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Abstract— We define run sequences of period 2n − 1 as the
binary sequences where the distribution of runs of 0’s and runs
of 1’s is exactly same as that for the maximal length linear shift
resister sequences of period 2n − 1. We first count the number
of all the cyclically distinct run sequences of period 2n − 1. For
each n-tuple, we consider the average number of occurrences
over all the run sequences of period 2n − 1. We identify the
n-tuples with average number 1 and, in particular, those that
occur exactly once in every run sequence of period 2n − 1.
We finally prove that, as n increases, the average number of
every non-zero n-tuple approaches to 1.

Index Terms— Binary sequences, pseudo-random sequences,
run sequences, span sequences, de Bruijn sequences.

I. INTRODUCTION

PSEUDO-RANDOM sequences are useful in various fields
such as communication and cryptographic systems [5],

[7], [16]. Many researchers have investigated various necessary
and sufficient conditions for pseudo-random sequences. S. W.
Golomb postulated three randomness properties: balance, run
and ideal autocorrelation [5], [9]. In addition, there are span
and multiplier properties [5], [6]. In this paper, we consider
the binary sequences repeating periodically mostly with period
2n − 1 and we focus on the run property of binary sequences
of period 2n − 1.

The above randomness properties can be defined by the
corresponding properties of the m-sequences of period 2n−1.
An m-sequence is a maximal-length linear feedback shift
register sequence satisfying a linear recursion whose charac-
teristic polynomial is primitive over F2 [5], [7]. The num-
ber of cyclically distinct m-sequences of period 2n − 1 is
shown in Table I for n = 3, 4, 5 and 6, where φ(·) is
the Euler’s-phi-function [5], [7]. There have been a lot of
studies about m-sequences as well as, in general, balanced
binary sequences with ideal autocorrelation, multiplier and/or
span properties [1], [2], [4], [5], [6], [7], [8], [9], [10], [14],
[15], [16], [17], [18]. As far as both authors are aware of,
there have not been much results on the run properties of
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binary sequences, or their relation with other randomness
properties.

A binary sequence of period 2n−1 is called a span sequence
if all the non-zero n-tuples occur exactly once in its one
period [5], [9]. We claim that all the span sequences of period
2n−1 are in one-to-one correspondence with all the de Bruijn
sequences of period 2n. By inserting one 0 right after the
longest run of 0’s in the span sequence of period 2n − 1,
we obtain a de Bruijn sequence of period 2n. Conversely,
by deleting one 0 in the longest run of 0’s in the de Bruijn
sequence of period 2n, we obtain a span sequence of period
2n − 1. Therefore, the number sn of cyclically distinct span
sequences must be the same as that of de Bruijn sequences,
which is given by [1] and [8]

sn = 22n−1−n

and is shown in Table I for n = 3, 4, 5 and 6. The (exhaustive)
constructions and classification of sn de Bruijn sequences have
been studied a lot [8], [14], [15].

A run of 0’s of length k in a binary sequence is a string
of consecutive k 0s flanked by 1 and a run of 1’s of length
k is a string of consecutive k 1s flanked by 0 where the run
is considered cyclically wrapped around since the sequence
is considered periodically repeating [5], [6], [9], [11]. For
example, when the ending of one period is a block . . . 011 and
the beginning is a block 1110 . . ., we consider this a (final)
run of 1’s of length 5 of the sequence. A binary sequence
of period 2n − 1 is said to have the run property and called
a run sequence if its run distribution is the same as those
of an m-sequence of the same period. In an m-sequence of
period 2n − 1, there are 2n−2−i runs of 0’s of length i and
2n−2−i runs of 1’s of length i, for i = 1, 2, . . . , n − 2, with
a single run of 0’s of length n − 1 and a single run of 1’s
of length n [5], [6], [9], [11]. Table II summarize the run
distribution of an m-sequence of period 2n−1. The number rn

of cyclically distinct run sequences is shown also in Table I for
n = 3, 4, 5 and 6. This number was first determined in 2019 by
the same authors and presented in a conference [11], but is
revived here in full capacity by Theorem 1 in the beginning
of Section II.

It is well-known that any span sequence must be a run
sequence but not conversely [5], [7], [16]. Therefore, a span
sequence is a special type of a run sequence. Any run sequence
of period 2n − 1 must belong to one of the following types: a
run sequence which is not a span sequence; a span sequence
which is not an m-sequence; or an m-sequence. For example,
of period 15, we have

1) a run sequence 000111100110101 which is not a span
sequence (1011 is missing or 1010 appears twice);
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TABLE I

THE NUMBER OF CYCLICALLY DISTINCT BINARY SEQUENCES WITH SOME RANDOMNESS PROPERTY

TABLE II

RUN DISTRIBUTION OF AN M-SEQUENCE OF PERIOD 2n − 1

2) a span sequence 000111100101101 which is not an
m-sequence; or

3) an m-sequence 000111101011001 (a linear recursion
ak = ak−1 + ak−4 for k ≥ 4 is satisfied).

This gives a motivation of some investigation on the questions:
which run sequences are span sequences or else why some run
sequences fail to be a span sequence. This paper would like
to provide some answers to these questions.

In this paper, we first count the number rn of all the
cyclically distinct binary run sequences of period 2n−1. Then,
we reports some results on the distribution of various n-tuples
throughout all the cyclically distinct run sequences of period
2n − 1. We define the average number of occurrences of an
n-tuple as the total number of occurrences in the set of all
such run sequences divided by the number rn. It is interesting
to find that some n-tuples occur exactly once in all the run
sequences so that not only the average number is one but the
actual occurrence is exactly 1 “uniformly” over each and every
run sequence. On the other hand, some n-tuples occur more
than once in some sequences but the total number counts rn so
that the average number becomes 1. We may say in this case
that the average number 1 is achieved “non-uniformly.” For
the remaining n-tuples, average number of occurrence turned
out be different from 1.

The main result of this paper is summerized as two the-
orems: Theorem 1 counts the number of cyclically distinct
run sequences of period 2n − 1 and Theorem 2 proves that
the average number of occurrences of each and every n-
tuple (determined in Lemma 1) approaches 1 as n increases,
which we call the statistical span property satisfied by the run
sequences.

II. MAIN RESULTS

First, we count the number of cyclically distinct binary
run sequences of period 2n − 1. We assume that each of the
cyclically equivalent classes is represented by the run sequence
in which the unique run of 0’s of length n − 1 occurs in
the beginning. Then, we set up a one-to-one correspondence
between the set of all the representatives and the pairs of
multiset permutations.

Definition 1 (Multiset Permutations [12]): Let a1, . . . , ak

be some k distinct symbols and n1, n2, , . . . , nk be some
nonnegative integers. Define R(an1

1 an2
2 · · · ank

k ) as the set of
all the multiset permutations of length N = n1+n2+ · · ·+nk

that are formed by rearranging ni copies of ai for i =
1, 2, . . . , k.

Example 1:

R(0211) = {001, 010, 100} .

R(a1b2c1d0) = {abbc, abcb, acbb, babc, bacb, bbac, bbca, bcab,

bcba, cabb, cbab, cbba}.
We see that |R(0211)| = 3 and |R(a1b2c1d0)| = 12 in

Example I. In general, the number of the multiset permutations
in Definition I is given as a multinomial coefficient:

|R(an1
1 an2

2 · · ·ank

k )| =
(

N
n1, n2, . . . , nk

)
=

N !
n1!n2! · · ·nk!

.

We now count the number of cyclically distinct run
sequences of period 15, for example. The key observation
is that the runs of 0’s and the runs of 1’s must alternate
in any binary sequence. Each run sequence is appropriately
cyclically-shifted so that the unique run 000 becomes the
beginning. Since the number of runs of 1’s is the same as that
of runs of 0’s in a run sequence of period 15, when the run
sequence is cyclically shifted so that the beginning becomes
000, the ending must a run of 1’s of some positive length.
Then we can set up a one-to-one correspondence between the
set of all such run sequences and the pairs of the multiset
permutations, corresponding to the runs of 0’s and the runs
of 1’s. For example, denoting by 0k (or 1k, resp.) a string of
consecutive 0’s (or 1’s, resp.) of length k, we consider the
following run sequence of length 15:

0x11y10x21y20x31y30x41y4 .

By the assumption, we have x1 = 3. By the definition,
the integers x2, x3, x4 must be some rearrangement of the
run lengths 1, 1, 2. Similarly, for the runs of 1’s, the lengths
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y1, y2, y3, y4 must be some rearrangement of the run lengths
1, 1, 2, 4. For example, one may take such rearrangements as

(x2, x3, x4) = (1, 2, 1) and (y1, y2, y3, y4) = (2, 1, 4, 1),

corresponding to one of the run sequences

0312011102140111.

We now consider a pair of multiset permutations consisting of
two distinct sets of symbols {a1, a2} and {b1, b2, b4}, corre-
sponding to the lengths {1, 2} of run of 0’s and the lengths
{1, 2, 4} of run of 1’s, respectively. Then the corresponding
pair of the multiset permutations would be

(a1a2a1, b2b1b4b1) ∈ R(a2
1a

1
2) ×R(b2

1b
1
2b

1
4).

It is not difficult to see that all the run sequences of period
15 (with the unique run 03 in the beginning) are in one-to-one
correspondence with the members of R(a2

1a
1
2) × R(b2

1b
1
2b

1
4).

Therefore, the total number of cyclically distinct run sequences
of period 15 is given by the size of the set R(a2

1a
1
2) ×

R(b2
1b

1
2b

1
4) which is 36. This can be easily generalized to the

period 2n − 1 and this proves the following theorem:
Theorem 1: The number of cyclically distinct binary run

sequences of period 2n − 1, denoted by rn, is given by

rn =
1

2n−2

(
2n−2

2n−3, 2n−4, . . . , 20, 1

)2

. (1)

Proof: All the cyclically distinct binary run sequences
of period 2n − 1 are in one-to-one correspondence with the
members of

R(a2n−3

1 a2n−4

2 · · ·a20

n−2) ×R(b2n−3

1 b2n−4

2 · · · b20

n−2b
1
n).

Note that the symbol bn−1 is missing in the second set of mul-
tiset permutations on the list of symbols b1, b2, . . . , bn−2, bn

because a run of 1’s of length n−1 is not in the run sequence
as can be seen in Table II.

Corollary 1: Let rn be as given in Theorem 1. Then, as n
increases indefinitely,

rn −→ c22n− 1
2n2+( 3

2−log2 π)n, (2)

for some constant c in the range e−1/6 ≤ 8( e
π )4c < 1 or

0.189 ≤ c < 0.223, and hence,
rn

rn−1
−→ 22n−1−n+2−log2 π.

Proof: It is easy and straightforward using the inequal-
ity [13]

√
2πm

(m

e

)m

< m! <
√

2πm
(m

e

)m

e
1

12m

for any positive integer m, and the stirling’s approximation [3],

lim
m→∞

m!√
2πm

(
m
e

)m = 1.

Corollary 2: Let rn and sn be the number of cyclically
distinct run and span sequences of period 2n−1, respectively.
Then, as n increases indefinitely,

rn

sn
−→ c22n−1− 1

2 n2+( 5
2−log2 π)n, (3)

where the same constant c is given in (2).

Definition 2: Consider the set of all the cyclically distinct
rn binary run sequences of period 2n − 1. For any binary
n-tuple, we count the number N of occurrences of this n-
tuple throughout all these run sequences. We define the average
number of occurrences (or, the average number, for short) of
this n-tuple as N/rn.

Now, we investigate the n-tuple distribution property over
all the cyclically distinct rn binary run sequences of period
2n − 1, where rn is given in Theorem 1. Figure 1 (a) and
(b) show the average number of occurrences of each n-tuple
in all the cyclically distinct run sequences of period 2n − 1,
for n = 5 in (a) and n = 6 in (b). The average number of an
n-tuple is given in Definition II. It is surprising that there exist
some not-all-zero n-tuples such that their average numbers
are equal to 1. It is interesting to observe that there are only
three values as an average number, which are 6/7, 7/7 =
1 and 8/7 for n = 5 in (a). On the other hand, there are six
values for n = 6 in (b) which are 196/225, 210/225, 224/225,
225/225 = 1, 240/225 and 256/225. We first observe an
obvious lower bound on the average number of any not-all-
zero n-tuple:

Proposition 1: Let rn and sn be the number of cyclically
distinct binary run and span sequences of period 2n − 1,
respectively. Then, the average number of any not-all-zero n-
tuple is lower bounded by sn/rn.

The above lower bound is obtained since any not-all-zero
n-tuple appears exactly once at least on the sn span sequences.
One may wonder how many times an n-tuple appears through-
out all the run sequences including span sequences. In the
remaining of this paper, we prove that this number approaches
rn so that the average number approaches 1 as n increases
indefinitely. Before this journey, we would like to mention
one more property of these average numbers of all the not-all-
zero n-tuples. From Fig. 1(a), we observe that the sum of all
the average numbers of all the not-all-zero 5-tuples becomes
25 − 1 so that the average (over all the 5-tuples) of all these
average numbers becomes 1. This can be proved in general
for any positive integer n.

Proposition 2: For k = 1, 2, . . . , 2n − 1, denote by Ak

the average number of the binary n-tuple whose decimal
representation is k. Here, the average is over all the cyclically
distinct binary run sequences. Then

2n−1∑
k=1

Ak = 2n − 1.

Proof: Let all the cyclically distinct run sequences be
ordered somehow such that we may call an i-th run sequence
for i = 1, 2, . . . , rn. Denote by Bk,i the number of occurrences
of the n-tuple k in the i-th run sequence. Then,

Ak =
1
rn

rn∑
i=1

Bk,i.

Therefore,

2n−1∑
k=1

Ak =
2n−1∑
k=1

1
rn

rn∑
i=1

Bk,i =
1
rn

rn∑
i=1

2n−1∑
k=1

Bk,i = 2n − 1.

Authorized licensed use limited to: Yonsei Univ. Downloaded on March 23,2023 at 07:51:22 UTC from IEEE Xplore.  Restrictions apply. 



2716 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 69, NO. 4, APRIL 2023

Fig. 1. The average number of occurrences of (a) 5-tuples and (b) 6-tuples.

The average number 1 of an n-tuple can be obtained if
every run sequence contains the n-tuple exactly once (uniform
case) or if some contains more than once but the total
number throughout all the run sequences is rn (non-uniform
case). It would be interesting to identify which n-tuples have
the average number 1 in uniform way. Now, Proposition 3
identifies those n-tuples with the average number 1 uniformly.
Recall that we denote by 0k (or 1k, resp.) a set of consecutive
0’s (or 1’s, resp.) of length k. We use a run 0k or a run 1k if it
is flanked by the other symbol. That is, a ‘0k’ can be different
from a ‘run 0k.’

Proposition 3: An n-tuple has the average number 1 uni-
formly if and only if it is one of the following seven cases:

a0n−2b and a1n−2b,

where a, b ∈ {0, 1}, except for the all-zero n-tuple.
Proof: For sufficiency, consider any one run sequence

of period 2n − 1. Then, we observe the following unique
occurrence of each of the above seven n-tuples:

• An n-tuple 10n−21 occurs once since there exists a
unique run 0n−2.

• Each of two n-tuples 10n−1 and 0n−11 occurs once since
there exists a unique run 0n−1 and no run 0k for k ≥ n.

• An n-tuple 01n−20 occurs once since there exists a
unique run 1n−2.

• Each of three n-tuples 01n−1, 1n−10, and 1n occurs once
since there exists a unique run 1n and no run 1k for
k = n − 1 or k > n.

We omit the proof of necessity since it is a straightforward
but complicated application of the run property again.

We now determine the average number of each of the n-
tuples. Any n-tuple may begin by either 0 or 1 and end by
0 or 1, and hence, we may consider its four different forms in
the following:

generic form of an n-tuple

Case 1 0x1α10β11α20β2 · · · 1αm0βm1y

Case 2 1y0β11α10β21α2 · · · 0βm1αm0x

Case 3 0x1α10β11α20β2 · · · 1αm0y

Case 4 1x0β11α10β21α2 · · · 0βm1y

(4)

where x, y are some positive integers and where αk, βk are
some positive run-lengths inside the n-tuple except that βm =
0 in Case 3 and αm = 0 in Case 4. With this assumption,
we must have

x + y +
m∑

k=1

(αk + βk) = n. (5)

Note that the initial and final consecutive symbols can be a
part of some longer runs according to the symbols flanking
the n-tuple. For example, consider an n-tuple of Case 1.
If 1 comes just before this n-tuple, then 0x is a run 0x.
However, if 0 comes, then 0x is a part of a run of 0’s of
length x + 1 or more.

Lemma 1: Consider a binary not-all-zero n-tuple with the
notation and assumption leading to (4) and (5). Let pk

be the number of runs 1k’s and zk be the number of runs 0k’s
in the n-tuple except for 0x, 0y, 1x, 1y in either the beginning
or the ending. Then, the average number of the n-tuple is given
by the following:

Case 1 and Case 2:

M × 2n−x−1 −∑n−2
k=x zk

2n−2 −∑n−2
k=1 zk

× 2n−y−1 −∑n−2
k=y pk

2n−2 −∑n−2
k=1 pk

,

Case 3:

M × 2n−max(x,y)−1 −∑n−2
k=max(x,y) zk

2n−2 −∑n−2
k=1 zk

×2n−min(x,y)−1 − 1 −∑n−2
k=min(x,y) zk

2n−2 − 1 −∑n−2
k=1 zk

,

Case 4:

M × 2n−max(x,y)−1 −∑n−2
k=max(x,y) pk

2n−2 −∑n−2
k=1 pk

×2n−min(x,y)−1 − 1 −∑n−2
k=min(x,y) pk

2n−2 − 1 −∑n−2
k=1 pk

,
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where

M � 1
rn

×
(
2n−2 −∑n−2

k=1 zk

)
!∏n−2

k=1 {(2n−2−k − zk)!}

×
(
2n−2 −∑n−2

k=1 pk

)
!∏n−2

k=1 {(2n−2−k − pk)!} . (6)

Proof: We prove the theorem for Case 1 in (4), where
the n-tuple is of the form 0x1α10β11α20β2 · · · 1αm0βm1y . All
other cases can be treated similarly. Consider any n-tuple of
the form

0x1α10β11α20β2 · · · 1αm0βm1y. (7)

We count the number of occurrences of this n-tuple in all
the cyclically distinct binary run sequences of period 2n − 1.
It can be determined by counting the number of run sequences
(not necessarily cyclically distinct) which contain this n-tuple
in the beginning. We count this number in two steps. The
first counts the run sequences in which the underlined part
of the pattern in (7) together with a single preceding 0 and
succeeding 1 appears as n − (x + y) + 2 consecutive bits in
the same positions as (7). In the second step, we obtain the
final answer by considering 0x in the beginning and 1y in the
ending of the n-tuple.

Note that the underlined part of (7) contains
∑n−2

k=1 pk runs
of 1’s and

∑n−2
k=1 zk runs of 0’s from the assumption. Now the

run distribution of the remaining part of the sequences must
contain the runs and their frequencies as given in Table III.
Similar to the counting in Theorem 1, the number of run
sequences containing the underlined part of the pattern (7)
from (x + 1)th to (n − y)th bit positions in the beginning is
given as the size of the set of multiset permutation pairs:∣∣∣R(a2n−3−z1

1 a2n−4−z2
2 · · · a20−zn−2

n−2 a1
n−1

)∣∣∣
×
∣∣∣R(b2n−3−p1

1 b2n−4−p2
2 · · · b20−pn−2

n−2 b1
n

)∣∣∣
=

(
2n−2 −∑n−2

k=1 zk

)
!∏n−2

k=1 (2n−2−k − zk)!
×
(
2n−2 −∑n−2

k=1 pk

)
!∏n−2

k=1 (2n−2−k − pk)!
= rnM.

(8)

Note that this number counts those run sequences in which
the first x terms may contain some 1’s or the last y terms may
contain some 0’s inside the n-tuple in the beginning. There-
fore, we have to consider only those portions by multiplying
the ratio of those containing 0x in the beginning and 1y in
the ending of the first n positions. This ratio turns out to be
given as the probability of having 0x as a part of a run of 0’s
of length x or more and having 1y as a part of a run of 1’s
of length y or more, preceding and succeeding the underlined
part of the pattern (7), respectively. It is given as

1 +
∑n−2

k=x

(
2n−2−k − zk

)
2n−2 −∑n−2

k=1 zk

× 1 +
∑n−2

k=y

(
2n−2−k − pk

)
2n−2 −∑n−2

k=1 pk

.

(9)

Multiplying the above two numbers in (8) and (9) and then
dividing the result by rn gives the final expression in the
theorem for Case 1.

TABLE III

RUN DISTRIBUTION EXCEPT FOR THE RUNS
IN 1α10β11α20β2 · · · 1αm0βm

Example 2: We calculate the average number of the follow-
ing two 5-tuples (all in Case 1) using the formula in Lemma 1.
First, the number r5 is given by

r5 =
1
23

(
23!

22!21!20!

)2

= 88200.

1) 5-tuple 00011: pk = zk = 0 for all k and x = 3, y = 2.
Therefore, the average number becomes 1

8M which is
given by

1
8r5

(
23!

22!21!20!

)2

= 1.

2) 5-tuple 01011: p1 = z1 = 1 and x = 1, y = 2.
Therefore, the average number becomes 4

7M which is
given by

4
7r5

(
(23 − 1)!

(22 − 1)!21!20!

)2

=
8
7
.

Proposition 4 (Corollary to Lemma 1): The average number
is 1 only for the following n-tuples:

a0k1n−2−kb and a1n−2−k0kb,

where a, b ∈ {0, 1} and k = 0, 1, . . . , n − 2, except for
the all-zero n-tuple. Of these, only those seven n-tuples in
Proposition 3 achieve the average number 1 uniformly, and
all others achieve non-uniformly.

Table IV shows all the twenty-three 5-tuples described in
Prop. II having the average number 1. These 5-tuples appear
also in Fig. 1 (a) as 23 black dots. Of these, only those seven
5-tuples in Prop. 3 achieve the average number 1 uniformly.

Proposition II describes that only a few n-tuples have the
average number 1 for any given finite value of n. However,
in Theorem 2, we show that all the n-tuples except for the
all-zero have the average number 1 as n increases indefinitely.
That is, Theorem 2 shows that both supremum and infimum of
the set of all the possible average numbers for all the non-zero
n-tuples approach to 1. For this, we proceed by separating all
the non-zero n-tuples into 4 cases defined in (4).

Theorem 2: Let En,Fn,Gn and Hn be the sets of all the
average numbers for all the non-zero n-tuples which have the
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TABLE IV

ALL THE 5-TUPLES WITH THE AVERAGE
NUMBER 1 IN PROPOSITIONS 3 AND II

form of Case 1,2,3 and 4 in (4), respectively, throughout all
the cyclically distinct run sequences of period 2n − 1. Then

lim
n→∞ (sup En) = lim

n→∞ (inf En) = 1.

Similarly for Fn,Gn and Hn.
Proof: In this proof, we only show that both sup En

and inf En approach to 1 as n increases. All other cases can
be treated similarly. We choose any binary n-tuple in Case
1 of (4). Then the parameters x, y, αi, βi and i = 1, 2, . . . , m
are determined from this n-tuple. They satisfy the relation (5).
We use the same notation zk, pk as in the proof of Lemma 1.
Then we have

m∑
j=1

βj =
n−2∑
k=1

kzk and
m∑

j=1

αj =
n−2∑
k=1

kpk.

Therefore, (5) becomes

x + y +
n−2∑
k=1

k(zk + pk) = n, (10)

since the underlined part of the n-tuple in (7) does not have
any run of length n − 1 or more.

By slightly modifying the formula in Lemma 1 for Case 1,
the average number of the n-tuple can be expressed as follows:

M

2x+y−2
×
(

2x−1 2n−x−1 −∑n−2
k=x zk

2n−2 −∑n−2
k=1 zk

)

×
(

2y−1
2n−y−1 −∑n−2

k=y pk

2n−2 −∑n−2
k=1 pk

)
. (11)

For convenience, denote each of the above three terms by
Mn, Zn and Pn, respectively. In the remaining of this proof,
we show that some upper bounds and lower bounds for each
of these Mn, Zn and Pn approach to 1 as n increases.

First, we consider the expressions Zn and Pn. We take care
of the value Zn and then the expression Pn can be treated
similarly. Claim that

2n−2 − n2
n
2 −2

2n−2
< Zn <

2n−2

2n−2 − n
2

.

Then, both upper and lower bounds above approach to 1 as
n increases. To prove this claim, we distinguish two cases:
x > n/2 or x ≤ n/2 from (11).

If x > n/2, then zx = zx+1 = · · · = zn−2 = 0. Therefore,

Zn = 2x−1 2n−x−1

2n−2 −∑n−2
k=1 zk

=
2n−2

2n−2 −∑n−2
k=1 zk

.

Using the inequalities 0 ≤∑n−2
k=1 zk < n

2 , we have

1 ≤ Zn <
2n−2

2n−2 − n
2

.

Note that the following inequalities hold in general:

0 ≤
n−2∑
k=x

zk ≤
n−2∑
k=1

zk <
n

2

from the definition of zk. We now consider the case x ≤ n/2.
Using the above inequalities, we have

2x−1 2n−x−1 − n
2

2n−2
< 2x−1 2n−x−1 −∑n−2

k=x zk

2n−2 −∑n−2
k=1 zk

< 2x−1 2n−x−1

2n−2 − n
2

.

Using x ≤ n
2 , this results in the following.

2n−2 − n2
n
2 −2

2n−2
< Zn <

2n−2

2n−2 − n
2

.

Finally, we claim that(
1 − n/2

2
n
2 −2

)n

< Mn <

(
2n−2

2n−2 − n
2

)n

.

Then, both upper and lower bounds above approach to 1 as
n increases. To prove this claim, we first manipulate the
expression of M in (6) and obtain a new expression for M as
follows:

Mn =
M

2(x+y)−2

=
2n−(x+y)

∏n−2
k=1 (P (2n−k−2, zk)P (2n−k−2, pk))
P (2n−2, A)P (2n−2, B)

,

(12)

where we use the permutation notation

P (N, K) � N !
(N − K)!

= N(N − 1) · · · (N − K + 1),

and the notation for convenience

A �
n−2∑
k=1

zk <
n

2
and B �

n−2∑
k=1

pk <
n

2
, (13)

where the upper bound n/2 comes from the definition of zk

and pk. The number P (N, K) can be bounded by

(N − K)K ≤ P (N, K) ≤ NK . (14)

We take care of the upper bound on Mn using the above
inequalities. Therefore,

Mn ≤ 2n−(x+y)
∏n−2

k=1

((
2n−k−2

)zk
(
2n−k−2

)pk
)

(2n−2 − A)A(2n−2 − B)B

=
2(n−2)A

(2n−2 − A)A
× 2(n−2)B

(2n−2 − B)B
,
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where the numerator in the final form was obtained by using
the relation (10) and the notation (13). Since both A and B are
upper bounded by n/2, the above expression is upper bounded
by (

2n−2

2n−2 − n
2

)n

.

For the lower bound on Mn in (12), we first observe that
the values of zk and pk for k > n/2. For example, zn/2 is the
number of runs 0n/2 inside the underlined part of the n-tuple
in (7). Observe that it is at most 1. If it is 1 then all the values
of zk for k > n/2 must be 0. In fact, zk could be 1 only for
at most one value of k ≥ n/2. Similarly, for the values of pk

for k ≥ n/2. The conclusion is that the value zk or pk for
k ≥ n/2 must be 0 or 1.

We use this to split the product in the numerator of Mn

in (12) into two terms: one product for k from 1 to n/2 −
1 which can be lower bounded by (14) and the other product
for k from n/2 to n−2 which can be simply changed using the
relation P (N, 1) = N . The denominator can be replaced by its
upper bound using (14). This gives a lower bound on Mn as
follows:

Mn =
2n−(x+y)

P (2n−2, A)P (2n−2, B)
×

∏
n/2≤k≤n−2

(2n−k−2)(zk+pk)

×
∏

1≤k<n/2

P (2n−k−2, zk)P (2n−k−2, pk)

≥ 2n−(x+y)

(2n−2)A(2n−2)B
×

∏
n/2≤k≤n−2

(2n−k−2)(zk+pk)

×
∏

1≤k<n/2

(2n−k−2 − zk)zk(2n−k−2 − pk)pk

=
∏

1≤k<n/2

(
1 − zk

2n−k−2

)zk
(
1 − pk

2n−k−2

)pk

,

where the last equality is obtained by the relation (10) and
some straightforward simplification on the various powers of
2. This can be lower bounded by taking the minimum of (1−
zk/2n−k−2) over all 1 ≤ k < n/2. We denote this minimum
by (1 − zγ/2n−γ−2) for some k = γ. Similarly, we write the
minimum of the second factors as (1− pδ/2n−δ−2) for some
k = δ. Then, we have

Mn ≥
(
1− zγ

2n−γ−2

)�
1≤k<n/2 zk

(
1− pδ

2n−δ−2

)�
1≤k<n/2 pk

>

(
1− n/2

2
n
2 −2

)n

,

since the exponents are less than A and B, respectively, (where
both A and B are less than n/2) and also zγ and pδ are also
less than n/2, and 1 ≤ γ, δ < n/2.

Figure 2 shows the maximum and minimum values of
En ∪ Fn ∪ Gn ∪ Hn for n = 3, 4, . . . , 25. The maximum
and minimum values are farthest away from each other when
n = 5, and then gradually converge to 1 as n increases.
It would be enough to say that the average numbers of all
the not-all-zero n-tuples are essentially 1 when n ≥ 20. For

Fig. 2. The maximum and minimum values of the average numbers of all
the n-tuples.

Fig. 3. The average number of occurrences of each 20-tuples.

n = 20, the average numbers are between 0.9990 and 1.0001.
Figure 3(a) and (b) obtained from Lemma 1 show these values.

III. CONCLUDING REMARKS

It is well-known that a span sequence is a run sequence
but not conversely. The total number sn of span sequences
of period 2n − 1 is well-known to be sn = 22n−1−n. In this
paper, we investigated various relations of run properties and
span properties of binary sequences of period 2n − 1.

We first count the number rn of all the cyclically distinct
binary run sequences of period 2n − 1 (Thm. 1). We check
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TABLE V

DISTRIBUTION OF OCCURRENCES IN A RUN SEQUENCE OF PERIOD 31

the rate of increase of the sequence rn as n goes to infinity
(Cor. 1) and find that only a tiny small portion of these
are span sequences (Cor. 2). We define the average num-
ber of occurrences of an n-tuple throughout all the rn run
sequences (Def. II). We see that this average number of any
binary n-tuple is lower bounded by sn/rn (Prop. 1) and
that the sum (over all n-tuples) of all these average numbers
is 2n − 1 (Prop. 2). We are able to identify those binary
n-tuples with the average number 1 (Prop. II) and espe-
cially those with the average number 1 uniformly (Prop. 3).
As a main result, we prove that the average number of any
not-all-zero n-tuple approaches 1 as n increase indefinitely
(Thm. 2). We may call this a statistical span property of run
sequences.

One of future research topic would be to consider the
set of run sequences over some non-binary alphabet. Similar
definition would be possible from the q-ary m-sequences of
period qn−1. Here, q different types of runs exist and the order
of these runs matters, unlike the binary cases in which only
two different types of run alternate. Calculating the number of
cyclically distinct q-ary run sequences would be an interesting
and much more difficult problem.

Another interesting future research would be to consider
the set of binary run sequences under the equivalence of
both rotation and reversal. In this paper, we only con-
sider the equivalence class of rotation or cyclic shift. The
problem would become quite different and much more dif-
ficult if we consider both operations for the equivalence
class.

We finally propose a question from the different perspective.
Each run sequence has 2n − 1 binary n-tuples which are not
necessarily all distinct. If it is a span sequence then all these
n-tuples are distinct. Otherwise, some appear multiple times
and some others do not appear at all. Therefore, we may ask
the following: what is the (average) distribution of n-tuples in
a random run sequence of period 2n − 1?

For i = 0, 1, 2, . . ., let ai be the number of n-tuples that
occur exactly i many times in a run sequence of period 2n−1.

Then, we have at least the following two conditions:

a0 + a1 + a2 + · · · = 2n − 1,

since the total number of n-tuples is 2n − 1, and

1a1 + 2a2 + 3a3 + · · · = 2n − 1,

since the period of the sequence is 2n − 1.
For examples, any span sequence of period 25 − 1 has a

distribution (a0, a1, a2, a3, . . .) = (0, 31, 0, 0, . . .), which is
denoted as Distribution 0 in Table V. There are 2048 such run
sequences (all of which are in fact span sequences). All the
distributions of 5-tuples in the 88200 run sequences of period
25−1 are classified as eleven different distributions in Table V.
Distribution 1 indicates twenty-seven 5-tuples appear 1 time,
two 5-tuples appear 2 times, and remaining two 5-tuples do not
appear at all. There are 6144 run sequences having this type
of distribution. Here, the average of the distributions indicates
that, in a random run sequence of period 31, 5.47 5-tuples
do not appear at all, 20.22 of them appear exactly 1 time,
5.15 of them appear exactly 2 times, etc. If this distribution
is normalized by the total number 2n − 1 = 31, it becomes a
probability distribution. It is wide open what this distribution
would become as n increases indefinitely.
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