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A joint neural network decoder and denoiser scheme demonstrated su-
perior performance compared to individual modules. However, there is
still a limitation that the existing denoisers cannot effectively learn pat-
terns of encoded signals. To overcome the limitation, a novel denoiser
based on a residual autoencoder structure is proposed. The proposed
denoiser speeds up the training process and boosts the performance due
to its structure effectively extracting compressed features. For the eval-
uation, a joint system model with a hyper-graph-network decoder that
is known for outstanding decoding performance is considered. Simula-
tion results show that this denoiser outperforms the existing denoisers.
Furthermore, the proposed joint model shows significant performance
improvement compared to the individual hyper-graph-network decoder
with only 1% of the number of epochs for the training.

Introduction: Deep learning (DL) has been attracting attention as a tech-
nology with great potential to revolutionize communication systems.
For instance, at the physical layer, DL shows remarkable progress in
both performance and efficiency of channel estimation [1, 2], posi-
tioning [3], beam prediction [4], and channel state information (CSI)
feedback [5]. In addition, for channel coding, especially for short lin-
ear block codes, there are several previous works [6, 7] that demon-
strate the effect of DL by improving decoding performance. Recently,
hyper-graph-network (HGN) decoder [8] shows better performance
than existing works for short block-length codes. However, due to the
high complexity, there is a need for improvement in terms of training
time.

Neural network (NN) denoiser has been proposed as a technology
to remarkably improve decoding performance with only low additional
complexity by removing noise in code block level rather than sym-
bol level. In [9], three types of denoisers with multi-layer perceptron
(MLP), convolutional neural network (CNN), and recurrent neural net-
work (RNN) are proposed for Bose–Chaudhuri–Hocquenghem (BCH)
codes. In [10], a joint denoiser and decoder model with a residual NN
structure is proposed for Polar codes. However, existing models still have
a limitation in that they can not effectively learn patterns of encoded sig-
nals.

To address the issue, we design a new NN denoiser. The proposed
denoiser is based on a denoising autoencoder (DAE) [11] that performs
well for denoising in many applications. More specifically, our denoiser
consists of stacked 1D-convolutional layers with double nested residual
skip connections. We combine it with the HGN decoder, known as one
of the NN decoders with excellent performance, and train the denoiser
and decoder jointly using a multi-task learning strategy [10, 12]. Our
experiments show the effectiveness of the proposed model by achieving
significant performance improvement.

Neural network decoder: The authors in [6] proposed an NN decoder
that generalizes the belief propagation (BP) decoder. The layers of the
NN decoder are associated with the messages sent by either the check
nodes or the variable nodes of the BP decoder. In contrast to the BP
decoder, which uses universally fixed weights, the weights in the NN
decoder can be tuned to yield near-optimal performance. Later, an im-
proved NN decoder [7] was introduced which used an offset min-sum
algorithm instead of sum-product algorithm [13]. More recently, there
is a further upgrade to the HGN decoder. The BP algorithm is trans-
formed into a graph NN by replacing each variable node with a learnable
NN g. Applying the “hypernetwork” method [14], in which one network

Fig. 1 A system model for the proposed residual AE denoiser

predicts weights of the other, the weights of the networks g of each vari-
able node are determined by the hypernetwork f .

Neural network denoiser for channel codes: In communication systems,
the NN denoiser for removing noise from a received signal is proposed
in [9]. The authors utilize three different types of NNs, that is, multi-
layer perceptron (MLP), convolutional neural network (CNN), and long
short-term memory (LSTM). They are concatenated with a traditional
BCH decoder and help the decoder improve the bit error rate (BER) and
block error rate (BLER) performances significantly. After that, resid-
ual learning denoisers (RDs) are introduced for polar codes [10] and
combined with the existing NN decoder. Simulation results verify that
the joint models show better performance in comparison to the decoder
without denoiser as the denoiser enhances received SNRs.

Denoising autoencoder: DAE is a module for learning end-to-end map-
ping from a corrupted input to a corresponding clean version. The DAE
corrupts the input with random noise at the training stage to make the
model robust to data with noise or large variation. The basic architecture
includes a nonlinear stage and a linear stage as:

h(y) = σ (W1y + b1),

x̂ = W2h(y) + b2,
(1)

where y and x̂ are noisy and denoised signal, respectively. W1 and W2 are
weight matrices. b1 and b2 are bias vectors for the encoding and decod-
ing parts, respectively. σ (·) is a nonlinear function of hidden neurons.
The model parameters are optimized to minimize the reconstruction er-
ror, which can be assessed by using loss functions.

Proposed residual AE denoiser: A system model for the proposed resid-
ual autoencoder (AE) denoiser is depicted in Figure 1. Based on the sys-
tem model [10], we propose the joint model with the novel residual AE
denoiser and the HGN decoder. At the transmitter, a K-bit information
vector u ∈ F

K
2 is first encoded into an N-bit codeword vector v ∈ F

N
2 . Us-

ing a modulation technique, the N-bit codeword v is mapped to a modu-
lated symbol vector x. This symbol vector subsequently passes through
a channel such as additive white Gaussian noise (AWGN) and Rayleigh
fading channel. The received noisy symbol vector y ∈ R

N
2 can be ex-

pressed as y = h · x + n, where n ∈ R
N is a vector of Gaussian noise

with zero mean and specific variance. h > 0 is the fading coefficient
which follows a Rayleigh distribution with E[h2] = 1.

At the receiver, y enters the denoiser. After the denoising process, the
vector x̂N ∈ R

N is then sent to the HGN decoder. As in conventional NN
decoders [15, 16], it performs soft decoding using the filtered vector.
Finally, we can obtain an estimated information vector û ∈ F

K
2 .

By denoting the arbitrary stochastic corrupting function of the chan-
nel as ζ : R

N
2 → R

N and denoising function as ξ : R
N → R

N , we can
formulate the denoising task as

x̂N = ξ
(
ζ
(
xN

))
. (2)

For the denoising and decoding tasks, our aim is to minimize L(x, x̂) and
L(u, û). We utilize mean squared error (MSE) as a loss function for both
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Fig. 2 An illustration of the proposed residual AE denoiser

Table 1. Total numbers of learnable parameters of four types of the
joint model

Decoder/Denoiser

BCH (63,51) Polar (64,48)

HGN with AE-RD 38,141,104 / 1,202 64,247,296 / 1,202

HGN with CNN-RD 38,141,104 / 1,133 64,247,296 / 1,133

HGN with MLP-RD 38,141,104 / 1,441 64,247,296 / 1,461

HGN with LSTM-RD 38,141,104 / 4,046 64,247,296 / 4,174

tasks. By explicitly combining the denoising and the decoding loss, a
total loss is given by:

Ltotal = w1Ldenoise + w2Ldecode. (3)

The total loss value can be minimized through the multi-task learn-
ing technique.

We design a new denoiser based on DAE. It consists of an encoding
and a decoding part. The encoding part contains doubly stacked 1D-
convolutional layers [17] followed by hyperbolic tangent activation. The
1D-convolutional layers process the raw 1D input and learn to extract
features in the sequence. Unlike 2D-CNN, 1D arrays replace 2D matri-
ces, both kernels and feature maps. The decoding part contains doubly
stacked 1D-transposed convolutional layers followed by hyperbolic tan-
gent activation. Additionally, we embed nested residual skip connections
between the encoding and the decoding part. These accelerate the train-
ing process as well as enhance feature extraction. It is also confirmed
through experiments that double connections are more effective than a
single connection in the proposed model. The detailed structure of the
proposed denoiser is illustrated in Figure 2.

Experiments: We evaluate the performance of three RDs and the pro-
posed denoiser. For convenience, we name the RDs with MLP, CNN,
RNN, and AE as MLP-RD, CNN-RD, LSTM-RD, and AE-RD, respec-
tively. We consider two code families: BCH and Polar codes. All gener-
ator matrices and parity check matrices are taken from [18].

The CNN-RD employs three 1D-convolutional layers as hidden lay-
ers. The feature maps of them are 24, 12, and 5, respectively. The size
of kernels was set to 3 equally. In addition, 1D-maxpooling with kernel
size 2 and stride 2 is utilized between the adjacent layers. The MLP-
RD employs three fully connected layers of size 15, 8, and 4 as hidden
layers. The LSTM-RD employs one LSTM unit with a hidden layer of
dimension N . For all models, there is a residual connection between the
input and the output layer. The activation function of each hidden layer is
the hyperbolic tangent function, as in the proposed model. We set three
RDs to have a similar number of learnable parameters as the proposed
denoiser to avoid performance differences due to complexity. The total
number of learnable parameters of all joint models is given in Table 1.
Note that the number of learnable parameters of the HGN decoder is
strongly influenced by the code length, while the denoiser is not.For the
HGN decoder, we use a 10-layer NN structure for the same effect as 5
iterations in the BP decoder. The subnetwork f has 4 layers with 32 neu-
rons at each layer while the subnetwork g has 2 layers with 16 neurons at
each layer. These hyperparameters are set identically for a fair compari-
son. To simulate with valid codewords, training data are created by a gen-
erator matrix using all possible random information vectors. We set the

Fig. 3 The BER and BLER performance curves over AWGN and Rayleigh
fading channels for BCH (63,51) and Polar (64,48)

Table 2. Ablation analysis on residual connections

BCH (63,51) Polar (64,48)

4 5 4 5

(i) Double residual connections 15.15 18.31 12.18 15.16

(ii) A Single residual connection 14.74 17.05 11.16 13.89

(iii) No residual connection 12.75 15.76 10.09 12.16

training with varying SNRs ranging from 1 to 8 dB. Batch-based train-
ing is used with a maximum of 120 codeword samples per batch, with
15 codeword samples per SNR value. An epoch comprises 500 batches.
We use Adam optimizer with a learning rate of 10−5 and a momentum
value of 0.99. The evaluation was performed on random codewords, and
simulation curves are obtained with 12,000,000 samples.

We present simulation results for BCH(63,51) and Polar(64,48)
codes. Figure 3 shows the results of BER and BLER over AWGN and
Rayleigh fading channels for Eb/No in dB, where Eb denotes the bit en-
ergy and No denotes the power spectral density of the noise. To evalu-
ate our proposed denoiser objectively, we simulate three different NN
denoisers, that is, the HGN decoder with MLP-RD, the HGN decoder
with CNN-RD, and the HGN decoder with LSTM-RD. As shown in Fig-
ure 3a, for the AWGN, the proposed model has a coding gain of 4.7 and
3.5 dB higher than the HGN decoder at BER 10−5 for the BCH and po-
lar codes, respectively. For the Rayleigh fading channel, Figure 3c shows
that our model has an improvement of 5 and 6 dB to the HGN decoder
at BER 10−3 for the BCH and polar codes, respectively. Note that the
proposed joint model was trained with 5 epochs, whereas the individual
HGN decoder was trained with 500 epochs.

For BLER performance, Figure 3b,d shows that our joint model has
significant improvements to the HGN decoder for both codes over the
AWGN and Rayleigh channels. It is also confirmed that the proposed
model shows excellent performance in all SNR regions compared to the
three joint models incorporating the existing RDs.

Ablation study on residual connections: We perform an ablation analy-
sis on residual connections. We compare a method with (i) double resid-
ual connections, (ii) a single residual connection, and (iii) no residual
connection. Table 2 presents the negative natural logarithm of BER with
SNR 4 and 5 dB for the BCH (63,51) and the Polar (64,48) codes. It
shows that the performance degrades as more connections are removed.

Impact of the kernel size: We investigate the impact of kernel size in
the proposed model. Table 3 presents the negative natural logarithm of
BER for the BCH (63,51) and the Polar (64,48) codes using three dif-
ferent kernel sizes: (i) 5 × 1, (ii) 3 × 1, and (iii) 1 × 1. Models (ii) and
(iii) for the comparison were set to have similar amounts of learnable
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Table 3. Performance comparison by kernel size

BCH (63,51) Polar (64,48)

4 5 4 5

(i) 5 × 1 convolution kernel 15.15 18.31 12.18 15.16

(ii) 3 × 1 convolution kernel 10.05 11.81 8.85 10.37

(iii) 1 × 1 convolution kernel 4.40 5.59 4.53 5.76

Table 4. Computational complexity and the number of operations

Computational complexity Operation count

AE-RD 4N f C1C2 132,300

CNN-RD f (N − 4)(C1C2 + C2C3 + C3C4 ) 104,135

MLP-RD (N + C3 )(C2 + C4 ) 1,349

LSTM-RD N2 + 5NH + 4H 2 + 3H 4,284

HGN lmaxN3d3
v 357,329,070

SCL [19] LNlog2N 1,512

parameters to the proposed model (i) by adjusting the channel sizes. The
kernel size with 5 × 1 achieves the best performance, so we set it for the
proposed model.

Complexity analysis: We analyze the complexity of four types of de-
noisers, the HGN, and conventional polar successive cancellation list
(SCL) decoder. Table 4 shows the computational complexity and the
number of operations by substituting the values of each parameter into
the expression. N is codeword length, f is kernel size, H is the number
of hidden units, and Ck is the feature map of kth hidden layer for each de-
noisers. For the HGN, lmax is the number of iterations in the Trellis graph,
and dv is the average variable node degree. L is listing size of the SCL
decoder. As a result, our proposed denoiser and the joint model have
higher number of operations compared with the existing RDs and the
SCL decoder, respectively. However, at the expense of increased com-
plexity, our denoiser achieves significant gains over the benchmarks for
both the HGN and SCL decoders as shown in Figure 3. Additionally, as
the complexity of the proposed denoiser is much smaller than that of the
HGN decoder, it can be further reduced by optimizing the architecture
of the HGN decoder.

Conclusion: We proposed a new channel denoiser employing the resid-
ual DAE for the joint NN decoder and denoiser scheme. Simulation
results confirmed that the proposed joint model outperforms the HGN
decoder without the denoiser. In particular, for the BCH code, our
model demonstrated an SNR gain of 4.7 dB at BER 10−5 and 5 dB
at BER 10−3 with only 1% of epochs compared to the HGN decoder
over AWGN and Rayleigh channels, respectively. For the polar code,
our model not only showed the best performance compared to the
HGN decoder but also showed a significant improvement compared
to the SCL decoder. We demonstrated that the proposed denoiser out-
performs all existing denoisers configured with a similar number of
parameters.
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