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ABSTRACT

Efficient Encoder Design of LDPC code using circulant
matrix and eIRA code

Seul-Ki Bae
Department of Electrical
and Electronic Eng.
The Graduate School
Yonsei University

For reliable data transmission or storage system, channel coding is necessary. LDPC

codes are defined as parity-check matrices that consist almost entirely of zeros and small

number of ones. Like turbo codes, LDPC codes can achieve near Shannon limit. But

unlike very simple encoder of turbo codes, that of LDPC code is much complex.

In this dissertation, we concentrate on reducing the complexity for efficient encoder.

We design structural LDPC code using circulant matrix and permutation matrix and

eIRA code. It is possible to design low complex encoder by using shift register and

differential encoder and interleaver than general LDPC encoder that use matrix mul-

tiplication and addition operation. The code designed by this structure shows better

performance than random code. And the proposed method can considerably reduce a

number of XOR gates. And the proposed code shows a property such that there is less

degradation than randomly generated parity-check matrix when the codeword length be-

vi



comes shorter. However this code shows error floor effect and performance degradation

in high SNR region. We can improve its performance by design short cycle free codes.

Key words : LDPC codes, efficient encoder, circulant matrix, row permutation ma-
trix, eIRA codes
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Chapter 1

Introduction

1.1 History

In recent year, there has been an increasing demand for efficient and reliable digital data

transmission and storage systems. In 1948, Shannon demonstrated in a landmark paper

that, if proper encoding method is used, errors induced by a noisy channel can be reduced

to any desired level without sacrificing the rate of information transmission as long as

the information rate is less than capacity of the channel [1]. The use of coding for error

control has become an important part in the design of modern communication and data

storage systems.

There are two major types of code, one is convolution codes and the other is block

codes. Convolutional codes operate on serial data and block codes operate on message

blocks. Convolution encoder contains memory, and the encoder outputs at any given

unit time depend not only on the inputs at that time but also on some number of previous

inputs. The encoder for a block codes divides the information sequence into message

blocks and transforms each message independently in to discrete symbols, called code-

word. Turbo codes are one of many applications of convolution codes and LDPC codes
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are one of those of block codes.

Low-density parity-check(LDPC) codes [2] were first proposed by Gallager in the

1960’s. LDPC codes are defined as parity-check matrices that consist almost entirely of

zeros and small number of ones. However, Gallager’s LDPC code was forgotten for the

next 30 years until the discovery of Turbo codes [3]. And LDPC codes were rediscovered

by MacKay and Neal [4]. Like turbo codes, LDPC codes can achieve near Shannon limit

error performance, and represent a very promising prospect for error control coding. The

past few years have brought many developments in this area.

1.2 Motivation

Since the discovery of LDPC codes, a great deal of research effort has been expended in

construction, decoding, performance analysis, structural study, and applications of these

codes.

But an encoding of LDPC codes is more complex than turbo codes which can be

encoded in linear time. In general, an encoding process of LDPC codes is done by

matrix multiplication operation. However, though parity-check matrix has very small

number of ones, corresponding generator matrix has much more number of 1’s than

parity-check matrix. So if we use only matrix multiplication operation to encode LDPC

codes, there needs a great number of calculations. So various methods for constructing

LDPC codes to reduce encoding complexity have been proposed and devised [5] [6].

The aim of this paper is to reduce the complexity of LDPC encoder. Thus we pro-

pose parity-check matrix to have structural design using circulant matrix, permutation

matrix and eIRA codes. And we will show that the proposed code with moderate length

2



and high code rate is superior or equivalent in performance compared with randomly

constructed LDPC codes.

1.3 Overview

In chapter 2, we introduce Gallager’s LDPC codes and its construction method. In ad-

dition, encoding and decoding algorithm of LDPC codes are introduced. In chapter 3,

we introduce some structural designs of codes which can reduce the encoding complex-

ity.In chapter 4, we modify parity-check matrix using circulant matrix and permutation

matrix. And its performance results are shown and analyzed. Finally, all those results of

this paper are summarized and some discussions follow in chapter 5 .
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Chapter 2

LDPC codes

In this chapter we introduce Gallager’s LDPC codes and basic construction method. The

relation of generator matrix and parity-check matrix is introduced. And encoding and

decoding algorithm of LDPC codes are introduced.

2.1 Low-Density Parity-Check codes

Linear block codes use a generator matrixG to map messages to transmitted blocks

c, also known ascodeword. They have and equivalent description in terms of a related

parity-check matrixH. All codewords satisfycHT = 0.

Low-density parity-check(LDPC) codes are a class of linear error-correcting codes

[2]. As their name suggests, LDPC codes are defined in terms of parity-check matrices

H that consist almost entirely of zeros. Gallager defined(n, p, q) LDPC codes to have

a block lengthn and a parity-check matrix with exactlyp ones per column andq ones

per row, wherep ≥ 3. In Gallager’s construction in Figure 2.1, the lower two blocks are

column permutations of the upper block.

There exist also irregular LDPC codes [7,8]. The parity check matrix of an irregular

4



1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1

1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0

0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 1 0 0 0

0 0 1 0 0 0 1 0 0 0 0 0 0 1 0 0 0 1 0 0

0 0 0 1 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0

0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1

1 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0

0 1 0 0 0 0 1 0 0 0 1 0 0 0 0 1 0 0 0 0

0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 1 0

0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 1 0 0 0

0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1

Figure 2.1: Example of Gallager’s parity-check matrix for a (20, 3, 4) LDPC codes.

LDPC code has checks with different weights. As a result, neither the degrees of the bits

in the bipartite graph nor the degrees of the checks are constant. The irregular bipartite

graph is deliberately determined by some rules. It has been reported that irregular LDPC

codes can achieve better performance than regular LDPC codes.

Another special family of LDPC codes can be constructed based on finite geometries

[9]. Theses codes are either cyclic or quasi-cyclic and therefore their encoding can be

implemented with simple linear feedback shift registers.
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2.2 Construction of LDPC codes

The weight of a vector is the number of non-zero components in that vector. The parity-

check matrixH is constructed randomly, while constraining the distribution of row and

column weights to be as uniform as possible. We also require that no two columns ofH

have overlap greater than 1 to reduce the probability of low weight codewords.

2.2.1 Gallager’s construction

Gallager imposed a fixed column weightj and a fixed row weightk in his work. The

parity-check matrix was divided horizontally intoj equal size submatrices, each con-

taining a single ’1’ in each column. Without loss of generality the first submatrix was

constructed in some predetermined manner. the subsequent submatrices were random

column permutations of the first. An example of a matrix constructed in this way is

shown in Figure 2.1

2.2.2 MacKay’s construction

MacKay [8] was interested in keeping to a minimum the number of short cycles in the

bipartite graph representing the parity-check matrix. The presence of short cycles can

create difficulties for the belief propagation decoder.

• Construction 1A

This is the basic construction, in which we have a fixed weight per columnt and

construct the matrix at random keeping the weight per row as uniform as possible,

and overlap between any two columns no greater than 1.

6



• Construction 2A

As per 1A, except up tom/2 of the columns have weight 2. These weight 2

columns are constructed in the form of two indentity matrices of sizem/2×m/2,

one above the other.

• Construction 1B, 2B

Some carefully chosen columns form a 1A or 2A matrix are deleted, so that the

bipartite graph of the matrix has no short cycles of length less than some lengthl.

2.3 Generator and Parity-check matrix

2.3.1 Generator matrix

LDPC codes of block lengthn and ratek/n can be described by a generator matrixG of

dimensionk×n that describes the mapping from source wordsm to codewordsc := mG

(where the vectorsm, c are column vectors). It is common to considerG in systematic

form, G = [Ik|P] so that the firstk transmitted symbols are the source symbols. The

notation[A | B] indicates the concatenation of matrix A with matrix B andIk represents

thek × k identity matrix. The remainingm = n− k symbols are parity-checks.

2.3.2 Parity-check matrix

LDPC codes are also described by a parity-check matrixH of dimensionm× n, where

m = n − k. If the corresponding generator matrixG is written in systematic form as

above, then H has the form [-P | Im]. Otherwise, in caseH is not in systematic form

we perform Gaussian elimination using row operations and reordering of columns to

derive a parity-check matrix as above. Note that for codes over finite fieldsGF (2p)

7



P = −P. Each row of the parity-check matrix describes a linear constraint satisfied by

all codewords.GHT = 0 and hence the parity-check matrix can be used to detect errors

in the received vector:

rH T = (c + n)HT = mGHT + nHT = nHT := z

Here we have introduced the syndrome vectorz. If the syndrome vectorz is null, we

assume there have been no errors. Otherwise, the decoding problem is to find the most

likely noise vectorn that explains the observed syndrome given the assumed properties

of the channel.

2.4 Encoding and Decoding

LDPC codes are defined by a sparse parity-check matrix. When parity-check matrixH

= [-P | Im] is given, the corresponding generator matrix isG = [Ik | P]. But generator

matrix is never sparse matrix, as shown in Figure 2.2. In Figure 2.2, the submatrixP

of generator matrixG is a very dense. In general, encoding process are done by matrix

multiplication and addition in block codes. So if we encodem through generator matrix

G to get codeword, a large number of operations are needed. Whereas turbo codes can

be encoded in linear time, a straightforward encoder implementation for an LDPC code

has complexity quadratic in the block length. So many research to reduce the complexity

of encoder has been achieved [5] [9] [10] [11] .

To decode LDPC codes, an iterative probabilistic decoding algorithm known as a

Sum-Product or Belief Propagation Algorithm can be used. At each step the posterior

probability of the value of each noise symbol is estimated, given the received signal and

8



Figure 2.2: Parity-check matrix and corresponding Generator matrix

the channel properties. The process is best viewed as a message passing algorithm on

the bipartite graph defined byH which have two sets of nodes. In Figure 2.3 there are

nodes representing variable symbol and nodes are representing check symbols. Variable

node and check node are connected if the corresponding matrix entryHij is 1’s. At each

step of the iteration, each variable node sends probability messages to check nodes. Also

each check node sends probability messages to variable nodes. After this each step, we

9



⋯

⋯

Variable Node

Check Node

Figure 2.3: Bipartite graph representing a parity-check matrix

examine the messages and do a tentative decoding. Like this, decoding algorithm con-

sists of iteratively updating these message until tentative decoding satisfies the observed

syndrome vector or a preset maximum number of iterations is reached.

10



Chapter 3

Design of Structural Codes

In this chapter we will introduce some structural codes. These codes can be encoded

efficiently. Cyclic code and quasi-cyclic code can be encoded using shift register which

is simplest digital circuit. And irregular repeat-accumulate(IRA) code can be encoded

using differential encoding.

3.1 Cyclic codes

A linear block codeC is said to be cyclic code if every codewordc = (c0, c1, · · · , cn−2, cn−1 ∈

C, there is also a codewordc′ = (cn−1, c0, c1, · · · , cn−2) ∈ C [12]. Cyclic codes pos-

sess full cyclic symmetry; that is, cyclically shifting a codeword any number of symbol

positions, either to the right or to the left, results in another codeword. This symmetry

structure makes it possible to implement the encoding and decoding of cyclic codes with

simple shift registers and logic circuits.

Example 3.1 Binary Cyclic Codes of Length 7

Consider the caseg(x) = x4 +x3 +x2 +1 and the corresponding parity polynomial

is h(x) = x3 + x2 + 1. Then generator matrix G and parity-check matrix H is shown

11



below, respectively.

G =




1 0 1 1 1 0 0

0 1 0 1 1 1 0

0 0 1 0 1 1 1




and,

H =




1 1 0 1 0 0 0

0 1 1 0 1 0 0

0 0 1 1 0 1 0

0 0 0 1 1 0 1




They are derived from the generator polynomialg(x) and parity-check polynomialh(x).

And the message polynomials consist of all binary polynomials of degree less than or

equal to 2. We let message polynomialm(x) = x2 + 1.

Shift registers are among the simplest of digital circults, consisting of a collection

of flip-flops connected in series. They are thus operable at speeds quite close to the

maximum speed possible for a single gate using a given device technology.

The productm(x)g(x) can be computed as a weighted sum of cyclic shifts ofg(x).

The corresponding Shift Register circuit is shown in Figure 3.1. The coefficients ofm(x)

r1 r2 r3r0 r5r4 r6
21 ,, mmmo

0c 1c 2c 3c 4c 6c5c

Figure 3.1: Encdoer of (7, 3) cyclic code using Shift Register circuit
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Table 3.1: Shift-Register Cell contents during encoding ofm(x) = x2 + 1

SRcells r0 r1 r0 r0 r0 r0 r0

Initialstate 0 0 0 0 0 0 0

m2= 1 1 0 1 1 1 0 0

m1= 0 0 1 0 1 1 1 0

m0= 1 1 0 0 1 0 1 1

codeword 1 0 0 1 0 1 1

are fed into the shift register in descending order of index. Each time a new coefficient

is placed on the input line, the shift register clock is pulsed, and the contents of the shift

register cells shifted one cell to the right. When the final coefficient(m0) has been fed

into the shift register, the shift register cells contain the codewordc

Figure 3.1 shows the polynomials multiplier encoder for the (7, 3) binary code. In

Table 3.1 the contents of the shift register cells int this encoder are traced during the

encoding of the message blockm = (101). At the end of the encoding process the shift

register cells contain the codewordc = (1001011).

3.2 Circulant Matrix

An n-tuplec is said to be primitive if its cycle span isn. A primitive n-tuple and itsn−1

cyclic shifts given differentn-tuples. For a primitivec we can form ann × n square

matrix whose rows arec and itsn − 1 cyclic shiftsc(1), c(2), . . . , c(n−1). A circulant

13



matrix of ordern is a square matrix of the form




c0 c1 · · · cn−1

cn−1 c0 · · · cn−2

...
...

...

c1 c2 · · · c0




The first row isc and then every row in the matrix is the cyclic shift of the row above

it and the first row is the cyclic shift of the last row. Such a square matrix is called a

circulant matrix or simply circulant. We can construct LDPC codes using this circulant

matrix [6,13–15].

3.3 Quasi-Cyclic codes

There are other linear block codes that do not possess full cyclic symmetry but do have

partial cyclic structure, namely, quasi-cyclic codes. A quasi-cyclic code is a linear code

for which cyclically shifting a codeword a fixed numbern0 6= 1 (or a multiple ofn0) of

symbol positions either to the right or to the left results in another codeword. It is clear

that forn0 = 1, a quasi-cyclic code is a cyclic code. The integern0 is called the shifting

constraint. It is clear that the dual of a quasi-cyclic code is also quasi-cyclic. We can

also construct LDPC codes using quasi-cyclic codes [15] [16].

3.3.1 Circulant Decomposition and Quasi-Cyclic codes

Given a circulant matrix, it is possible to decompose it into an array of circulant matrix

of the same size. Then this array gives a quasi-cyclic code. Consider ann× n circulant

G with column (or row) weightδ. Since the column and row weights of a circulant

matrix are the same, for simplicity, we say thatG has weightδ. For 1 ≤ t ≤ δ, let

14



w1, w2, · · · , wt be a set of positive integers such that1 ≤ w1, w2, · · · , wt ≤ δ and

w1 +w2 + · · ·+wt = δ. Then it is possible to decomposeG into t n×n circulant matrix

with weightsw1, w2, · · · , wt, respectively. Letg1 be the first column ofG. Split g1 into

t columns of the same lengthn, g
(1)
1 , g

(2)
1 , · · · , g

(t)
1 , such that the firstw1 1-components

of g1 are put ing(1)
1 , the nextw2 1-components ofg1 are put ing(2)

1 , · · · , and the

lastwt 1-components ofg1 are put ing(t)
1 . For each new columng(i)

1 , form ann × n

circulant matrixGi by cyclically shiftingg(i)
1 downwardn times. This process results in

t n × n circulant matrices,G1, G2, · · · , Gt, with weightsw1, w2, · · · , wt, respectively.

These circulants are called the descendants ofG. We readily see that two corresponding

columns in two descendantsGi andGj do not have any 1-component in common and

G = G1 + G2 + · · · + Gt. The above decomposition, called column decomposition of

G, results in ann × tn matrix H = [G1G2 · · ·Gt]. If w1 = w2 = · · · = wt = γ, then

H is a regular matrix with column and row weightsγ andδ = tγ, respectively. Ift = δ

andw1 = w2 = · · · = wδ = 1, each descendantGi of G is ann×n permutation matrix.

The parametert is called the column splitting factor. It is clear that we can decompose

G by splitting the first row ofG into multiple rows in the same manner as we split the

first column ofG and cyclically shifting each new row to the rightn times.

Let 1 ≤ c ≤ max{wi : 1 ≤ i ≤ t}. For 1 ≤ i ≤ t, let wi,1, wi,2, · · · , wi,c be a

set of nonnegative integers such that0 ≤ wi,1, wi,2, · · · , wi,c ≤ wi andwi,1 + wi,2 +

· · ·+ wi,c = wi. Each descendantGi in H can be decomposed intoc second-generation

descendant circulants with weightswi,1, wi,2, · · · , wi,c, respectively, by splitting its first

row qi,1 into c rows of lengthn, denotedq(1)
i,1 , q(2)

i,1 , · · · , q(c)
i,1 , whereq(1)

i,1 contains the

first wi,1 1-components ofqi,1, · · · , andq(c)
i,1 contains the lastwi,c 1-components ofqi,1.

15



Cyclically shifting each new rowq(k)
i,1 , for 1 ≤ k ≤ c, to the rightn times, we obtain

c circulantsG(1)
i , G(2)

i , · · · , G(c)
i , which are descendants ofGi. Decomposition ofGi

results in acn × n matrix Zi with G(1)
i , G(2)

i , · · · , G(c)
i as submatrices arranged in a

column. We callZi the row-decomposition ofGi andc is called the row splitting factor.

In row splitting, we allowwi,k = 0. If wi,k = 0, G
(k)
i is ann × n zero matrix regarded

as a circulant matrix. If each circulantGi in H is replaced by its decompositionZi, we

obtain the followingcn× tn matrix:

Z = [Z1Z2 · · ·Zt] =





G
(1)
1 G

(1)
2 · · · G

(1)
t

G
(2)
1 G

(2)
2 · · · G

(2)
t

...
...

...
...

G
(c)
1 G

(c)
2 · · · G

(c)
t





Matrix Z consists of act array ofnn circulants which are descendants of G. If each G(k)

i has weight 1, then Z is an array of permutation matrices.

If all the descendant circulants in Z have the same weight w, then the row and column

weights of Z are tw and cw, respectively. In this case, the quasi-cyclic LDPC code

generated by Z is a (cw, tw)-regular LDPC code with minimum distance at least cw+1.

Figure 3.2 shows a column decomposition of an8 circulant matrix of weight 3 into

two descendants with weight 2 and 1, respectively.

3.4 IRA codes and eIRA codes

3.4.1 IRA codes

Irregular Repeat-Accumulate(IRA) codes are a generalization of the Repeat-Accumulate(RA)

codes [10] [17]. The IRA codes combine many of the favorable attributes of turbo codes

and LDPC codes. Like turbo codes, they can be encoded in linear time. Like LDPC
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0 1 0 0 0 0 1 1

1 0 1 0 0 0 0 1

1 1 0 1 0 0 0 0

0 1 1 0 1 0 0 0

0 0 1 1 0 1 0 0

0 0 0 1 1 0 1 0
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→




1 0 0 0 0 1 0 0

0 1 0 0 0 0 1 0

0 0 1 0 0 0 0 1

1 0 0 1 0 0 0 0

0 1 0 0 1 0 0 0

0 0 1 0 0 1 0 0

0 0 0 1 0 0 1 0

0 0 0 0 1 0 0 1







0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1

1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0




Figure 3.2: A column decomposition of a circulant matrix of weight 3.

codes, they are amenable to an exact Richardson-Urbanke style analysis.

Figure 3.3 shows a Tanner graph of an IRA code with parameter (f1, . . . , vra;a),

wherefi ≥ 0,
∑

i fi = 1 anda is a positive integer. The Tanner graph graph is a

bipartite graph with two kinds of nodes: variable nodes (open circles) and check nodes

(filled circles). There arek variable nodes on the left, called information nodes; there

arer = (k
∑

i ifi)/a check nodes; and there arer variable nodes on the right, called

parity nodes. Each information node is connected to a number of check nodes: the

fraction of information nodes connected to exactlyi check nodes isfi. Each check

node is connected to exactly a information nodes. These connections can made in many

ways, as indicated in Figure 3.3 by theðarbitrary permutationñ of thera edges joining

information nodes and check nodes. The check nodes are connected to the parity nodes

in the simple zigzag pattern shown in the figure. If theðarbitrary permutationñ in Figure

3.3 is fixed, the Tanner graph represents a binary linear code withk information bits

(u1,. . . , uk) andr parity bits (x1,. . . , xr), as follows. Each of the information bits is
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Figure 3.3: Tanner graph for IRA code with parameters (f1, . . . ,vra;a)

associated with one of the information nodes; and each of the parity bits is associated

with one of the parity nodes. The value of a parity bit is determined uniquely by the

condition that the mod-2 sum of the values of the variable nodes connected to each of

the check nodes is zero. To see this, let us conventionally setx0 = 0. Then if the values

of the bits on thera edges coming out of the permutation box are (v1, . . . , vra), we have

18



the recursive formula

xj = xj−1 +
a∑

i=1

v(j − 1)a + i (3.1)

for j = 1, 2, . . . , r. This is in effect the encoding algorithm, and so ifa is fixed and

n →∞, the encoding complexity isO(n).

There are two versions of the IRA code in Figure 3.3: the nonsystematic and the

systematic versions. The nonsystematic version is an(r, k) code, in which the code-

word corresponding to the information bit(u1, · · · , uk) is (x1, · · · , xr). The systematic

version ia a(k + r, k) code, in which the codeword is(u1, · · · , uk, ; x1, · · · , xr)

3.4.2 eIRA codes and Encoder Structure

For a codeword lengthn and information message lengthk,

A. Structure of Parity-check matrix

If n is length of codeword, andk is length of information message, then the size of

parity-check matrixH is (n− k)× n. [11] proposed parity-check matrix as

H = [H1 | H2] (3.2)

H1 is (n−k)×k matrix and can be constructed irregularly by density evolution accord-

ing to optimal weight distribution [7].H2 is (n − k) × (n − k) matrix and should be

constructed by below [10] [11].
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H2 =




1

1 1

1 1

1
...

1 1

1 1

1 1




Observe from the form ofH that encoding may b performed directly fromH by

solving for the parity bits recursively:

1. the first check equation(first row) involves only the first parity bits

2. the second check equation involves only the first two parity bits

3. the third check equation involves only the next two parity bits and so on.

Thus, the form not only avoids degree-two cycles, but it also achieves the ultimate situ-

ation in [5] in which a fullm×m submatrix possesses the diagonal form which permits

a recursive solution of the parity bits.

B. Structure of Generator Matrix

WhenH matrix is given by eq. 3.2, then corresponding generator matrix is

G = [I | HT
1 H−T

2 ] (3.3)

ThenGHT = 0. Ik is k × k identity matrix andH−T
2 matrix is
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H−T
2

=




1 1 1 · · · 1 1

1 1 · · · ... 1

1 · · · ... 1

... ...
...

...

1 1

1




H−T
2 matrix corresponds differential encoder transfer function of which is11⊕D .

Consequently we can do differential encoding not matrix multiplication to get parity-

check bit, so it can reduce the complexity of LDPC encoder. The structure of LDPC

encoder corresponding Eq. 3.3 is shown in Figure 3.4. In Figure 3.4 the structure is

composed of two part one of which is systematic encoder block that corresponds identity

matrix and the other is the block to get parity-check bit that correspondsHT
1 H−T

2 . In this

stucture it is much simpler than original LDPC encoder but there remains the necessity

of matrix multiplication operation withHT
1 .

This class of efficiently encodable codes was independently discovered by Narayanaswami

uuuu

c = [ u p ]c = [ u p ]c = [ u p ]c = [ u p ]

uuuu

ppppD⊕1
1

1
TH

Figure 3.4: Block diagram of encdoer of eIRA code
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and Narayanan [18]. These codes resemble the systematic version of the IRA codes [10],

except for systematic IRA codes, the matrixHT
1 in Figure 3.4 which has dimension is re-

placed by a low-density generator matrix. For this reason, [11] call these codes extended

IRA(eIRA) codes.
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Chapter 4

Modified Encoder Structure

In this chapter we introduce some structure of encoder that encode codeword efficiently.

We modified the structure of parity-check matrixH1. Instead using random matrixH1,

we constructH1 as circulant matrix. And we use permutation matrix to grant random

property to parity-check matrix. Circulant matrix can be constructed by Shift Register

and permutation matrix constructed by equivalent interleaver. Proposed encoder is more

efficient than random structure of encoder.

4.1 Modified Generator and Parity check Matrix

4.1.1 Modified structure of Parity check matrix

In this chapter, in order to make more efficient encoder, we propose that parity-check

matrix H1 is constructed by using circulant matrix. ThisH1 matrix can be composed of

p× q submatrix which are also circulant matrix.
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H1 =




h11 h12 · · · h1q

h21 h22 · · · h2q

...
...

...
...

hp1 hp2 · · · hpq




wherehij matrix(1 ≤ i ≤ p, 1 ≤ j ≤ q ) is all l × l size andk = lq andn − k =

lp. Generally, randomly constructed matrix has good performance. But since proposed

matrix is circulant matrix, random property is gone away, so its performance is degraded

somewhat. Therefore we need to give random property toH1 matrix. In order to do so,

we use row permutation matrixP that ism ×m matrix and each of rows and columns

has only one 1’s. So modifiedH
′
1 matrix is

H
′
1 = PH1 (4.1)

H
′
1 matrix is the same size ofH1 matrix and each row ofH1 matrix is rearranged. For

encoding and decoding, we can useH
′
1 matrix instead ofH1 matrix, then the modified

parity check matrixH
′
is as shown below.

H
′
= [H

′
1|H2] (4.2)

4.1.2 Modified structure of Generator matrix

For a given parity-check matrix such as eq. 4.2, the corresponding generator matrix is

given by

G
′
= [I |H′T

1 H−T
2 ] (4.3)

and sinceH1 matrix is circulant matrix, soH
′T
1 matrix is also circulant matrix. AndH

′T
1

is equal toHT
1 PT , andPT matrix performs that change the position of parity. So we can
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substitute interleaver that perform same function asPT . For example, when5 × 5 PT

matrix is given below

P T =




1

1

1

1

1




,

then interleaver that perform same function asPT matrix is same as Figure 4.1.

Figure 4.1: Example of inner structure of interleaver

⋮⋮

1u

2u

3u

4u

5u

1−ku

ku

(a) (b)

⋯

⋯

⋮

Figure 4.2: Two types of Interleaver structure
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Now using modifiedH
′
1 matrix, we can make encoder as shown in Figure 4.3. Figure

4.3 is added to interleaver compared with Figure 3.4. Then the bit encoded throughH
′T
1

is interleaved, which is same asuH
′T
1 P.

An inner structure of encoder to get parity bit is shown in Figure 4.3. For an infor-

mation messageu whose length ism,

u = [u1u2u3 . . . um] (4.4)

and eachl messages as same length as register size are inputted to shift register. For

example, assume thatH1 = [h11h12] and a size ofh11andh12 is all 5, and each generator

polynomial of circulant matrix is

g1 = 1 + x3

g2 = x + x3,
(4.5)

then structure of shift register is shown in Figure 4.4

Inputted messages are cyclic shiftedl times by shift register. The connection of shift

register is determined by generator polynomial of circulant matrixh11 andh12, · · · , hpq.

At each cyclic shift state, through this connection and XOR operation, a value is updated.

Finally these bits are differentially encoded and transmitted to channel.

S/P
pppp

uuuu

mu

1u

3u Inter-

leaver

D

2u

TH1

Figure 4.3: Encoder structure when using one circulant matrix
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1u

2u

3u

4u

5u

6u

7u

8u

9u

10u

Figure 4.4: Example of Shift Register structure wheng1 = 1 + x3 andg2 = x + x3

4.2 Encoding complexity

Assume the density of ones inH1 to beδ and encoding is performed by matrix multipli-

cation and addition operation viaH = [H1|H2] matrix shown in Figure 4.6. SinceH2

matrix has 1’ in its main diagonal and below diagonal, the number of binary additions

required to compute then− k parity bits is approximately

N1 = δ(k + 1))(n− k)

If we use the encoder of Figure 4.4 to encode, multiplication by the matrixHT
1

results inδk(n− k) additions, and differential encoding results inn− k additions. Thus

total number of binary addition required to compute then− k parity bits is

N2 = (δk + 1))(n− k).

N2 is a small fraction larger thanN1.

27



S/P
pppp

uuuu
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pqh
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⋮

⋯

⋯

⋯
Th11

Th12

T

qh1

Inter-

leaver

D

Figure 4.5: Encoder structure when usingp× q circulant matrices

For givenH matrix, consider encoding via a generator matrixG = [I|P ] which

are obtained by Gauss-Jordan elimination. In general, thek × (n − k) matrix P has

a density 0.5, and so the number of binary additions required to do the multiplication

mP is approximately0.5k(n − k). Thus, for example, for a density ofδ = 0.01, this

complexity reduction factor isN2

N1
= 0.5k

δ(k+1) ≈ 0.5
δ = 50.

In table 4.1 and 4.2, we compare the complexity of proposed encoding method and
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1u
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1−ku

ku

⋮

Figure 4.6: Encoding process using matrix multiplication and addition operation

others. Whereδ is the density ofH1 matrix andδ′ is the density of submatrix of generator

matrix G. And n is a length of encode bits andk is a length of message bits. In the first

row, it shows matrix multiplication and addition operation and its complexity. In the

second row, it shows that Yang’s encoding method. Next third and fourth row show our

proposed encoding method. Compared with second and third row, needed XOR gate

numbers areδk(n− k) andδkp, respectively. In generaln is approximately larger than

1000. Since a code rate is 0.75,k is 250 if n = 1000. Thusn − k = 750 andp = 1 in

our simulation. So needed XOR gate is1/750 times than before, so this is much smaller

than Yang’s encoding method.
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Table 4.1: Encoding complexity comparison

Encoding Method δ Total Computation Total XOR Total Memory

Matrix multi. δ′ ≈ 0.5 δ′k(n− k) δ′k(n− k) n− k

Michael Yang ≈ 0.01 (δk + 1)(n− k) δk(n− k) n− k

SR only ≈ 0.01 (δk + 1)(n− k) δkp n− k

SR, Interleaver ≈ 0.01 (δk + 1)(n− k) δkp ≤ 2(n− k)

Table 4.2: Example of encoding complexity comparison

Encoding Method
Computation

Comparison

XOR num. comparison

(n=1024, k=768, p=1)

Matrix multi. 1 •
Michael Yang 1/50 1

SR only 1/50 1/256

SR, Interleaver 1/50 1/256

4.3 Simulations and Results

In this section, we present the performance results for the proposed codes. We shall

show the bit error rate(BER)Pb. In additive white gaussian noise(AWGN) channel, we

use sum-product algorithm to decode LDPC code. A codeword length is 512, 1024 and

2924, respectively and code rate is all 0.75. In addition, to compare other case we show

a performace in case ofn is 1023 and coderate is 0.66. A Parity-check matrixH used

has the form same as below

H = [H1|H2] = [h11|h12|h13|H2]. (4.6)
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Figure 4.7: BER of LDPC code for length 512, code rate 0.75

We designedH1 as three concatenated circulant submatrix. For each submatrix, the

weights of generator polynomials are different each other. In our simulation, we set

weight of h11 to 3, h12 to 4, andh13 to 7. Under this condition and given fixedH2

matrix, we changeH1 matrix and get the performance results. The Bit Error Rate(BER)

performance graph is shown in Figure 4.7, 4.8, 4.9 and 4.11 in case a coderate is fixed

as 0.75 and a various codeword length is given such as 512, 1024 and 2924. Figure 4.10

shows the BER performance as different codeword length. And Figure 4.12 and 4.13

show Frame Error Rate(FER) performace in case a codeword length is 512 and 1024,

respectively.

In Figure 4.7 first line from the graph, i.e. ‘∗’ line, means the performance of the

parity-check matrixH1 which is randomly constructed by using MacKay’s algorithm
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Figure 4.8: BER of LDPC code for length 1024, code rate 0.75

andH2 using previous fixed form. Second, ‘◦’ line, H1 is constructed by using circulant

matrix andH2 using previous fixed form. Third, ‘+’ line, H1 andH2, i.e. H is randomly

and irregularly constructed by using progressive edge growth algorithm. This method

resembles Michael Yang’s one. At last, ‘?’ line, H1 is constructed by using circulant

matrix and row permutation matrix.

In this result, our proposed code shows better performance than the MacKay’s ran-

dom LDPC codes and similar performance as Yang’s method. This code shows better

performance up toPb = 10−6 and have nearly error floor effect up to 4.5dB Signal to

Noise Ratio(SNR) region. And the parity-check matrix using circulant matrix and per-

mutation matrix is much better than the matrix using only circulant matrix. Thus we can

know that permutation matrix gives good performance as expected.
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Figure 4.9: BER of LDPC code for length 2924, code rate 0.75

In Figure 4.8, we use the code of which length is 1024 and code rate 0.75. As before

its performance show an analogous tendency to Figure 4.7. But in this case we can see

error floor effect in case ofH matrix constructed by circulant matrix, however randomly

constructed matrices don’t show this effect. Even though our proposed matrix shows

error floor effect at aboutPb = 10−5, it has better performance than random code up

to Pb = 10−6. But without permutation, it approaches error floor earlier atPb = 10−4.

Consequently, we confirm that row permutation gives good performance once again.

In Figure 4.9, like as Figure 4.7 and 4.8, our proposed matrix shows good perfor-

mance but approaches error floor more earlier. At aboutPb = 10−3.5 error floor effect

appear, this shows bad performance in high SNR region.

We compare the performance according to a codeword length in Figure 4.10. We
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Figure 4.10: BER of LDPC code for various length, code rate 0.75

can see that the larger the codeword length is, The better the performance is. But our

proposed code with length 2924 approaches error floor earlier than others, so it became

no better than others any more as SNR comes higher.

From previous simulation results, we conclude that our designed code show better

performance as the codeword length is shorter. Random code show better performance

as its length is larger. Reversely saying, random code are worse as its length is shorter.

But our code shows a little degradation even though codeword length is shorter. Thus

there is some length our code is better than random code. But it remains conjecture how

short length code shows better performance than random code.

Now, we present BER performance graph in case of code rate is 2/3 and length is

1023. Our codes are designed to high code rate, we expect that the performance is worse
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Figure 4.11: BER of LDPC code for length 1023, code rate 0.66

than random code. Actually our code show bad performance as shown in Figure 4.11.

Finally we show frame error rate(FER) performance. In packet system, a important

criterion of transmission quality is FER. In a view of FER if there is only one bit error

in frame, it is determined as error, so much power is required to reduce FER.

In Figure 4.12 and 4.13 show FER of our code whose length is 512 and 1024,

respectively. Our proposed code is better than other codes. But error floor effect is

still presented like as BER. In Figure 4.12, our first proposed matrix shows error floor

at Pb = 10−2. But our proposed code doesn’t have error floor in this SNR region.

But in Figure 4.13 our two proposed codes, which are constructed using circulant ma-

trix and permutation matrix and using only circulant matrix, show error floor effect at

Pb = 10−3.7 andPb = 10−2.8, respectively. Thus using permutation matrix gives more
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better performance to circulant matrix.

We think that error floor effect is due to no randomness and short cycle of circulant

matrix. There are little randomness, so the performance is degraded. But when we

applied row permutation thus granting random property, the degradation is somewhat

overcome. When we do row permutation withH1, there may come to being 4-cycle

in H even thoughH has no 4-cycle. So we can do row permutation carefully not to

make 4-cycle. We can guess that the degraded performance byH2 can overcome by well

constructedH1. And the performance will be much better if we remove the short cycle,

so making large girth.
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Figure 4.12: FER of LDPC code for length 512, code rate 0.75
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Figure 4.13: FER of LDPC code for length 1024, code rate 0.75
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Chapter 5

Concluding Remark

In this dissertation, we concentrate on reducing the complexity of LDPC encoder since

general LDPC encoder is much complex than turbo codes. We design structural LDPC

code using circulant matrix and permutation matrix and eIRA code for efficient encoder.

It is possible to design low complex encoder by using shift register and differential en-

coder and interleaver than general LDPC encoder that use matrix multiplication and

addition operation. The code designed by this structure shows better performance up to

10−6 of BER in our simulation results. The proposed code shows a property such that

there is less degradation than randomly generated parity-check matrix when the code-

word length becomes shorter. However the proposed LDPC code shows error floor effect

and a performance degradation in high SNR region. We need short cycle free and well

designed matrix to overcome this error floor effects.

For the further research themes, the following problems will be desirable: (1) study

on reducing short cycle methods which can improve a performance of LDPC code. (2)

study on a permutation rule. Even though there is no 4-cycle, after row permutation

there may be exist 4-cycle unless appropriate permutation rule is applied. (3) study on
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optimal weight distribution of given codeword length and rate.
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í�H8̈�'��§>=õ� eIRAÂÒ ñ\�¦s�6 xô�Ç ò́Ö�¦&h���� LDPCÂÒ ñ�ol�
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