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This paper proposes a modification to Tanner’s work for constructing
girth-8 quasi-cyclic low-density parity-check codes. The main contri-
bution of this paper is to use an arithmetic sequence at the leftmost
column for the exponent matrix so that the lifting size is not necessar-
ily restricted to the prime numbers. Two theorems on the lifting sizes
that achieve girth at least 8 using this approach is also provided. This
construction exhibits better frame error rate results to the modified 5G
new radio (NR) low-density parity-check codes for lengths around 500.
Also, this construction achieves better frame error rate performance re-
sults than the recently proposed one using the Golomb rulers at around
frame error rate of 10−6.

Introduction: Low-density parity-check (LDPC) codes are one of the
most widely used error-correcting codes in modern communication sys-
tems, such as the data channel of the 5G NR standard, Wi-Fi, and video
communication standards [1, 2]. These codes are known for their ability
to achieve near-Shannon limit under iterative decoding [3].

As low-latency communication systems, like vehicle-to-vehicle and
Internet of Things, become more prevalent, the demand for error-
correcting codes with shorter lengths is increasing. That is why our
construction efforts are focused on short-length LDPC codes. It is well
known that algebraically constructed LDPC codes tend to perform bet-
ter than randomly constructed ones (e.g. by PEG algorithms) for lengths
shorter than 1000 bits [4, 5].

Quasi-cyclic low-density parity-check (QC-LDPC) codes are a fam-
ily of LDPC codes that exhibit a property: cyclically shifting a code-
word for some fixed integer number of times produces another valid
codeword. This property makes QC-LDPC codes an attractive option
for high-speed communication systems, as they enable simple encoding
methods with low required memory [6, 7] and low complexity decoding
techniques [8].

The construction of QC-LDPC codes can be achieved using an ex-
ponent matrix [4, 9]. The exponent matrix E is an m × n matrix with
elements denoted by e(i, j), where i is the row index and j is the column
index. To construct the H matrix, one can replace the (i, j) position of
the exponent matrix E with IP(e(i, j)), where IP(e(i, j)) is a P × P iden-
tity matrix cyclically shifted e(i, j) times. This process results in an H
matrix of size mP × nP, where P is referred to as the lifting size. The
H matrix constructed with this method is regular, meaning that it has a
constant column weight and a constant row weight.

The girth of LDPC codes is a crucial criterion for evaluation, re-
ferring to the shortest cycle lengths in the Tanner graph of the H ma-
trix. Short cycle lengths can adversely affect belief-propagation(BP) de-
coding, making it essential for the H matrix to have a large girth [5].
Fossorier [4] established the conditions for cycles in the H matrix con-
structed from an exponent matrix. Fossorier made a proposition that H
matrix has a cycle of length 2c if and only if

c−1∑
k=0

(e(ik, jk ) − e(ik+1, jk )) ≡ 0 (mod P), (1)

for some i0 = ic, 1 ≤ ik �= ik+1 ≤ m and 1 ≤ jk �= jk+1 ≤ n.
Tanner et al. proposed a method for constructing an exponent matrix

exploiting the multiplicative structure of integers [5]. Specifically,

e(i, j) = a j−1bi−1 (mod P),

for i = 1, 2, . . . , m and j = 1, 2, . . . , n. It was proved that the H matrix
has a girth ranging from at least 6 to at most 12 with a prime integer P.
An m × n exponent matrix has a form:

E =

⎡
⎢⎢⎣

1 a a2 . . . an−1

b ab a2b . . . an−1b
. . . . . . . . . . . . . . .

bm−1 abm−1 a2bm−1 . . . an−1bm−1

⎤
⎥⎥⎦ .

For convenience, we will denote this construction by Tanner(m, n),
where the top row and leftmost column of the exponent matrix are both
geometric sequences of some integers a and b, respectively. Numerous
research studies have been conducted to investigate the girth of Tan-
ner’s constructions with specific parameters. Kim et al. analysed and
provided a proof for girth of Tanner(3,5) for lifting sizes of primes in a
form of P = 15k + 1 [10]. The girths of Tanner(3,7) [11], Tanner(3,11)
[12], and Tanner(3,13) [13] were analysed and determined using a sim-
ilar approach as Kim’s. These girths were determined for lifting sizes
of primes in the form of P = 21k + 1, P = 33k + 1, and P = 39k + 1,
respectively. Most of the girths analysed in these results were found to
be 12. It is important to note that achieving such high girths requires a
crucial restriction on the lifting size: the integer P = mn + 1 is a prime.
An algorithm was employed in a computer search to derive the girth dis-
tribution for general Tanner(m, n) for various lifting sizes in reference
[14].

Many studies have been conducted on constructing girth-8 QC-LDPC
codes with various lifting sizes, which are not necessarily limited to
prime numbers. Reference [15] describes another variation of Tanner’s
construction that uses geometric sequences in both the top row and left-
most column of an exponent matrix to create girth-8 QC-LDPC codes,
subject to the conditions that P ≤ M ≤ T . Here, P is a prime of the form
P = t2 + 1, M = KP is the modulus used to calculate the values of the
exponent matrix, and T is the lifting size. A bound for T was given
to achieve girth-8. In reference [16], some conditions were proposed for
achieving girth-8 by using an exponent matrix consisting of two arbitrary
sequences ai and b j for the top row and leftmost column, respectively,
and e(i, j) = aib j .

The Golomb ruler has been applied to construct girth-8 QC-LDPC
codes. Specifically, the Golomb ruler marks were used to generate the
first row of the exponent matrix, while consecutive integers were used
for the leftmost column of the exponent matrix [9]. The authors of the
paper [17] employed a modified Golomb ruler construction technique
to increase the length of the codes by multiplying the last element of the
Golomb ruler marks. Exploiting the Golomb ruler structure even further,
the authors of the paper [18] employed a Golomb ruler that satisfies the
B3 property. Moreover, the results indicated that the proposed method
outperformed the Golomb rulers that lacked the B3 property in terms of
frame error rate (FER).

This paper presents a modified structure of the exponent matrix,
which is based on Tanner’s construction. Unlike Tanner’s approach,
which employs geometric sequences for both the top row and the left-
most column, our construction employs a geometric sequence for the
top row and an arithmetic sequence for the leftmost column of length up
to 3. We provide a proof for the girth-8 conditions of our construction
(Theorems 1 and 2), and compare the FER of the codes generated using
our approach with those produced by the original Tanner’s construction,
the modified version of 5G NR standard [2], and the Golomb ruler [9]
construction. By allowing lifting sizes that are not necessarily prime and
ensuring that the girth is at least 8, we can provide a wide range of op-
tions for code lengths.

Main result – construction of H and some properties: Main construc-
tion

Let n, d, q, P be integers with n > 3, d ≥ 1, q > 1, gcd(q, P) = 1,
and gcd(d, P) = 1, where gcd is the greatest common divisor. Let N
be the order of q modulo P, where we require that N > n.

(Step 1) From the set SN = {0, 1, 2, . . . , N − 1}, take arbitrary n dis-
tinct elements 0 = a1 < a2 < · · · < an.
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(Step 2) Define

e(i, j) = diqa j (2)

for i = 1, 2, 3 and j = 1, 2, . . . , n. Then, E = (e(i, j)) is a 3 ×
n exponent matrix.

(Step 3) Replace the (i, j) position of E with IP(e(i, j)), where
IP(e(i, j)) is the P × P identity matrix cyclically shifted e(i, j)
times. The result is an H matrix of size 3P × nP.

The QC-LDPC code defined as a null space of H above has length
nP and code rate at least (n − 3)/n. We note that the exponent matrix
E in Step 1 of the above is a multiplication table with an arithmetic
sequence on the leftmost column and a geometric sequence (or its some
subsequence) at the top row. We will identify the range of the lifting size
P so that the code has neither 4-cycle nor 6-cycle in the theorems below.

Theorem 1. Assume all the notations in the main construction. If P >

2qan − 2, then H matrix from the main construction has girth at least 8.

Proof. For a 4-cycle, (1) with (2) substituted becomes

(i0 − i1)qa j0 ≡ (i0 − i1)qa j1 (mod P),

where d was cancelled since it is relatively prime to P. Since i0 − i1 can
only be any one of ±1,±2. This gives

2(qa j0 − qa j1 ) ≡ 0 or (qa j0 − qa j1 ) ≡ 0 (mod P). (3)

Since j0 �= j1 and we have

1 − qan ≤ qa j0 − qa j1 ≤ qan − 1,

any of the relations in (3) is impossible. Hence, a 4-cycle does not exist.
For a 6-cycle, (1) with (2) substituted becomes

qa j0 (i0 − i1) + qa j1 (i1 − i2) + qa j2 (i2 − i0) ≡ 0 (mod P),

where d is cancelled. Possible cases for the 3-tuple ((i0 − i1), (i1 −
i2), (i2 − i0)) are (±1,±1,∓2), (±1,∓2,±1), and (∓2,±1,±1), dou-
ble signs in the same order. All eight cases can be simplified to

qa j0 + qa j2 − 2qa j1 ≡ 0 (mod P). (4)

Since we have assumed that P > 2qan − 2 and

2 − 2qan < qa j0 + qa j2 − 2qa j1 < 2qan − 2,

LHS of (4) cannot be a multiple of P. It is easy to see that it cannot be
zero either. Therefore, the relation (4) is impossible, and hence, a 6-cycle
does not exist. �

Theorem 2. Assume that qan < P ≤ 2qan − 2. Then, we have

(4-cycles): H matrix from the main construction has no 4-cycle if and
only if P �= 2ql − 2 for the integers l with logq(qan + 2)/2 <

l ≤ an.
(6-cycles): H matrix from the main construction has no 6-cycle if and

only if P �= qan + ql − 2 and P �= 2qan − ql − 1 both for l =
1, 2, . . . , an − 1.

Proof. For 4-cycles, we will continue from (3) where P is now larger
than qan . This immediately rules out the second relation in (3). The first
one can also be ruled out easily except for the values of P = 2ql − 2
where l is in the range logq(qan + 2)/2 < l ≤ an. The other direction
is obvious.

The condition for 6-cycles can be verified similarly. �

Remark 1. Two theorems will remain true when diqa j for e(i, j) in the
main construction is replaced with (a + di)(qa j + h) with any positive
integers a and h.

Remark 2. Two theorems will remain true when a0 �= 0 in Step 1 of the
main construction. Here, the value an in both theorems must be replaced
with an − a0.

Table 1. Values of P that guarantees girth at least 8 for q = 2

an 2an < P ≤ 2an+1 − 2 2an+1 − 2 < P

all the odd values in the range all the odd values

4 Except for 23, 27, 29 No exceptions

5 Except for 47,55,59,61

6 Except for 95,111,119,123,125

7 Except for 191,223,239,247,251,253

Fig. 1 Performance comparison with length 500

Remark 3. Two theorems will remain true when E is row permuted
and/or column permuted with any permutations.

Remark 4. In Theorem 2, when q = 2, the value qan + ql − 2 must be
even and cannot be equal to P which must be odd. Table 1 shows all
the odd values of P that guarantees girth at least 8 from the main con-
struction when q = 2 is used. There is no exception when 2an+1 − 2 < P
but there are some exceptions in the odd integers P when 2an < P ≤
2an+1 − 2.

Performance analysis: Here, we compare simulation results of proposed
construction with previous works, namely the Golomb ruler construc-
tion and original Tanner’s construction. All three constructions have ex-
ponent matrices of the same size 3 × 6 and the code rate close to 1/2.
Lengths of interest here for simulation are short around 500. In addi-
tion to the constructions previously mentioned, we also include LDPC
codes from the 5G NR standard in our comparison. We use the standard
sum–product decoding with a maximum of eight iterations. The environ-
ment is set to additive white gaussian noise (AWGN) with binary phase
shift keying (BPSK) modulation. FER performances of three codes of
length 500 are depicted in Figure 1. Ruler set (0,1,4,10,12,17) is cho-
sen to construct Golomb Ruler LDPC codes. The proposed construction
(modified Tanner) uses (a1, a2, . . . , a6) = (0, 1, 2, 3, 4, 5) with q = 2.
The 5G NR’s base graph 2 is truncated to match the rate and desired
lengths for comparison. As shown in Figure 1, the proposed code has
coding gain about 0.7 dB over those from 5G NR variation [2] and also
over the Golomb ruler’s [9] at FER 10−6.

Initially, Tanner’s research focused on constructing codes with lift-
ing sizes that were prime numbers. In his paper, he mentioned that for
non-prime lifting sizes, the girth could be as low as 4. This provides a
motivation for comparing our construction for prime and non-prime lift-
ing sizes, as our main contribution involves modifying the original work
to achieve girth-8 even for non-prime lifting sizes. The number of cycles
presented in Tables 2 and 3 have been determined through an exhaustive
search by a computer program. As can be seen from Table 2, all of the
original codes by Tanner have 6-cycles and non-prime lifting sizes have
significantly more cycles in terms of either length 6 or length 8. Table 3
shows that proposed codes do not contain any 4-cycles and 6-cycles as
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Table 2. Number of cycles of original codes by Tanner in Figure 2

P 4-cycle 6-cycle 8-cycle 10-cycle

Prime P = 53 0 53 954 10,653

Non-prime P = 57 0 228 1197 9633

Prime P = 83 0 166 830 9628

Non-prime P =87 0 174 1653 9483

Table 3. Number of cycles of proposed codes in Figure 2

P 4-cycle 6-cycle 8-cycle 10-cycle

Prime P =53 0 0 2067 9964

Non-prime P = 57 0 0 2223 9690

Prime P = 83 0 0 2905 9628

Non-prime P = 87 0 0 3219 9396

Fig. 2 Comparison with original codes for NON-prime lifting sizes

proved. There is not a significant difference in the number of cycles be-
tween proposed codes, regardless of whether the lifting size is prime or
not. The occurrence of length 10-cycles is somewhat consistent across
all the analysed codes in two tables. Figure 2 demonstrates the signif-
icance of modifying the code to achieve girth-8 for non-prime lifting
sizes, as this modification is an important contribution to the observed
performance improvements.

Concluding remarks: This paper presents a modification of Tanner’s ex-
ponent row structure that allows for the construction of girth-8 LDPC
codes with various lifting sizes not restricted to prime numbers. We pro-
vide a proof for the values of the lifting size P that induce girth at least
8. Compared to the Golomb ruler construction and truncated version of
5G NR, our modified version of Tanner’s work yields some non-trivial
coding gain for lengths around 500.

The proposed construction results in the codes with H matrix of size
3P × nP whose column weight is 3, which limits its code rate to be
around n−3

n , and possibly limits the error performance as well, that could
be a good topic of future research especially for short lengths.

The proposed construction itself on the other hand is very simple and
clear with H matrix of constant column weight 3. In addition, by allow-
ing its lifting size to be non-prime integers, the proposed code will have
all the more options for the code length.
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