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ABSTRACT In this paper, we prove that a linear block code with girth 2(t + 1) is a t-sequential-recovery
locally repairable codes (LRCs) with locality r if its parity-check matrix has column weight at least 2 and
row weight at most r + 1. This gives a new connection between sequential-recovery LRCs and linear block
codes. We also derive that the repair time of the t-sequential-recovery LRCs from the linear block codes by
this connection is at most dt/2e.

INDEX TERMS Locally repairable codes, joint sequential-parallel-recovery, girth, repair time.

I. INTRODUCTION
As an erasure-correcting code, the locally repairable codes
(LRCs) [4] was proposed to improve the repair efficiency,
which needs only a few nodes to repair any erasure. For an
erasure, its locality is the number of other symbols needed to
repair it, which is the key concept of LRCs. A linear code is
an LRC with locality r if each symbol is locally repaired by
at most r other symbols [4].

Various LRCs for multiple erasures were proposed [17],
[18], [22]. These LRCs are divided into sequential- and
parallel-recovery LRCs based onwhether the repair process is
either sequential or parallel. LetC be a linear code of length n
and c = (c1, c2, . . . , cn) be a codeword of C . The code C
is said to be a t-sequential-recovery (t-seq) LRC if, for any
s ≤ t erasures, there exists an arrangement (j1, j2, . . . , js) of
s erasure positions such that for each u = 1, 2, . . . , s, there
exists a subset R(ju) ⊂ {1, 2, . . . , n} \ {ju} satisfying

1) |R(ju)| ≤ r ,
2) R(ju) ∩ {ju, ju+1, . . . , js} = ∅, and
3) cju =

∑
l∈R(ju)

alcl , for some al ∈ Fq.

Recently, several constructions of binary and non-binary
t-seq LRCs have been proposed by various techniques, such
as good polynomial [10], graph [18], configuration [19], [20]
and designing the parity-check matrix [2], [11], [18]. The
binary codes is implemented easily and provides a lower
complexity [2], [18], [19], [20], whereas the non-binary codes
provides a larger minimum distance [10], [11], [18].
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Repair time is another metric for t-seq LRCs, which is
the maximum number of steps that are needed to repair any
t erasures [23]. Obviously, the repair time of t-seq LRCs is at
most t and it is indeed t in general. To reduce the repair time,
the LRC with joint sequential-parallel-recovery is proposed
for any t erasures [23], where some u(≤ t) erasures can be
repaired locally and parallelly. So, its repair time is at most
t − u + 1. Note that a t-para LRC has the repair time 1 for
any t .
Let C be a linear block (or low-density parity-check) code

with a parity-check matrix H = (hi,j, i = 1, 2, . . . ,m; j =
1, 2, . . . , n). H can be represented as a Tanner graph with m
check nodes and n variable nodes [15]. The ith check node
and the jth variable node are connected if the element hi,j
is non-zero. In the Tanner graph, the length of all cycles is
even and greater than or equal to four [3]. The girth is the
length of the shortest cycle in its Tanner graph. The girth
is an important issue for low-density parity-check (LDPC)
codes, since it heavily affects its performance with sum-
product decoding [5]. A lot of constructions for LDPC codes
with a large girth were proposed [1], [5], [8], [9], [12], [13],
[14], [21], [24], [25]. A cycle of length 2s can be seen in
the corresponding matrix when the graph has a cycle of
length 2s. The patterns of 4-cycle and 6-cycle in the matrix
are summarized as shown in Fig. 1 [13], [16].
Some connections between parallel-recovery LRCs and

regular LDPC codes were proposed [6], [7]. An LDPC code
is called regular with (τ, ρ) if its parity-check matrix has
constant column weight τ and constant row weight ρ. The
4-cycle free regular (τ, ρ)-LDPC code is shown to be an
LRC with all-symbol availability (ρ − 1, τ ) [7]. An optimal
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FIGURE 1. Patterns of 4-cycle and 6-cycle.

LRC with information-symbol availability (ρ, τ ) was pro-
posed from the 4-cycle free regular (τ, ρ)-LDPC code [6].

Consider the definition of the sequential-recovery LRCs
from the viewpoint of the parity-check matrix. The linear
code C is a t-seq LRC if, for any s ≤ t erasures, there
exists a row of its parity-check matrix whose support contains
the coordinate of precisely one of the s erasures. Therefore,
we want to know what is the form of the parity-check matrix
that satisfies the above condition of the t-seq LRCs.

Our contribution: In this paper, we prove two theorems for
sequential-recovery LRCs as follows.
Theorem 1: A linear block code is a t-seq LRC with local-

ity r if its parity-check matrix satisfies the following:
1) the girth is 2(t + 1),
2) the column weight is at least 2, and
3) the row weight is at most r + 1.
Theorem 2: The repair time of the t-seq LRCs from

Theorem 1 is at most dt/2e.
The t-seq LRCs from the linear block code by Theorem 1

has two advantages. One is that both the parameters t and r of
the LRCs from Theorem 1 apply to any positive integer. The
other is that t-seq LRCs from Theorem 1 has a small repair
time compared to some other known t-seq LRCs as shown in
Table 1. In general, the performance of LRCs is considered in
terms of repair efficiency r , local repair capacity t , and repair
time, which is different from those of other error-correcting
codes [23]. These three metrics have been fully discussed in
this paper. So, the various t-seq LRCs can be obtained from
the parity-check matrix with different girth, column weight
and row weight.

Section II shows the proof of Theorem 1. Section III calcu-
lates the repair time of the t-seq LRCs from the linear block
code by Theorem 1. Section IV concludes the paper.

II. RELATIONSHIP BETWEEN t-SEQ LRCs AND GIRTH
The support of a vector u = (u1, u2, . . . , un) is defined as
supp(u) = {i | ui 6= 0}, and w(u) = |supp(u)| is the
weight of u. A matrix M = (mi,j, i = 1, 2, . . . ,m; j =
1, 2, . . . , n) is represented as a Tanner graph (bipartite) with
m row nodes r1, r2, . . . , rm on one side and n column nodes
c1, c2, . . . , cn on the other side. In this graph, nodes ri and cj
are connected if mi,j 6= 0. Figure 2 shows two matrices and
their corresponding Tanner graphs.

We will consider the connectivity of columns of a matrix
as follows. Two columns of a matrix are said to be connected

FIGURE 2. Two 5-column matrices, where • in the matrix represents a
nonzero element. (a) H1 is a connected matrix, (b) H2 is a non-connected
matrix.

if the corresponding column nodes are connected by a path in
its Tanner graph. A matrix is said to be connected if every
pair of columns of M are connected. Figure 2 shows two
matrices which are connected in (a) and non-connected in (b).
Observed that the second column in (b) is not connected to
the remaining columns. Note that a path does not have to
be a cycle. Therefore, a connected matrix M has a property
that there exists a rearrangement of all columns such that the
intersection of the supports of any two adjacent columns is
non-empty. For example, the columns of H1 in Fig.2 can be
reordered (the second and fifth are swapped) so that any two
adjacent columns are connected.

Next, for a connected matrix, we give a sufficient condition
for the existence of a cycle.
Proposition 1: Let m and s be positive integers. Let M be a

connected matrix of size m×s whose columns all have weight
at least 2. Let h be a column of length m and weight at least 2.
Then, the augmented matrix (M | h) has a cycle of length ≤
2(s + 1) if |I1(M ) ∩ supp(h)| ≥ 2, where I1(M ) is the set of
row indices of M whose row weight is 1.

Proof: Since M is a connected matrix, without loss of
generality, we may assume that all the adjacent columns of
M are connected. That is, if we use h1,h2, . . . ,hs to denote
the columns ofM , then

supp(hi) ∩ supp(hi+1) 6= ∅,

for 1 ≤ i < s.
We denote by bi the ith row of M , i = 1, 2, . . . ,m. Since
|I1(M ) ∩ supp(h)| ≥ 2, we may let u and v be two elements
of this intersection. Then,

supp(bu) = {α} and supp(bv) = {β},

for some α, β. Without loss of generality again, we may
assume that 1 ≤ α ≤ β ≤ s. If α = β, then the
augmented matrix (M | h) has a 4-cycle. Otherwise, a cycle
is constructed by columns

hα,hα+1, . . . ,hβ ,h,

and the length is 2 [(β − α + 1)+ 1] ≤ 2(s+1).We note that
the equality is achieved when α = 1 and β = s.
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Lemma 1: Let C be a linear block code of length n and
girth 2(t + 1). Let H be its parity-check matrix of size m× n,
whose column weight is at least 2. Let E be an s-subset of
{1, 2, . . . , n}, for 1 ≤ s ≤ t , and H (E) be the corresponding
submatrix containing only the columns indexed by E. Then,
the corresponding submatrix H (E) has at least two rows
whose weight is 1.

Proof: Let hj be the jth column ofH , for j = 1, 2, . . . , n.
For any subset E , we denote by I1(E) the set of row indices
of the corresponding submatrix H (E) whose row weight is 1:

I1(E) , {i | w(bi) = 1, i = 1, 2, . . . ,m}, (1)

where bi is the ith row of H (E). That is to say, we will claim
that, for any nonempty subset E of size ≤ t ,

|I1(E)| ≥ 2.

The proof will be distinguished in two cases: 1) H (E) is a
connected matrix and 2) H (E) is a non-connected matrix.

First, Case 1) is proved by induction on the size of E . When
|E| = s = 1, it is obvious that |I1(E)| ≥ 2 since the column
weight of H is at least 2. When 2 ≤ s ≤ t , the s-subset E is
divided as follows.

E = E ′ ∪ {δ}.

where E ′ is an (s−1)-subset. Assume the induction hypothe-
sis that, |I1(E ′)| ≥ 2 for any (s−1)-subset E ′. The number of
rows in H (E) whose weight is 1 can be counted as follows.

I1(E)=
(
I1(E ′) \ supp(hδ)

)
∪

(
supp(hδ) \ I>0(E ′)

)
, (2)

where

I>0(E ′) , {i | w(b′i) > 0, i = 1, 2, . . . ,m},

and b′i is the ith row of H (E ′). To count the size of I1(E),
we classify the relation between I1(E ′) and hδ into the fol-
lowing three subcases: i)
1) |I1(E ′) ∩ supp(hδ)| = 0,
2) |I1(E ′) ∩ supp(hδ)| = 1,
3) |I1(E ′) ∩ supp(hδ)| ≥ 2.
For Subcase i), we can get that, based on (2)

|I1(E)| ≥ |I1(E ′) \ supp(hδ)|

= |I1(E ′)| ≥ 2,

since |I1(E ′)| ≥ 2 by induction hypothesis.
For Subcase ii), let I1(E ′) ∩ supp(hδ) = {u}. If

{u} = I>0(E ′) ∩ supp(hδ),

then we can get that

|I1(E)| = |I1(E ′) \ {u}| + |supp(hδ) \ {u}|

≥ 1+ 1 = 2.

since |I1(E ′)| ≥ 2 by induction hypothesis and w(hα) ≥ 2. If

{u} ⊂
(
I>0(E ′) ∩ supp(hδ)

)
,

then H (E) has a cycle of length ≤ 2s, which is similar
to the proof of Proposition 1. It contradicts the code with
girth 2(t + 1).

For Subcase iii), it is impossible since H (E) = (H (E ′) |
hδ) has a cycle of length ≤ 2s by Proposition 1, which
contradicts the code with girth 2(t + 1).

Next, we consider Case 2).H (E) is a non-connectedmatrix
with τ connected submatrices H (E1), . . . , H (Eτ ) such that⋃

α∈Ei

supp(hα)

⋂⋃
β∈Ej

supp(hβ )

 = ∅, (3)

for 1 ≤ i < j ≤ τ . It is obvious that

|I1(E)| = |I1(E1)| + |I1(E2)| + · · · + |I1(Eτ )| ≥ 2τ > 2.

Now, we will continue to prove Theorem 1. Let C be
a linear block code of length n. Let H = (hi,j, i =
1, 2, . . . ,m; j = 1, 2, . . . , n) be its parity-check matrix,
whose column weights are at least 2 and row weights are at
most r + 1. Then, any s ≤ t erasures can be repaired locally
and sequentially by the following algorithm. For readability,
we first give some notations as follows:
• c = (c1, c2, . . . , cn) is a codeword of C ;
• ai is the ith row of H for i = 1, 2, . . . ,m;
• E is the index set of erasures;
• H (E) is the corresponding erasure submatrix of H con-
taining only the columns indexed by E ;

• bi is the ith row of H (E) for i = 1, 2, . . . ,m.

Algorithm 1 The Repair Process of s ≤ t Erasures
1: Input E
2: while E 6= ∅ do
3: Set a row index set I such that

I = {i | w(bi) = 1, i = 1, 2, . . . ,m}

4: Set a column index set J such that

J =
⋃
i∈I

supp(bi)

5: For each u ∈ J , cu = −
∑
γ∈supp(al )\{u} hl,γ cγ , where

l is a row index such that supp(bl) = {u}.
6: E = E \ J
7: end while

The size of I in Line 3 is at least 2 as long as E 6= ∅
by Lemma 1. Clearly, J in Line 4 is also a non-empty set
because I is a non-empty set. So, the program can be run until
E becomes empty. It means that all s erasures are repaired.

In Line 5, for each u ∈ J , such row index l exists since the
elements of J are only from the support of rows whose weight
is 1. Since supp(bl) = {u}, the erased symbol cu is repaired
by |supp(al) \ {u}| ≤ r symbols, which are either unerased
symbols or repaired erasures.

126158 VOLUME 10, 2022



Z. Jing, H.-Y. Song: Girth-Based Sequential-Recovery LRCs

Example 1: A binary 3-seq LRC is constructed by the
following parity-check matrix H with girth 8.

H =


1 1 1 0 0 0 0 0 0
0 0 0 1 1 1 0 0 0
0 0 0 0 0 0 1 1 1
1 0 0 1 0 0 1 0 0
0 1 0 0 1 0 0 1 0
0 0 1 0 0 1 0 0 1


Assume c1, c2, c4 are erased, and defined by e1, e2, e4. Set
E = {1, 2, 4}.
Step 1: For H (E), we can get that I = {2, 5} and

J = supp(b2) ∪ supp(b5) = {4, 2}.

Then, the erasure e4 and e2 are locally repaired by the second
and fifth row of H, respectively.

e4 = c5 + c6 and e2 = c5 + c8.

Set E = {1}.
Step 2: The erasure e1 can be locally repaired by the first

or the forth row of H.
Remark 1: The array-based LDPC codes was proposed

in [9] and [24]. They have girth ≥ 6 and are regular with
(γ, p), where γ = 2, 3 and p ≥ γ . Therefore, these LDPC
codes are 2-seq LRCs with locality p− 1.
Remark 2: Recently, an irregular girth-8 type-II LDPC

codes of length 2mKP was proposed in [13], for any integers
m ≥ 3, P > 6 and K ≥ 1. For its mKP × 2mKP parity-
check matrix, the weight of the first mKP columns is 2 and
the last mKP columns is m + 1, and the row weight is the
constant m + 3. Therefore, this LDPC code is a 3-seq LRC
with locality m+ 2.
Example 2: We assume the same m,K and P as in

Remark 2, which are the parameters about the code length.
Let m = 3, K = 1 and P = 70. A type-II LDPC code C
of length 420, target rate 1

2 and girth 8 is constructed by the
following parity-check matrix:

H =

I (2) I (9) 0 I (17) + I (22) I (26) I (31)

0 I (18) I (34) I (44) I (4) + I (52) I (62)

I (6) 0 I (51) I (66) I (8) I (27) + I (23)

 ,
where I (j) is the 70 × 70 identity matrix with columns cycli-
cally shifted to the right by j positions and 0 is the all-zero
matrix of size 70 × 70. The LDPC code C is a 3-seq LRC
with locality 5 according to Theorem 1 of this paper.

III. REPAIR TIME OF THE LRCs FROM THEOREM 1
Next, we will show that, in each loop of Algorithm 1, at least
2 erasures can be repaired parallelly when the number of
erasures is at least 2.
Lemma 2: Let C be a linear block code of length n and

girth 2(t + 1). Let H be its parity-check matrix of size m× n,
whose column weight is at least 2. Let E be an s-subset of
the column indices, for 2 ≤ s ≤ t , and H (E) be the cor-
responding submatrix containing only the columns indexed

TABLE 1. Comparison of the repair time of the t-seq LRCs.

by E. There exist two rows of H (E) such that both weights
are 1 and the supports of those two rows are disjoint.

Proof: Let hj is the jth column of H for j = 1, 2, . . . , n.
Let bi be the ith row of H (E) for i = 1, 2, . . . ,m. For
any subset E , I1(E) is defined as (1). The proof will be
distinguished in two cases: 1)H (E) is a connected matrix and
2) H (E) is a non-connected matrix.

For Case 1), from the proof of Lemma 1, the s-subset E is
divided as

E = E ′ ∪ {δ},

when 2 ≤ s ≤ t . For C with girth 2(t + 1), the possible
relation between E ′ and hδ is given as follows: i)

1) |I1(E ′) ∩ supp(hδ)| = 0,
2) |I1(E ′) ∩ supp(hδ)| = |I>0(E ′) ∩ supp(hδ)| = 1.

For each relation, there exists a row index

u ∈ I1(E ′)

such that supp(bu) = {l} ⊂ E ′, since |I1(E ′)| ≥ 2. There
exists another row index

v /∈ I>0(E ′)

such that supp(bv) = {δ}, since w(hδ) ≥ 2. Therefore, such
two rows exist in the connectedmatrixH (E), for 2 ≤ |E| ≤ t .

For Case 2), H (E) is a non-connected matrix with
τ connected submatrices H (E1), . . . ,H (Eτ ) such that (3).
Let αl be a row index of I1(El), for 1 ≤ l ≤ τ . It is obvious
that the supports of those τ rows of H (E) indexed by αl are
disjoint.

Now, we will continue to prove Theorem 2. For the
t-seq LRCs from Theorem 1, any t erasures are repaired by
Algorithm 1. When |E| ≥ 2, there exist at least 2 rows
indexed by I such that the supports of those two rows are
disjoint by Lemma 2. So, at least two erasures can be locally
repaired in each loop when the number of unrepaired erasures
is larger than one. Therefore, any t erasures can be repaired
in at most dt/2e loops.

We compare the repair time of the t-seq LRCs from
Theorem 1 with those constructed by others in Table 1. The
first three codes in Table 1 are the general t-seq LRCs, and
t erasures are locally repaired one by one. The last two codes
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are LRCs with joint sequential-parallel recovery, which have
a smaller repair time than the general t-seq LRCs. For the
t-seq LRCs from Theorem 1, each loop can repair at least 2
erasures locally and parallelly when there is more than one
unrepaired erasure.

IV. CONCLUDING REMARK
In this paper, we propose a new connection between the
sequential-recovery LRCs and the girth of linear block codes.
A linear block code with girth 2(t + 1) is a t-seq LRC if its
parity-check matrix has column weight at least 2. It is noted
that the other direction is invalid. Let H ′ be a new matrix by
adding an additional row under H in Example 1 as follows.

H ′ =



1 0 0 1 0 0 1 0 0
0 1 0 0 1 0 0 1 0
0 0 1 0 0 1 0 0 1
1 1 1 0 0 0 0 0 0
0 0 0 1 1 1 0 0 0
0 0 0 0 0 0 1 1 1
1 0 0 0 1 0 0 0 1


It is obvious that the corresponding code of H ′ is also
3-seq LRCs. We can get a 6-cycle in H ′ by connecting the
1s that have the underline.

We also show that for the t-seq LRCs from Theorem 1, any
s ≤ t erasures are locally repaired in joint sequential-parallel
mode. At least 2 erasures are repaired locally and parallelly
in each step of the repair process, when the number of the
unrepaird erasures is at least 2.
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