER— =W
AR v IO UI =0
ER”"RHAwo0oQawRrRU
ZwvwxmZTmOLOZm
O ZEZm=Zwnx=zZz
T RO AH»n0Q
“—0ORQ»n IO W T
W =" 0OZZR— ~

(1) 162A :=2g — 52 + 2¢ + 108¢y — 54cs.

(2) 162B :=2q—16—c+9d —12co+42¢1 — 12¢o +24c3 —
30c4 + 24cs.

3)162C :=2¢—16—c—9d —12¢o+24c1 +42¢5 — 12¢3 —
1264 — 1265.

4) 162D :=2q — 16 + 2¢ — 18¢o + 36¢3.

5) 162F :=2q—16—c+9d—12co— 12¢1 +24co +24c3 +
42¢4 — 12¢5.

(6) 162F :=2qg—16—c—9d—12co—12¢1 — 30co — 12¢3 —
12¢4 + 42¢5.

(7) 162G :=2q — 16 + 2¢ — 18¢co — 18¢s.

(8) 162H :=2q—16—c+9d—12co—30cy — 12¢9 + 24c3 —
12¢4 — 12¢5.

9) 1621 :==2q—16—c—9d—12co— 12¢1 — 12¢9 — 12¢c3+
2464 — 3065.

(10) 162J := 2q + 2 + 2¢ — 18¢1 + 18cs.

(11) 162K :=2q+2—c+9d+ 6¢cg+ 6¢1 — 12¢5 — 12¢3 +
6cq + Ges.

(12) 162M :=2q+2 — ¢ —9d + 6¢o — 12¢1 + 6¢2 + 6¢3 +
6cq + Ges.

(13) 162N :=2q + 2+ 2c + 18¢y — 18¢4 — 18cs.

(14) 1620 :=2q+2—c+9d+ 6cg — 12¢1 + 6¢0 — 12¢3 +
6cq + Ges.

(15) 162P :=2q+2 —c—9d + 6¢g + 6¢1 — 12¢5 + 6¢3 +
6cq + Ges.

(16) 162Q :=2q + 2 + 2¢ — 18cy + 18¢4 + 18cs.

(17) 162R :=2q+2 —c+9d + 6¢cg + 6¢1 + 65 — 12¢3 —
1264 — 1265.

(18) 1625 :=2q+ 2 — ¢ — 9d + 6¢g + 6¢1 + 6co + 6¢3 —
12¢4 — 12¢5.

(19) 162T := 2q + 2 + 2c.
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