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Abstract: In this paper, we propose the zero-correlation-zone (ZCZ) of radius r on two-dimensional
m × n sonar sequences and define the (m, n, r) ZCZ sonar sequences. We also define some new
optimality of an (m, n, r) ZCZ sonar sequence which has the largest r for given m and n. Because
of the ZCZ for perfect autocorrelation, we are able to relax the distinct difference property of the
conventional sonar sequences, and hence, the autocorrelation of ZCZ sonar sequences outside ZCZ
may not be upper bounded by 1. We may sometimes require such an ideal autocorrelation outside
ZCZ, and we define ZCZ-DD sonar sequences, indicating that it has an additional distinct difference
(DD) property. We first derive an upper bound on the ZCZ radius r in terms of m and n ≥ m.
We next propose some constructions for (m, n, r) ZCZ sonar sequences, which leads to some very
good constructive lower bound on r. Furthermore, this construction suggests that for m and r, the
parameter n can be as large as possible indefinitely. We present some exhaustive search results on the
existence of (m, n, r) ZCZ sonar sequences for some small values of r. For ZCZ-DD sonar sequences,
we prove that some variations of Costas arrays construct some ZCZ-DD sonar sequences with ZCZ
radius r = 2. We also provide some exhaustive search results on the existence of (m, n, r) ZCZ-DD
sonar sequences. Lots of open problems are listed at the end.

Keywords: sonar sequences; zero-correlation-zone; costas arrays; distinct difference property

1. Introduction

Sonar sequences are two-dimensional synchronizing patterns of dots and blanks with
minimal ambiguity [1]. Rectangular array representation of sonar sequences is defined
by having only one dot per column and the distinct difference properties of the dots.
They are used in active sonar systems to improve target detection performance. They
are also useful in radar [2] and many other applications where optimal 2-dimensional
autocorrelation is required. Costas arrays as sonar sequences were introduced by J. P. Costas
in 1984 [3]. Subsequently, research interest was aroused in the existence [4], enumeration,
construction [5–8], and mathematical properties [9–12] of Costas arrays and also sonar
sequences. It is further generalized into various shapes, for example, honeycomb array,
maintaining the distinct difference properties [13].

Numerous studies have delved into the structural properties of sonar sequences.
The properties of symmetry were discussed for Welch and Golomb constructions in [14].
S. W. Golomb and H. Taylor had previously proposed a weakened version of the conjecture,
asserting that single periodicity was characteristic of Welch construction of the Costas array.
Subsequently, in [15], the concept of cyclic Costas sequences was introduced, along with
the conjecture that a Costas sequence is cyclic if and only if it is Welch.

With the introduction of Costas arrays, the search for the number of Costas arrays
began using computers, even though computers were not well developed at the time.
R. Games and M. Chao were the first to report exact values for order n ≤ 10, the values
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for n ≤ 12 were found by J. P. Costas, and J. Robbins furthered the search up to n = 13 in
1984 [8]. In 1988, Silverman et al. reported a further extension to n = 17, and developed a
probabilistic estimation formula for the number of Costas arrays [16]. In 2011, K. Drakakis
and S. Rickard et al. published results enumerating Costas arrays up to n = 29 [17].

In one dimension, a binary sequence is called to have an ideal autocorrelation when
the out-of-phase autocorrelation magnitude is at most 1 or 2 according to the period of the
sequence [18,19]. In [20], P. Fan proposed the concept of zero-correlation-zone (ZCZ) in
which the autocorrelation is zero (perfect). As one-dimensional CDMA sequences, binary
or non-binary ZCZ sequences can be used to perfectly eliminate co-channel and multipath
interference for quasi-synchronous CDMA systems [21]. Therefore, they do not care for the
autocorrelation values of ZCZ sequences outside ZCZ. It would have been mathematically
or theoretically desirable if the autocorrelation magnitudes of ZCZ sequences were also
very low or even close to zero, which is not at all required for QS-CDMA systems using ZCZ
sequences since the system performance depends only on the autocorrelation magnitudes
inside ZCZ [21,22]. In addition, several studies on the construction and bounds of these
one-dimensional ZCZ sequences have been published [22–24].

Sonar sequences are two-dimensional synchronizing patterns since their autocorrela-
tion properties are well-described in two dimensions. We now propose for the first time the
concept of ZCZ into sonar sequences, and we emphasize that we do care for the autocorre-
lation value zero inside ZCZ (except for the in-phase, of course) and we do not care for the
value outside ZCZ. As we have mentioned in the previous paragraph, it would have been
great if we could define a ZCZ sonar sequence that has not only the zero autocorrelation
value inside ZCZ but also the value of at most 1 outside ZCZ. We will call such a ZCZ sonar
sequence a ZCZ-DD sonar sequence, which is itself a sonar sequence. We note, therefore,
that a ZCZ sonar sequence may not be a (conventional) sonar sequence since it may lack
the so called distinct difference property that defines sonar sequences.

In this paper, we propose the zero-correlation-zone (ZCZ) of radius r on two-
dimensional m × n sonar sequences and define the (m, n, r) ZCZ sonar sequences. We
also define some new optimality of an (m, n, r) ZCZ sonar sequence which has the
largest r for given m and n. Because of the ZCZ for perfect autocorrelation, we are
able to relax the distinct difference property of the conventional sonar sequences, and
hence, the autocorrelation of ZCZ sonar sequences outside ZCZ may not be upper
bounded by 1. We may sometimes require such an ideal autocorrelation outside ZCZ,
and we call this a ZCZ-DD sonar sequence, indicating that it has an additional distinct
difference (DD) property.

It is to be noted that, for conventional sonar sequences (without considering ZCZ),
one has to increase the value n for a given m in order to increase the overall autocorrelation
performance [25,26]. This gives the definition of (conventional) optimal (m, n) sonar
sequences with largest n for a given m [26]. Now, we emphasize that it is quite appropriate
to think of the new optimality of (m, n, r) ZCZ sonar sequences with largest value of r given
m and n, since now it has perfect autocorrelation inside ZCZ and hence it is desirable to
have as large ZCZ as possible for given size m × n. It is because we may be able to limit the
operating range (of active sonar systems) inside ZCZ, as is the case for the one-dimensional
sequences with ZCZ [20].

In Section 2, we review sonar sequences, encompassing essential definitions, prop-
erties, autocorrelation properties, and some well-known constructions. We introduce the
Manhattan metric, which will be used in subsequent discussions to represent the ZCZ
radius. Section 3 contains some main results on ZCZ sonar sequences. Section 4 discusses
some theory only on ZCZ-DD sonar sequences. Section 6 discusses some open problems of
both ZCZ sonar sequences and ZCZ-DD sonar sequences.
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2. Preliminary

Definition 1. (Sonar Sequences, Sonar Arrays and Costas Arrays [1,26]) Let m ≤ n be positive
integers. A function f : {1, 2, . . . , n} → {1, 2, . . . , m} has the distinct difference (DD) property if

f (u + h)− f (u) = f (v + h)− f (v) implies u = v

for 1 ≤ h ≤ n − 1 and 1 ≤ u, v ≤ n − h.
An (m, n) sonar sequence is a function f : {1, 2, . . . , n} → {1, 2, . . . , m} with the DD

property. It can be written as
f = [ f (1), f (2), . . . , f (n)],

where 1 ≤ f (j) ≤ i, for j = 1, 2, . . . , n. This can also be represented as an m × n sonar array
A = [A(i, j)], where

A(i, j) =
{

1, f (j) = i
0, otherwise

, 1 ≤ i ≤ m, 1 ≤ j ≤ n.

It is a usual convention to represent "1" with a dot and "0" with a blank in A.
An (m, n) sonar sequence is called optimal if n is the largest with m rows.
The Costas array is a sonar array of square size with an additional condition that there is only

one "dot" in each row.

There are some well-known constructions of Costas arrays as sonar sequences.

• Lempel construction [1,5,8]: Let q > 2 be a prime or a prime power and let α be a
primitive element of Fq which is the finite field of size q. Then f : {1, 2, . . . , q − 2} →
{1, 2, . . . , q − 2} defined by the relation αj + α f (j) = 1, for j = 1, 2, . . . , q − 1, is a
(q − 2)× (q − 2) Costas array.

• (Exponential) Welch construction [1,5,8]: Let α be a primitive element of Fp where p
is a prime. Then f : {1, 2, . . . , p − 1} → {1, 2, . . . , p − 1} defined by f (i) = αi, for i =
1, 2, . . . , p − 1, is a (p − 1) × (p − 1) Costas array. Furthermore, if
[ f (1), f (2), . . . , f (p − 1)] is the exponential Welch Costas array, then so is

[ f (j), f (j + 1), . . . , f (p − 1), f (1), f (2), . . . , f (j − 1)]

for each j = 2, 3, . . . , p− 1. This property is called the single periodicity of the Costas array.

There are also Quadratic constructions [25], Shift construction [27], Golomb construc-
tion [5,8], the constructions using Sidon set [28] and their extensions.

We note that attaching i empty rows, for any integer i = 1, 2, . . ., to the above n × n
Costas array gives an (n + i)× n sonar array. We note also that rotating the rows of the
result any number of times is still an (n+ i)× n sonar array. If we start from the exponential
Welch Costas array, then rotating the columns of the result any number of times is still an
(n + i)× n sonar array because of its single periodicity. This will be used later for the some
new construction of ZCZ-DD sonar sequences with radius 2.

Another variation on any n × n Costas array is to delete any corner dot and obtain the
(n − 1)× (n − 1) Costas array. Deleting the corner dots twice gives the size (n − 2)× (n − 2).
Two corner dots in the diagonal position can be deleted once to produce the size (n−2)× (n−2).
This will also be used later for ZCZ-DD sonar sequence construction.

The discrete non-periodic autocorrelation function [8] C(τ, φ) of an m × n sonar array
[A(i, j)] where i = 1, 2, . . . , m, j = 1, 2, . . . , n is defined to be the number of coincidences
between dots in A(i, j) and its shift A(i + φ, j + τ) where τ is the amount of horizontal shift
and φ is the amount of vertical shift. The set of all the values of C(τ, φ) can be represented
as an array of size (2m − 1)× (2n − 1), and it has a center-symmetric structure:

C(τ, φ) = C(−τ,−φ), for all (τ, φ) ∈ Z2.
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When (τ, φ) = (0, 0), the correlation has the peak value C(0, 0) = n, since all the dots
coincide. The DD property implies that

C(τ, φ) ≤ 1, for all (τ, φ) ̸= (0, 0).

In this paper, we will define ZCZ in the Manhattan metric. The Manhattan metric is
also known as the taxicab metric [29]. In a 2-dimensional plain, the Manhattan distance D
between two dots in positions a = (x1, y1) and b = (x2, y2) is defined by

D(a, b) = |x1 − x2|+ |y1 − y2|. (1)

We will use the terms “sonar array” and “sonar sequence” interchangeably, and hence, the
autocorrelation of a sonar sequence has to be understood as that of the sonar array.

This induces an integer-valued lattice in the 2-dimensional plain, which will be de-
noted by Z2. For a positive integer r, we consider the Manhattan-circle of radius r centered
at the origin in Z2 and the set M(r) of all the integer points inside, i.e.,

M(r) =
{
(x, y) ∈ Z2 : |x|+ |y| ≤ r

}
.

Lemma 1. The area of a Manhattan-circle M(r) of radius r is given as

|M(r)| = 1 + 2r + 2r2. (2)

Proof. The first term in (2) counts the center. The remaining size is given by 4 times
(1 + 2 + · · ·+ r) as shown in Figure 1.

Figure 1. Manhattan-circles of radius r = 1, 2, 3 and its area.

3. Main Results on ZCZ Sonar Sequences

Definition 2. For positive integers r and m ≤ n, an (m, n, r) ZCZ sonar sequence is a function
f : {1, 2, . . . , n} → {1, 2, . . . , m} such that its autocorrelation C(τ, φ) = 0 for all (τ, φ) ̸= (0, 0)
with |φ|+ |τ| ≤ r where r is the radius of ZCZ in the Manhattan metric.

For clarity, it is important to note that a ZCZ sonar sequence, although termed a “sonar
sequence”, does not necessarily satisfy the DD property of sonar sequences. A special case
of ZCZ sonar sequences is a ZCZ-DD sonar sequence, which is a sonar sequence with ZCZ
of some radius.

Definition 3. An (m, n, r) ZCZ-DD sonar sequence is an (m, n, r) ZCZ sonar sequence that has
the DD property, in addition.

Remark 1. A ZCZ-DD sonar sequence is a sonar sequence. A ZCZ-DD sonar sequence is always
a ZCZ sonar sequence, but not conversely. A ZCZ sonar sequence may not have the DD property.
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Example 1. The first example in Figure 2 is a (5, 5) Costas array (sonar sequence) and its autocor-
relation. The second example is a (5, 5, 2) ZCZ-DD sonar sequence and its autocorrelation showing
the ZCZ of radius 2. We note that it is a sonar sequence. The third example is a (5, 5, 2) ZCZ sonar
sequence. Observe that it is not a sonar sequence because it does not have the DD property. This can
be seen by the value 2 at some out-of-phase shifts (τ, φ) ̸= (0, 0).

Figure 2. Three 5 × 5 arrays in Example 1.

Given an (m, n, r) ZCZ sonar array, we define Dmin to be the minimum Manhattan
distance among all the distances between the pairs of dots. The following is obvious:

Lemma 2. For a ZCZ sonar sequence with its ZCZ radius r, the distance D of any pair of dots satisfies

D ≥ Dmin = r + 1.

This lemma gives some trivial upper bound on r of any (m, n, r) ZCZ sonar sequences.
That is,

r = Dmin − 1 ≤ D − 1.

The following upper bound on r is the best in terms of m and n ≥ m that we could prove.
The main idea is analogous to the proof of Hamming bound on binary linear block codes:

Theorem 1. For an (m, n, r) ZCZ sonar sequence with n ≥ m ≥ 2, we have

r ≤
⌊√

2m − 4
⌋

. (3)

Proof. Consider the m × n array corresponding to an (m, n, r) ZCZ sonar sequence. Then,
any two Manhattan-circles of radius ρ with dots at the center will not intersect with each
other when ρ ≥

⌊ r
2
⌋
. Therefore, the sum of the area of all the Manhattan-circles of radius ρ

cannot be more than the total area of the array. Here, we may have to consider the dots in
the edges so that the Manhattan-circle may cover the area beyond the m × n sonar array.
For this, we increase the total area of the array from m × n to (m + 2ρ)× (n + 2ρ), since the
dot in the edges could reach the distance ρ for both horizontally and vertically. By carefully
counting the number of cells in these additional areas, we see that we only have to increase
in one direction. Therefore, we have the bound (similar to Hamming bound in algebraic
coding theory)

n|M(ρ)| ≤ (m + 2ρ)n,

or
|M(ρ)| ≤ (m + 2ρ).
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We substitute ρ = r/2 on LHS and ρ = (r − 1)/2 on RHS by carefully counting again the
additional areas outside the m × n array. This gives the bound in the theorem.

In [30], the maximum number of disjoint non-attacking Queens (NAQ) patterns that
can sit on an n × n chessboard is proposed, where each pattern consists of n NAQs placed
symmetrically around the center. NAQ means that for each dot in the pattern, there are no
other dots in the horizontal, vertical and diagonal directions. We cite one of NAQ patterns
and calculate the autocorrelation as shown in Figure 3. From its autocorrelation, it can be
seen that it is an (11, 11, 2) ZCZ sonar sequence. The following construction of (m, n, r)
ZCZ sonar sequence essentially comes from this idea from [30].

Figure 3. An 11 × 11 NAQ pattern from [30] is an (11, 11, 2) ZCZ sonar sequence.

Theorem 2. The function f : {0, 1, . . . , n − 1} → {0, 1, . . . , m − 1} defined by f (j) = rj
(mod m) is an (m, n, r) ZCZ sonar sequence for any positive integers m, n ≥ m and r ≥ 3 with
m = r2 − 1.

Proof. We will focus on a section containing consecutive r columns inside. For j =
0, 1, 2, . . . , r − 1 and also j = r, the function f is shown in Figure 4. We claim that the
Manhattan distance between any two dots is at least r + 1 as shown below, and since this
one period of r columns can repeat indefinitely, the proof is completed:

Figure 4. Proof of Theorem 2.
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Consider the columns from 0 to r − 1 in Figure 4. Any two adjacent dots have
Manhattan distance r + 1. Consider the dot in column r in Figure 4. Since m = r2 − 1, it
is located one row up relative to the dot in column 0. Therefore, the Manhattan distance
(of lower arrow in the figure) is r + 1. The Manhattan distance of the dot from the dot in
column 1 is r − 1 + r − 1 = 2r − 2 ≥ r + 1 since r ≥ 3 (upper arrow in the figure).

The above construction gives a constructive lower bound on the parameter r for
(m, n, r) ZCZ sonar sequences:

Corollary 1. There exists an (m, n, r) ZCZ sonar sequence such that

r ≥
√

m + 1.

In an attempt to improve the lower bound in the above corollary, we propose another
construction for (m, n, r) ZCZ sonar sequences in which the first repeat of the dot in the
lowest block of size r is not in column r (which is the case in Figure 4 for the proof of
Theorem 2) but in some column t where t << r where we assume that r ≥ 3. Since the total
number of rows is m, its row index must be rt (mod m) which is equal to rt − m. Therefore,
we are trying to find the minimum t ∈ {0, 1, . . . , n − 1} such that rt − m > 0, where the
function f : {0, 1, . . . , n − 1} → {0, 1, . . . , m − 1} defined as f (j) = rj (mod m) is shown in
Figure 5.

Figure 5. Proof of Theorem 3 where (r+3)
2 ≤ t and (r − 1)t + 2 ≤ m ≤ (r + 1)(t − 1).

Since any two adjacent dots in the first t columns have the Manhattan distance of r + 1,
we need to check only the distances between the dot in column t and the dots in the first
and second columns. This gives the following inequalities:

r + 1 ≤ t + rt − m (4)
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and
r + 1 ≤ t − 1 + r − (rt − m). (5)

By combining (4) and (5), we obtain the following range of m:

(r − 1)t + 2 ≤ m ≤ (r + 1)(t − 1) (6)

or the inequality
(r − 1)t + 2 ≤ (r + 1)(t − 1)

which implies that
r + 3

2
≤ t. (7)

Now, a ZCZ sonar sequence can be constructed for (m, n, r) as follows: Choose a
positive integer r ≥ 3, and select the parameter t satisfying t ≥ ⌈ r+3

2 ⌉. The pair of integers r
and t determines the range of m by (6). Select an appropriate value of m in this range. Then,
for any positive integer n, we have an (m, n, r) ZCZ sonar sequence f (j) = rj (mod m) for
j = 1, 2, . . . , n.

As an example, the case where t = r yields

r2 − r + 2 ≤ m ≤ r2 − 1

for r ≥ 3. Taking the value m = r2 − 1 in this range for t = r is exactly the case of Theorem 2.
Taking the value m = r2 − r + 2 on the other hand for the same t = r gives another (m, n, r)
ZCZ sonar sequence for any positive integer n.

For some specific example, we consider r = 6. Then t ≥ 5 and 5t + 2 ≤ m ≤ 7(t − 1).
Therefore, we may construct the (m, n, 6) ZCZ sonar sequences for any positive integer n
and the value m in the following range:

t = 5 → 27 ≤ m ≤ 28

t = 6 → 32 ≤ m ≤ 35

t = 7 → 37 ≤ m ≤ 42

etc.

We summarize the discussions above as our main construction for a family of (m, n, r)
ZCZ sonar sequences:

Theorem 3 (Main construction for ZCZ sonar sequences). The function f : {0, 1, . . . , n −
1} → {0, 1, . . . , m − 1} defined by f (j) ≡ rj (mod m), as shown in Figure 5, is an (m, n, r)
ZCZ sonar sequence for any positive integers n ≥ m and r ≥ 3 where the value m must be in the
range (6) in which t satisfies the inequality (7).

Example 2. When r = 3, the value of m can be 8 according to Theorem 3. Figure 6 depicts the
(8, 8, 3) ZCZ sonar sequence with their autocorrelation on the left side.

When r = 4, the construction derived from Theorem 3 produces the square array depicted on
the right side of the figure with its autocorrelation. It becomes apparent that the top r

2 − 1 = 1 row
of the array does not contain any dots. Thus, by removing this top row, we arrive at the construction
for the size 13 × 14 with r = 4.

Both examples can be repeated any number of times so that the result becomes either (8, n, 3)
ZCZ sonar sequence or (13, n, 4) ZCZ sonar sequence for any positive integer n.
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Figure 6. The (8, 8, 3) and (13, 14, 4) ZCZ sonar sequences from the construction in Theorem 3.

By selecting the minimum value of t = ⌈ r+3
2 ⌉ for r ≥ 3 from the above construction,

we derive the minimum value of m and hence the best constructive lower bound on r:

Corollary 2. The minimum value of m in Theorem 3 becomes the following

m =


r2+2r+1

2 , r is odd

r2+2r+2
2 , r is even

,

for the value t = ⌈ r+3
2 ⌉. This gives a constructive lower bound as follows: for any positive integer

m ≥ 3, there exists an (m, n, r) ZCZ sonar sequence (for any n ≥ m) with the value r satisfying

r ≥
√

2m − 1 − 1. (8)

Proof. The case of an odd r is obvious. When r is even, the theorem says the minimum
value of m = r2+3r

2 , and the construction gives an m × n ZCZ sonar array for any n ≥ m
where the top r/2 − 1 rows are empty. These rows can be further removed to make m
smaller. The resulting value of m becomes r2+2r+2

2 .

We show an example of a (61, 52, 10) ZCZ sonar sequence in Figure 7 found by
computer. This is an interesting example since the construction in Theorem 3 for r = 10
gives a ZCZ sonar sequence with the smallest value m = 61. It is also very special in that
it has a periodic structure of a period of 13 columns repeating 4 times. We note that this
period can be repeated any number of times to make a (61, 13a + b, 10) ZCZ sonar sequence
for any integers a and b. Essentially, it gives a family of examples of (61, n, 10) ZCZ sonar
sequences for any positive integer n ≥ 1.
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Figure 7. A (61, 52, 10) ZCZ sonar sequence by computer search.

Remark 2. It is obvious that one can find a family of (m, n, r) ZCZ sonar sequences for some
given values of m and r with infinitely many values of n. Some evidence we discussed so far can be
summarized as follows:

1. The example of (11, 11, 2) ZCZ sonar sequence in Figure 3 from [30] can be repeated any
number of times and the result can be an (11, n, 2) ZCZ sonar sequence for any positive
integer n.

2. The example of (61, 52, 10) ZCZ sonar sequence in Figure 7 can be repeated any number of
times and the result can be an (61, n, 10) ZCZ sonar sequence for any positive integer n.

3. Theorem 2 gives a family of (m, n, r) ZCZ sonar sequences for any r ≥ 3 and m = r2 − 1 but
with infinitely many values of the positive integer n.

4. Theorem 3 generalizes Theorem 2. Corollary 2 gives one specific case for m and r with any
positive integer n, which is different from those by Theorem 2. Two examples from this
construction are shown in Example 2.

Therefore, it becomes meaningless to talk about the ‘optimal’ (m, n, r) ZCZ sonar sequence
with the maximum value of n for given m and r. Instead, we may define the optimality of an (m, n, r)
ZCZ sonar sequence if it has the maximum r for given m and n.

Definition 4. The ZCZ sonar sequence with the maximum r is called optimal for given m and n. In
other words, an (m, n, r) ZCZ sonar sequence is optimal when there does not exist an (m, n, r + 1)
ZCZ sonar sequence.

We have searched by computer for the true maximum r in (m, n, r) ZCZ sonar se-
quences for m up to 78 and n in the range from m to m + 2. We show this result in
Table 1. The value r in this table is the maximum in the sense of Definition 4. This has been
checked exhaustively. Therefore, they all are optimal ZCZ sonar sequences for given m and
n. It is to be noted further that the upper bound in Theorem 1 is not tight since there are
cases where this value is not attained. However, we argue that it is quite good since some
other many times, this bound or one less value is attained.
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Table 1. The maximum r in (m, n, r) ZCZ sonar sequence found by computer.

m

n
m m + 1 m + 2 u.bnd

(Theorem 1)
l.bnd

(Corollary 2)
m

n
m m + 1 m + 2 u.bnd

(Theorem 1)
l.bnd

(Corollary 2)

3 1 1 1 1 1 41 8 8 8 8 8
4 2 1 1 2 1 42 8 8 8 8 8
5 2 2 2 2 2 43 8 8 8 9 8
6 2 2 2 3 2 44 8 8 8 9 8
7 3 2 2 3 2 45 8 8 8 9 8
8 3 3 3 3 2 46 8 8 8 9 8
9 3 3 3 3 3 47 8 8 8 9 8
10 3 3 3 4 3 48 8 8 8 9 8
11 3 3 3 4 3 49 9 9 9 9 8
12 4 3 3 4 3 50 9 9 9 9 8
13 4 4 4 4 4 51 9 9 9 9 9
14 4 4 4 4 4 52 9 9 9 10 9
15 4 4 4 5 4 53 9 9 9 10 9
16 4 4 4 5 4 54 9 9 9 10 9
17 5 4 4 5 4 55 9 9 9 10 9
18 5 5 5 5 4 56 9 9 9 10 9
19 5 5 5 5 5 57 9 9 9 10 9
20 5 5 5 6 5 58 9 9 9 10 9
21 5 5 5 6 5 59 9 9 9 10 9
22 5 5 5 6 5 60 10 10 9 10 9
23 5 5 5 6 5 61 10 10 10 10 10
24 6 5 5 6 5 62 10 10 10 10 10
25 6 6 6 6 6 63 10 10 10 11 10
26 6 6 6 6 6 64 10 10 10 11 10
27 6 6 6 7 6 65 10 10 10 11 10
28 6 6 6 7 6 66 10 10 10 11 10
29 6 6 6 7 6 67 10 10 10 11 10
30 6 6 6 7 6 68 10 10 10 11 10
31 7 6 6 7 6 69 10 10 10 11 10
32 7 7 7 7 6 70 10 10 10 11 10
33 7 7 7 7 7 71 11 11 11 11 10
34 7 7 7 8 7 72 11 11 11 11 10
35 7 7 7 8 7 73 11 11 11 11 11
36 7 7 7 8 7 74 11 11 11 12 11
37 7 7 7 8 7 75 11 11 11 12 11
38 7 7 7 8 7 76 11 11 11 12 11
39 7 7 7 8 7 77 11 11 11 12 11
40 8 8 7 8 7 78 11 11 11 12 11

We also show the upper bound on r from Theorem 1 for comparison. Therefore, any
max value in the table must be equal to or smaller than this upper bound. We also show
the constructive lower bound from Corollary 2 as well in the last column. As n increases
from m, the max r will be non-increasing. When it reaches the lower bound, it will stay
forever as n increases indefinitely. Therefore, it is enough to show the values of n in the
range m ≤ n ≤ m + 2 for 3 ≤ m ≤ 78.

In this range of values of m, we see that the difference between the upper bound and
the constructive lower bound is either 0 or 1. When they are the same, the max r is this
value for any n ≥ m. When they differ by 1, then the max r starts either from the upper
bound and decreases by 1 somewhere and stays forever or from the lower bound and stays
forever. The example of the former case is when m = 17 and those of the latter is when
m = 20.

For example, for m = 17, the max r for n = 17 is 5 which is the upper bound. Since
the constructive lower bound is 4 for m = 17 and this value is reached at n = 18 = m + 1,
we know that the max r = 4 stays the same as n increases from 18 indefinitely. For the case
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m = 20, the max r at n = 20 is 5 which is already equal to the lower bound. Therefore, the
max r = 5 for n stays the same as n increases indefinitely. We show the three ZCZ sonar
sequences with parameters (17, 17, 5), (17, 18, 4) and (20, 20, 5) as follows:

(17, 17, 5) : [5, 10, 15, 1, 7, 12, 17, 4, 9, 14, 1, 6, 11, 16, 3, 8, 13]

(17, 18, 4) : [1, 5, 9, 13, 2, 6, 10, 14, 1, 5, 9, 13, 2, 6, 10, 14, 1, 17]

(20, 20, 5) : [7, 12, 1, 16, 5, 10, 19, 2, 7, 12, 17, 4, 9, 14, 1, 6, 11, 16, 3, 20]

These are shown in Figure 8. These are examples of optimal ZCZ sonar sequences.

Figure 8. The optimal (17, 17, 5), (17, 18, 4) and (20, 20, 5) ZCZ sonar sequences by computer search.

4. Two Constructions for Zcz-Dd Sonar Sequences with R = 2

Theorem 4. Let q be a prime or a prime power and α be a primitive element of Fq which is the
finite field of size q. Consider the Lempel Costas array (j, f (j)) for j = 1, 2, . . . , q − 2 given by
αj + α f (j) = 1. If α satisfies α2 + α = 1, then deleting the two corner dots at (1, 2) and (2, 1) gives
a (q − 4, q − 4, 2) ZCZ-DD sonar sequence.

Proof. The Lempel Costas array has only one dot in each row and column and is symmetric
along the main diagonal [8]. Therefore, there are two types of dot pairs with a Manhattan
distance of 2, as shown in Figure 9. One type consists of two consecutive dots along the
diagonal (white dot pair), while the other type consists of two adjacent dots on either side
of the diagonal (black dot pair).

Figure 9. Dot pair types with Manhattan distance 2 in the Lempel construction.

We now claim that the pair of white dots do not exist in Lempel construction for any q.
When q is even, αj + αj = 0 ̸= 1 for all j. Therefore, no dot may come on the diagonal. In
odd q, αj + αj are all distinct for j = 1, 2, . . . , q − 2, with a unique j satisfying αj + αj = 1.
Therefore, there exists only one dot on the diagonal. Consequently, only black dot pair type
exists in the array and no white dot pairs.

When α2 + α = 1, the dots at positions (2, 1) and (1, 2) constitute the type of black
dot pair. Due to the DD property, this is the only dot pair of this type. Thus, removing
the dots at positions (2, 1) and (1, 2) ensures that the Manhattan distance between the
remaining pair of dots is at least 3 and hence r = 2. The remaining array is a Costas array
and maintains the DD property.
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Example 3. Figure 10 shows a (7, 7) Lempel Costas array from q = 9. Deleting the dots (1, 2)
and (2, 1) gives a (5, 5, 2) ZCZ-DD sonar sequence.

Figure 10. The (5, 5, 2) ZCZ-DD sonar sequence from the construction in Theorem 4.

For the second type construction of ZCZ-DD sonar sequence with r = 2 from the
exponential Welch construction for Costas arrays, we observe the following:

Lemma 3. Let p be a prime and α be a primitive root mod p. There must exist unique j
(mod p − 1) satisfying

αj − αj−1 = 1 or − 1 (mod p).

Proof. Consider the case αj − αj−1 = 1 (mod p) or αj−1(α − 1) = 1 (mod p). Since any
non-zero element is some power of α, we let α − 1 = αu for some u with 2 ≤ u ≤ p − 2.
This gives

αj−1+u = 1 (mod p).

Then j − 1 + u = 0 (mod p − 1) or j = p − u is the unique integer mod p − 1. The other
case is similar.

Theorem 5. Consider the exponential Welch Costas array f (j) = αj for any consecutive p − 1
values of j. Let j0 (mod p − 1) satisfy αj0 − αj0−1 = 1 (mod p) and i0 (mod p − 1) satisfy
αi0 − αi0−1 = −1 (mod p). Then

f (j) = αj − 1 − αi0 (mod p)

for j = j0, j0 + 1, . . . , j0 + p − 2 is a (p, p − 1, 2) ZCZ-DD sonar sequence.

Proof. The Welch construction satisfies the DD property. According to Lemma 3, since
there is a unique j0 that satisfies αj0 − αj0−1 = 1 (mod p), take j when starting from j0,
the rest of the dots are all at a Manhattan distance greater than 2 from the point (j0, αj0).
And of the rest of the dots, only the Manhattan distance between the dot pair (i0, αi0) and
(i0 − 1, αi0−1) is 2 since αi0 − αi0−1 = −1 (mod p). By adding an empty row at the bottom
of the array, called the 0-th row, and cyclically rotating the rows of the array, once the dot
(i0, αi0) moves to the top row of the array, then the pairs of dots with a Manhattan distance
of 2 are avoided. Consequently, the Manhattan distance between the dots becomes at least
3. After adding a row, the array consists of a total of p rows, it retains the DD property
because of its single periodicity.

Example 4. There exists a unique integer i0 (mod p − 1) satisfying αi0 − αi0−1 = −1 (mod p)
from Lemma 3. Similarly, there exists a unique integer j0 (mod p − 1) satisfying αj0 − αj0−1 = 1
(mod p). As shown in Figure 11, when p = 7, we have α = 3, and hence, i0 = 2 and j0 = 5
both mod 6. Therefore, we take the exponential Welch Costas array given as f (j) = 3j (mod 7)
for j = j0 = 5, 6, . . . , 10. This 6 × 6 array has two adjacent dots in some two consecutive columns
whose row indices are αi0−1 = 3 and αi0 = 2 both mod 7. We will make this a 7 × 6 sonar array by
adjoining an empty row at the bottom. Now, rotating all p = 7 rows downward 1 + αi0 = 3 times
will place the dot in column i0 at the top. The resulting 7 × 6 array becomes a (7, 6, 2) ZCZ-DD
sonar sequence.
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Figure 11. The (7, 6, 2) ZCZ-DD sonar sequence from the construction in Theorem 5.

Remark 3. The upper bound on r for (m, n, r) ZCZ sonar sequences can be an upper bound on r
for (m, n, r) ZCZ-DD sonar sequences, only because any (m, n, r) ZCZ-DD sonar sequence is an
(m, n, r) ZCZ sonar sequence. We expect that this upper bound must be quite loose.

Some search results for the max r in (m, n, r) ZCZ-DD sequences are documented
initially in [31] for m ≤ 17 and we extend the search for m ≤ 20 and show the results in
Table 2. Where the parameters m = 10, n = m + 4, and r = 2 represent the existence of
an optimal (10, 14, 2) ZCZ-DD sonar sequence. It also implies that there does not exist a
(10, 14, 3) ZCZ-DD sonar sequence.

Table 2. The maximum r in (m, n, r) ZCZ-DD sonar sequence.

m
n m m + 1 m + 2 m + 3 m + 4

2 1 1 0 − −
3 1 1 1 0 −
4 1 1 1 1 0
5 2 1 1 1 1
6 2 2 1 1 1
7 2 2 2 1 1
8 2 2 2 1 1
9 2 2 2 1 1

10 2 2 2 2 2
11 2 2 2 2 2
12 3 3 2 2 2
13 3 3 2 2 2
14 3 3 3 2 2
15 3 3 3 3 2
16 3 3 3 3 2
17 3 3 3 3 2
18 3 3 3 3 2
19 3 3 3 3 2
20 3 3 3 3 ?

5. Some Relations with Results in [26,30]

This subsection is newly added as a result of some analysis from the comments of
the initial reviewers of this manuscript. All of the authors would like to express sincere
appreciation for these comments. We have investigated most of the results in both [26]
and [30], with emphasis on some possibility of having ZCZ sonar sequences from theirs.
Following is some conclusion from this analysis.

Most of the best known m × n sonar sequences in [26] for m up to 100 turned out to
have no ZCZ at all. We show only two cases here for m = 10 and m = 30 from [26]. These
are 10 × 16 and 30 × 37 sonar sequences as shown in Figure 12. These have the largest
value of n for the given value of m = 10 and m = 30. The fact that they do not have ZCZ
can be seen easily by observing that there exist two adjacent dots of (Manhattan) distance 1.
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Figure 12. Best known sonar sequences from [26] without ZCZ (m = 10 and m = 30).

The main topic of [30] is to find the maximum number of disjoint nonattacking-n-
queen patterns that simultaneously pack the n× n board. We find one of interesting relation
there when n > 7 is an odd prime. One of the solution in this case gives not only an (n, n, 3)
ZCZ sonar sequence, but a family of disjoint n ZCZ sonar sequences (which are also n
disjoint nonattacking-n-queen patterns) of the same parameters that simultaneously pack
n × n × n cube without attacking each other in three dimensional space as n-queen patterns.
We may formulate a theorem from this construction as follows. We skip the proof which
is quite straightforward. The first conclusion is from [30]. The second conclusion is the
relation with ZCZ sonar sequences.

Theorem 6. Let n > 7 be a prime. Construct the n × n matrix Q = (qi,j) with integers mod n for
i, j = 0, 1, . . . , n − 1 as follows:

• Put q0,j = 1 for j = (n − 1)/2.
• Put q0,j+2 = q0,j + 1 (mod n) where the subscript j + 2 is computed mod n, for j =

(n − 1)/2, (n − 1)/2 + 2, . . ..
• For each j = 0, 1, . . . , n − 1, put qi+1,j = qi,j + 2 (mod n) where the subscript i + 1 is

computed mod n for i = 0, 1, . . ..

Then, the first conclusion from [30] is that Q is a packing of an n × n board by n disjoint
nonattacking-n-queen patterns, which is three-dimensionally nonattacking queens also. Second
(new) conclusion: for each symbol k = 0, 1, . . . , n − 1, the pattern of the constant symbol k in Q is
an (n, n, 3) ZCZ sonar sequence.

6. Concluding Remarks

Some immediate open problems on (m, n, r) ZCZ sonar sequences are the following:

1. Describe the values of m for which the upper bound on r is the same as its constructive
lower bound. Some of the smaller such values of m from Table 1 are m = 5, m = 9,
m = 13, m = 14, etc.

2. Describe the values of m for which the upper bound on r is one more than its con-
structive lower bound. Some examples of such values of m from Table 1 are m = 6,
m = 10, m = 15, m = 16, etc.

3. Prove that the difference between the upper bound and the constructive lower bound
is at most 1 for all positive integers n ≥ m or else find the values of m for which the
difference is more than 1.

4. Find the formula for the max r for the optimal m × m ZCZ sonar sequence.
5. Prove that the max r as n = m, m + 1, m + 2, . . . is non-increasing. We know that it

eventually reaches and stays at the constructive lower bound in Cor.2.
6. Find any new construction for ZCZ sonar sequences (j, f (j)) for j = 1, 2, . . . , n which

is not of the type f (j) = rj (mod m). Note that the construction in Theorem 6 is
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of the form f (j) = rj (mod n) where r = −4 for all n disjoint patterns with some
appropriate initial condition. See Figure 13.

Figure 13. Disjoint nonattacking-n-queen patterns (n = 11) where each pattern of the constant symbol
is an (n, n, 3) ZCZ sonar sequence.

For (m, n, r) ZCZ-DD sonar sequences, we have a lot of open problems. Only some of
them are listed here:

1. Find the max r for given m and n.
2. Prove that the max r as n = m, m + 1, m + 2, . . . is non-increasing.
3. Find the max n for given m and r.
4. Find the max n ≥ m such that r = 2 for a given m. Some small cases are n = m = 5,

n = m + 1 = 7, n = m + 2 = 9, and n = m + 2 = 10, etc.
5. Find the relation of n and r for a given m.
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6. Find a systematic construction for (m, n, r) ZCZ-DD sonar sequences for r > 2.
7. Improve the upper bound on r in Remark 3 for given m and n.
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