
New LDPC code design scheme combining

differential evolution and simplex algorithm

Min Kyu Song

The Graduate School

Yonsei University

Department of Electrical and Electronic Engineering

New LDPC code design scheme combining

differential evolution and simplex algorithm

by

Min Kyu Song

A Master Thesis Submitted to the

Graduate School of Yonsei University

in Partial Fulfillment of the

Requirements for the Degree of

MASTER OF SCIENCE

Supervised by

Professor Hong-Yeop Song, Ph.D.

Department of Electrical and Electronic Engineering

The Graduate School

YONSEI University

December 2012

This certifies that the master thesis

of Min Kyu Song is approved.

Thesis Supervisor : Hong-Yeop Song

 Sooyong Choi

 Taewon Hwang

The Graduate School

Yonsei University

December 2012

Acknowledgments

 At first, I would like to thank my advisor professor Hong-yoep Song who have

generously given advice to me for my research. From his advice, I was able to

learn a lot. Also, I am deeply thankful to professor Sooyong Choi and professor

Taewon Hwang who gave me lots of advice about my Master’s thesis.

 I have pleased studying with my colleagues in Coding and Crypto Lab. during

the Master’s course. Especially, Jin Soo Park, Suc Min Jun, and Young-Tae Kin

gave me lots of advice. I would like to thank them.

 I would like to say thank you to my family and all my friends. They always

tell me ‘you can do it.’ It seems to be a very powerful word.

 Finally, I would like to thank my grandmother who goes to heaven fifth month

ago. I want to say her ‘I miss you. And I love you.’

Min Kyu Song

January 2013

Contents

List of Figures ⅲ

List of Tables ⅵ

Abstract ⅴ

1. Introduction

1.1 Motivation ..

1.2 An overview ..

1

1

2

2. Degree distribution optimization problem

2.1 An overview of LDPC code design ..

2.2 Optimization methods for degree distribution optimization

 problems ...

2.2.1 Simplex algorithm ...

2.2.2 Differential evolution ...

2.3 Density evolution and Gaussian approximation

2.3.1 Density evolution ...

2.3.2 Gaussian approximation ...

4

4

8

9

13

18

18

19

3. Practical application of differential evolution to degree distribution

 optimization

3.1 Differential evolution scheme for practical degree distribution

 optimization ..

3.2 Threshold optimization result ..

24

24

26

4. A new LDPC code design scheme

4.1 An iterative simplex algorithm for code rate enhancement

4.2 Application and verification of the iterative simplex algorithm

4.3 A new LDPC code design scheme combining differential evolution

 and iterative simplex algorithm...

28

28

31

33

5. Conclusion

5.1 Summary ..

5.2 Future work ...

40

40

41

Bibliography 42

Abstract (in Korean) 44

iii

List of Figures

2.1 Tanner graph of an LDPC code .. 5

2.2 Two objects of code design and their optimization problems 8

2.3 Matrix representation of standard form ... 12

2.4 Result of first pivoting .. 13

2.5 Result of second pivoting .. 13

2.6 Generated initial vector .. 16

2.7 Mutation process... 16

2.8 Crossover and selection ... 17

2.9 Two optimization problems with Gaussian approximation 23

4.1 An iterative simplex algorithm for code rate enhancement 29

4.2 Optimization process for given   or   30

4.3 A new LDPC code design scheme .. 34

iv

List of Tables

2.1 Some well-known degree distributions ... 7

2.2 Brief description of simplex algorithm and differential

 evolution... 9

3.1 Some well-known degree distributions and

 optimization results .. 27

4.1 Some well-known degree distributions and its code rate

 optimization result .. 32

4.2 Degree distributions for = 4, 5 ... 35

4.3 Degree distributions for = 6, 8 ... 36

4.4 Degree distributions for = 9, 10 ... 37

4.5 Degree distributions for = 12, 15 ... 38

4.6 New degree distributions for = 7, 13, 14 39

v

ABSTRACT

New LDPC code design scheme combining

differential evolution and simplex algorithm

Song, Min Kyu

Dept. of Electronic Engineering

The Graduate School

Yonsei University

 In this thesis, we propose a new LDPC code design scheme that combines

differential evolution and iterative simplex algorithm. In the proposed scheme, we

find good check and variable node degree distribution and threshold by using

differential evolution, and then, we find check and variable node degree

distribution that has enhanced code rate by using an iterative simplex algorithm.

We also discuss some practical implementation issues of using differential

evolution for threshold optimization and verify that it works well by comparing it

with some well-known degree distributions. An iterative simplex algorithm consists

of two simplex algorithms, optimizing  and , respectively.

 Some simulation results show that we can find degree distribution with proposed

LDPC code design scheme better than some well-known degree distribution.

Key words : LDPC, code design, simplex algorithm, differential evolution, degee

distribution optimization

1

Chapter 1

Introduction

1.1 Motivation

 From the discovery of turbo codes, iterative decoders have attracted a lot of

attention. As an example of the attention, LDPC codes - first discovered by

Gallager [1] - were rediscoverd by Spielman et al. [3] and Mackay et al. [4] and

there have been many researches to analyze the LDPC codes. The LDPC codes

have a very important property called threshold phenomenon: for any noise level

that is smaller than a certain value, an arbitrary small bit-error probability can be

achieved. This phenomenon is first observed by Gallager for binary symmetric

channels (BSCs) [1], [2] and generalized by Luby et. al. [6], Richardson and

Urbanke [7].

 In [7], Richardson and Urbanke proved the decoder performance on random

graph converges to its expected value as the length of the code increases. In [10],

they proposed an analysis tool for LDPC codes, called Density evolution and

analyzed the expected behavior of ensemble of LDPC codes that is cycle-free and

has infinitely long length with density evolution. The key idea of density

evolution is to track the densities of the messages flowed in the Tanner graph of

LDPC code. To obtain the densities of the messages requires high computational

complexity that is a serious problem in practice. Thus, Sae-Young chung et al.

proposed Gaussian approximation to reduce the computational complexity [8]. In

2

Gaussian approximation, the message densities are assumed gaussian for the

convenience of calculation.

 Since LDPC codes can be specified with check and variable node degree

distributions and their connection, LDPC code design consist of two steps, code

design and code construction. Code design is a process to design ensemble of

LDPC codes by determining check and variable node degree distributions. After

code design, code construction is followed. Code construction can be done with

Random, Progressive Edge Growth (PEG) [13], and Approximated Cycle Extrinsic

message degree (ACE) [14]. By using density evolution, code design problem can

be changed to a non-linear problem and degree distribution of an ensemble of

LDPC codes can be optimized using differential evolution, well-known non-linear

program solver [10]. But, in [10], there is no details about how to apply

differential to code design. There are only some degree distributions. In practice,

sometimes, we will be faced the code design with arbitrary code rate and

maximum check/variable node degree. Thus details about code design is important.

 In this thesis, we describe details about code design by using differential

evolution, especially how to apply differential evolution to degree distribution

optimization. And we propose a new iterative simplex algorithm for code rate

enhancement and new code design scheme.

1.2 An overview

 The remainder of this thesis is organized as follows. In Chapter 2, we give brief

description of the LDPC code design problem and two optimization methods,

simplex algorithm and differential evolution. Then, we will describe Gaussian

3

approximation for changing code design problem to optimization problem. In

Chapter 3, we describe details about threshold optimization with differential

evolution. In Chapter 4, we propose a new LDPC code design scheme and

compare it with some well-known degree distribution and differential evolution

only. And we find some new degree distributions. Conclusions are presented in

Chapter 5.

4

Chapter 2

Degree distribution optimization problem

 In this chapter, we will describe LDPC code design problem. Then, we will

briefly describe some well-known linear and non-linear program solver, simplex

algorithm and differential evolution. Finally, we will convert code design problem

to two optimization problems, threshold optimization problem and code rate

optimization problem.

2.1 An overview of LDPC code design

 As their name suggests, LDPC codes are block codes with parity-check matrices

that contain only a very small number of non-zero entries. Aside from the

requirement that parity-check matrix H be sparse, an LDPC code itself is no

different from any other block code. Indeed, classical block codes will work well

with iterative decoding algorithms. However, generally finding a sparse matrix for

an existing code is not practical. Instead LDPC codes are designed by

constructing a suitable sparse parity-check matrix first and then determining an

encoder for the code afterwards.

 An ensemble of the LDPC code is specified by variable and check nodes degree

distributions , . Let  ,  be maximum degree of the variable and check

nodes, respectively. Then, degree distribution of the LDPC code is defined as


 




 , 

 




 

5

where  and  are the fractions of edges belonging to degree- variable and

check nodes, respectively [9]. Using this expression, the norminal rate  of the

code is given by [11]:
















.

With these variable and check nodes degree distributions and connection between

variable and check nodes, an LDPC code is represented as bipartite graph, called

Tanner graph. An example of the Tanner graph is shown in Figure 2.1.

Figure 2.1 Example : Tanner graph of an LDPC code.

If variable and check nodes degree distributions have only one non-zero term

 
 

 
  ,

then the LDPC code is called regular. Otherwise, the LDPC code called irregular.

 Since LDPC code can be specified with variable/check nodes degree distributions

and their connection, LDPC code design is generally has two steps, 'Code design'

and 'Code construction'. In the code design step, we select a good ensemble of

LDPC codes by determining variable and check nodes degree distributions. After

the code design, we construct bipartite graph using some construction methods.

6

This is called code construction. There exist some code construction methods such

as Random, PEG [13], and ACE [14]. The code design can be achieved with

Density evolution and differential evolution [10]. But there exist no details about

how to apply differential evolution to code design. Only some degree distributions

with code rate 0.5 were presented in [10]. Following table describes some degree

distribution and its threshold  obtained by Gaussian approximation. In the

table, 
 means threshold . In this thesis, some threshold values

will be represented as  .

 Since there is no details about how to apply differential evolution to code

design, we will be faced with many problems when we want to design ensemble

of LDPC codes with arbitrary ,  and . And it is also a problem that if we

use differential evolution for code design, what is good differential evolution

scheme. We will try to solve these problems in this thesis.

 There are two objects of LDPC code design, code rate  [8] and threshold 

[10] where the threshold is defined as the maximum noise level such that the

probability of error tends to zero as the number of iterations tends to infinity.

This two optimization problems are described in Figure 2.2. Since code rate is

given in practice, optimizing threshold for given code rate is practically important.

To solve the threshold optimization problem, the constraint that bit error

probability  goes to 0 as iteration  goes to infinity should be some function of

 and . This process will be done by Gaussian approximation.

7

Richardson [10]

 4 5 6

 0.38354 0.32660 0.33241

 0.04237 0.11960 0.24632

 0.57409 0.18393 0.11014

 0.36988

 0.31112

 0.24123

 0.75877 0.78555 0.76611

 0.21445 0.23389

 0.50000 0.50000 0.50839





 0.8736 0.8318 0.7997




 0.6114 0.6056 0.6112

Table 2.1 Some well-known degree distributions

8

Optimize threshold

Minimize 

subject to






  






  

→  →∞

by tuning

, 

for given

, , 

Optimize code rate

Maximize 

subject to






  






  

→  →∞

by tuning

, 

for given

, , 

Figure 2.2 Two objects of code design and their optimization problems

2.2 Optimization methods for degree distribution

 optimization problems

 Before we describe detail of code design, we will illustrate two well-known

optimization algorithms: simplex algorithm and differential evolution. Brief

description of two methods is shown in Table 2.2.

9

Simplex algorithm Differential evolution

Type
Optimization algorithm for

linear program (LP) problems
Heuristic

Requirement
Standard form of LP

problems
System parameter

Solution Global optimum Close to global optimum

Stopping

condition

Optimality of current basic

solution is guaranteed
Fixed iteration number

Table 2.2 Brief description of simplex algorithm and differential evolution

2.2.1 Simplex Algorithm

 Simplex algorithm is a commonly used linear programming technique. Every

linear program can be converted into a 'standard form',

 maximize  

 subject to    

 ⋮

    

  ≥    ≥ 

where the objective   is maximized, the constraints are equalities

and the variables are all non-negative. To solve a linear program by using

simplex algorithm, this is done as follows:

10

• If the problem is min, convert it to max.
• If a constraint is   ≥ , convert it into an equality constraint

by adding a nonnegative slack variable. The resulting constraint is

     where  ≥ .

• If a constraint is   ≤ , convert it into an equality constraint

by subtracting a nonnegative slack variable. The resulting constraint is

     where  ≥ .

• If some variable  is unrestricted in sign, replace it everywhere in the

formulation by ′ ″, where ′, ″≥ .

After above process, the equations can be transformed to matrix form. simplex

algorithm solve the linear program by using this matrix.

 In simplex algorithm, there are two variables, basic and nonbasic. The variables

(other than the special variable ) which appear in only one equation are the

basic variables. Other variables are nonbasic variables. A basic solution is obtained

from the system of equations by setting the nonbasic variables to zero. If there is

negative term in the leftmost column of the matrix, it can’t have basic feasible

solution. There are two steps to find optimal solution by using simplex algorithm,

Phase 1 and Phase 2. If there exist negative term in the leftmost column of the

matrix, we can transform the matrix to another matrix by pivoting with a row

that has negative term in the leftmost. This process is called Phase 1. If there

exist feasible solution, then Phase 1 will be skipped. In the Phase 2, we will

solve the linear program. Phase 2 is commonly known as simplex algorithm.

 There are two rules in Phase 2.

11

 Rule 1. If all variables have a nonnegative coefficient in Row 0, the current

basic solution is optimal. Otherwise, pick a variable  with a negative

coefficient in Row 0. The chosen variable is called the entering variable.

 Rule 2. For each Row  ≥, where there is a strictly positive entering

variable coefficient, compute the ratio of the Right Hand Side (RHS) to the

entering variable coefficient. Choose the pivot row as being the one with

MINIMUM ratio.

The simplex algorithm iterates between Rules 1,2 and pivoting until Rule 1

guarantees that the current basic solution is optimal.

 Using simplex algorithm to solve linear program, there are two problems,

'degeneracy' and 'unbounded optimum'. The degeneracy problem denotes that, for

given iteration, there exist a basic variable which is equal to 0. If degeneracy is

occurred for many iterations, the solver repeats same process indefinitely, called

cycling. To avoid cycling, we must choose the entering variable with smallest

index in Rule 1. But, in commercial, no effort is made to avoid cycling Since

cycling is extremely rare and the precision of computer arithmetic takes care of

cycling by itself: The cumulative error will be a way that solve degeneracy. The

unbounded optimum problem will be occur if there is no positive entry in the

column of the entering variable. If it is occurred, the optimal solution is

unbounded for some basic variables.

Example

If the linear program problem is given as follow.

12

maximize    

 subject to   ≤ 

   ≤ 

  ≥

At fist, we should transform the problem to its standard form,

maximize    

 subject to     

     

  ≥

where  and  are slack variable.

Matrix representation of the standard form is shown in Figure 2.3.

Figure 2.3 Matrix representation of the standard form

Since there are negative terms in the row 0, the basic solution is not optimal. By

rule 1, we pick column 1 for pivoting. Since 

  is smaller than 


 , we

pick row 1 for pivoting. By pivoting, we get a new matrix as Figure 2.4.

13

Figure 2.4 Result of first pivoting

Since there is a negative term in the row 0, the basic solution is not optimal. So,

we should pick column2 and row 2, and pivot the row. Then, we get a new

matrix as Figure 2.5

Figure 2.5 Result of second pivoting

Since there is no negative term in row 0, Rule 1 guarantee that the basic solution

is optimal.

※ Optimal solution

  


,   


,   


,   ,   

2.2.2 Differential evolution

 Differential evolution (DE) is a parallel direct search method which utilizes 

parameter vectors

14

Mutation

 For each target vector 
,   , a mutant vector is generated as


  

 ×
 




 

 

with random indices ,  where  is the number of difference vectors

used to generate mutated vectors. The randomly chosen indexes ,  are


,      

as a population for each generation .  does not change during the optimization

process. The initial vector population is chosen randomly and should cover the

entire parameter space. DE generates new parameter vectors by adding the

weighted difference between two population vectors to a third vector. This

operation is called mutation. The elements of a mutated vector are then mixed

with the elements of another predetermined vector, the target vector, to yield the

so-called trial vector. Mixing elements of mutated vector is often referred to as

'crossover'. If the trial vector yields a lower cost function value than the target

vector, the trial vector replaces the target vector in the following generation. This

last operation is called 'selection'. Differential evolution is often represented as



where  specifies the vector to be mutated which currently can be 'rand' (a

randomly chosen population vector) or 'best' (the vector of lowest cost from the

current population),  is the number of difference vectors used to mutate, and 

denotes the crossover scheme. Differential evolution is known as more efficient

scheme than 'Annealing methods' [11].

15

chosen to be different.  is a real and constant factor ∈   which controls

the amplification of the differential variation.

Crossover

 In oder to increase the diversity of the pertubed parameter vectors, crossover

is introduced. In this process, the trial vector is mixing of the mutated vector

and target vector to generate trial vector 
.

Selection

 To decide whether or not it should become a member of population at

generation , the trial vector 
 is compared to the target vector 



using the greedy condition. If vector 
 yields a smaller cost function value

than 
, then 

 is set to 
. Otherwise, the old value 

 is retained.

Example

Assume that we want to optimize following problem.

maximize    

 subject to   ≤ 

   ≤ 

  ≥

We will solve this problem with differential evolution. The system parameters are

given as ,  where the crossover scheme  means

element-wise mixing.

16

 Then, initial populations are generated randomly. We assume that generated initial

populations are , , ,  in Figure 2.6.

Figure 2.6 Generated initial vectors

Since   is best when  is selected,  is best population in the initial

population.

Then, Mutated vectors are generated as Figure 2.7.

Figure 2.7 Mutation process

17

After mutation process, we can obtain trial vectors via crossover and select better

one between target and trial. Figure 2.8 shows crossover and selection. We will

repeat this process for a fixed number of iteration to find solution that is close to

optimal.

Figure 2.8 Crossover and Selection.

18

2.3 Density evolution and Gaussian approximation

2.3.1 Density evolution

 Under the message passing algorithm (sometimes called sum-product algorithm),

variable and check nodes exchange messages at each iteration. At -th iteration, a

check node gets messages from its neighbors, processes the messages and sends

the result back to its neighbors. The message that will be sent back from the

check node to a variable node will be made with all incoming messages except

the incoming message on the edge where the output message will be sent out. A

variable node operate similarly as check node. Only difference between variable

and check nodes are the process to generate output message with incoming

messages.

 For convenience of the analysis, we use log-likelihood ratios (LLRs) as

messages. So, we use

  log 
 

as the output message of a variable node, where  is the value of the variable

node and  denotes all the information that is available to the variable node up

to the present iteration except the incoming message on the edge where the output

message will be sent out. Similarly, the output message of a check node is

defined as

 log′′
′′

where ′ is the value of the variable node that gets the message from the check

node, and ′ denotes all the information that is available to the check node up to

the present iteration except the incoming message on the edge where the output

19

message will be sent out.

 If the LDPC code is cycle-free, then we can analyze the decoding algorithm

straightforwardly because incoming messages to every node are independent. Thus

we assume that the LDPC code is cycle-free and infinitely long length.

 The main idea of density evolution is tracking densities of messages that flow

on the graph. Under the sum-product algorithm, variable and check node equations

are given as

 
 

 



tanh


 

 tanh


,

where  denote degree of the node. Since we know density of channel output, we

can track densities of messages. But obtaining densities of messages requires high

computational complexity.

2.3.2 Gaussian approximation

 Since Density evolution require high complexity, Gaussian approximation is

proposed [8]. For the convenience of analysis, we assume that power of

transmitted symbol  is 1. If the channel is BI-AWGN, the LLR message 

from the channel is Gaussian with mean 
 and variance 

 , where 
 is the

variance of the channel noise. Thus, if all  except  are independent and

identical Gaussian, then the resulting sum is also Gaussian. Even if the inputs are

not Gaussian, by the central limit theorem, the sum would look like a Gaussian if

many independent random variables are added.

20

 From the idea described above, the Gaussian approximation assume that all of

the messages are gaussian. Since Gaussian is completely specified by its mean and

variance, we need to keep only the means and variances during iteration. By

enforcing symmetry condition, which can be expressed as   , for the

approximated Gaussian densities at every iteration, we can greatly improve the

accuracy of the approximation [8]. For the Gaussian with mean  and variance

, this condition reduces to   , which means that we need to keep only

the mean.

 We denote the mean of  and  by  and , respectively. Then (2.1) simply

becomes

 
 

 
  (2.3)

where  is the mean of  and  denotes the th iteration. The index  for 

is omitted because 's are i.i.d. for ≤ ≤ and have same mean. Note that


 is zero since the initial message from any check node is .

 The updated mean 
 at the th iteration can be calculated by taking

expectations on each side of (2.2),

 tanh

 tanh



   (2.4)

where we have omitted the index  and simplified the product because the 's

are i.i.d. Note that tanh

 depends only on the mean  of , we define a

function to calculate tanh

,

21













 

tanh





 

 i f
 i f 

.

The function  is continuous and monotonically decreasing on ∞, with

  and ∞ . Using , the update rule for  can be represented

as

 
    

 
  

   (2.5)

where 
   is the initial value for .

 If the LDPC code is irregular, then (2.5) will be (2.6).

 
 

 




 

 






    (2.6)

For convenience, we denote  's update function as


 




 

 




 .

In this case, the threshold  is the infimum of all   × in  such

that 
 goes to ∞ as  goes to ∞. With above equation, the threshold in terms

of noise power is equal to . Since  is monotonically decreasing on

 ≤   ∞,   is monotonically increasing on both   ∞ and

 ≤ ∞. Thus,  will converge to ∞ if and only if    for all

∈ .

In [10], by expecting behavior of ’s update rule for a sufficiently large ,

stability condition is derived as

  
  





 




. (2.7)

22

 An alternative expression of (2.6) is

      
 




 




    , (2.8)

where  denote ’s update function and  goes to zero if and only if

 for  . With (2.6) and (2.7) (or (2.7) and (2.8)), the degree

distribution optimization can be done.

 It is known that  
   

 is good enough to obtain good

performance [8]. With above, the code design problem can represented as Figure

2.9. For code rate optimization problem, it can be linear program if  (or

) is given.

 There is a problem that we can’t calculate  directly since the representation of

 in terms of  and  is not known. Thus, we can obtain threshold 

through trial and error.

23

Optimize threshold

Minimize 

subject to

    


 



  

   for ∀

    

(or    for ∈)

  





 



 


by tuning

, 

for given

, , 

Optimize code rate

Maximize 

subject to

    


 



  

   for ∀

    

(or    for ∈)

  





 



 


by tuning

, 

for given

, , 

Figure 2.9 Two optimization problems

with Gaussian approximation

24

Chapter 3

Practical application of

differential evolution

to degree distribution optimization

 In this Chapter, we will describe details about how to apply differential evolution

to optimize threshold . Then, we will explain about effect of parameters in

differential evolution to find good differential evolution scheme.

3.1 Differential evolution scheme for practical degree

 distribution optimization

 As mentioned in Section 2.1, differential evolution can be used to design

ensemble of LDPC codes. Since differential evolution consists of mutation,

crossover, and selection, we should define each step to solve the threshold

optimization problem.

 At first, initial populations are chosen randomly. Since computers manipulate

finite length floating point, we choose initial populations uniformly that satisfy the

constraints

  for   (3.1)

 
 



   (3.2)

25

      . (3.3)

  
  





 




 (3.4)

The populations at -generation has following form,


 











  


  





⋮




.

 In mutation process, the control parameter  should be  to satisfy (3.2) and

(3.3). Thus, we use following mutation process


  

  
 




  

 .

 There are some issues of implementing threshold optimizer with differential

evolution. First, the resolution of  and  should be carefully determined.

Since the function  and  affect calculating threshold and checking

(3.1), an error introduced from the resolution of  and  cause wrong

checking result or calculated threshold. It is very critical to this scheme. Second,

 should be appropriately quantized for checking (3.1) and threshold calculation.

Third, the cumulative error of computer arithmetic cause a population not to

satisfy (3.2) and (3.3) after large iteration. It means that the output best

population is not degree distribution. Thus, we normalize the sum of  and

 at each mutation. Finally, the number of iterations should be large enough.

And the number of iterations should be increased if size of the parameter space is

increased. Increasing size of the parameter space means that the searching space is

26

increased. Thus, required the number of iterations to find good solution should be

increased. By simulation, It turned out that the size  only affects the expected

best threshold at initial population, and the size  affect the slope of changing

best threshold. Since increasing  and  cause high computational complexity,

the values of  and  must be carefully selected

3.2 Threshold optimization result

 Table 3.1 show that some well-known degree distribution and our optimization

result. For optimization, tolerable error of code rate is less than 0.001 and

differential evolution scheme is mentioned above. From the table, we can see that

optimization is successfully done and the degree distribution is as good as

well-known degree distributions.

27

Richardson [10] Differential evolution

 4 5 6 8 4 5 6 8

 0.38354 0.32660 0.33241 0.30013 0.37648 0.32063 0.31265 0.30819

 0.04237 0.11960 0.24632 0.28395 0.05434 0.04681 0.17269 0.24250

 0.57409 0.18393 0.11014 0.56918 0.25301 0.10492 0.00601

 0.36988 0.37955 0.24427 0.01471

 0.31112 0.16547 0.00148

 0.00856

 0.41592 0.41855

 0.24123 0.23938

 0.75877 0.78555 0.76611 0.22919 0.76062 0.62913 0.65951 0.16636

 0.21445 0.23389 0.77081 0.37087 0.34049 0.83364

 0.50000 0.50000 0.50839 0.50013 0.49908 0.49906 0.49953 0.49918





 0.8736 0.8318 0.7997 0.5778 0.8579 0.8297 0.7836 0.5628

Table 3.1 Some well-known degree distributions

and optimization results

28

Chapter 4

A new LDPC code design scheme

 In this chapter, we propose an iterative simplex algorithm for code rate

enhancement that tune  and  iteratively for improving code rate. Since

we need initial  to enhance code rate, we will use some well-known degree

distributions to enhance code rate and observe an effect of code rate enhancer for

given degree distribution. We propose a new LDPC code design scheme and

compare it to optimization result of differential evolution only. Finally, we find

some new degree distributions.

4.1 An iterative simplex algorithm for code rate

 enhancement

 We can't solve threshold optimization problem since there is no known

representation of  in terms of  and . But the code rate optimization

problem is a linear program if one of  and  is given. Thus we can

think of a scheme that optimizes  by tuning  and  iteratively by using

simplex algorithm. This scheme is shown in Figure 4.1. In this scheme, we must

select an initial  to enhance code rate. We can easily see that the code rate

at each iteration will converge as iteration number goes to ∞.

29





Optimize R

Maximize 

subject to


 



  

   
 

 for ∀,

 

  





 






by tuning



for given

, , , 

Optimize R

Maximize 

subject to


 



  

   
 

  for ∀∈

  





 






by tuning



for given

, , , 

Inputs :

 , , , , 

Outputs :

, , 

 Times

Figure 4.1 An iterative simplex algorithm for code rate enhancement

30

Theorem 4.1. Let the linear program solver of the two optimization process in

Figure 4.1 be simplex algorithm. Then, the code rate will converge as iteration

number goes to ∞ because the solution of simplex algorithm is global optimum.

proof)

 Let  ,   be an optimization result for given    (or  ).

Then, by iterative optimization, the  ,   pairs are given as Figure 4.2.

 ,  , 

,  , 

 ⋮ ⋮

Figure 4.2 Optimization process for given   or  

Let

  












 








be the intermediate code rate that represented in terms of   and  . For

given  , tuned    is the best choice since the solution of simplex

algorithm is global optimum. But, if we want to tune   for   ,

there may exist another choice better than  . If there is no choice better

than  , then   is the best choice. It means that

  ≥  ≥  .

31

Above statement means that the sequence of  is non-decreasing. Since the

code rate is upper bounded by  and the sequence of  is non-decreasing, 

will converge. (End of proof)

 By computer simulation, if  is small enough (0 to 1.2), then  will

converge with few iterations (less than 10). We denote the converged code rate in

the above iterative simplex algorithm for code rate enhancement scheme by .

 An implementation of the iterative simplex algorithm for code rate enhancement

has some problems. First, since we can’t guarantee that  is local or global

optimum. Thus, the choice of   is very important to obtain code rate that

close to local or global optimum. Second,  and  should be quantized to make

linear program. Thus, we should carefully choose the quantization size of  and .

4.2 Application and verification of the iterative simplex

 algorithm

 As mentioned in Section 4.1, we should choose   carefully to use

proposed code rate enhancement scheme. For the performance of code rate

enhancement, we choose   in some well-known degree distribution and

enhance its code rate with the iterative simplex algorithm for code rate

enhancement. Table 4.1 shows some well-known degree distributions and its

results of enhancing code rate. From Table 4.1, we can see that threshold


 is become smaller than well-known degree distribution by the effect of

increased code rate.

32

Richardson [10] Results of code rate enhancement

 4 5 6 8 4 5 6 8

 0.38354 0.32660 0.33241 0.30013 0.38720 0.35140 0.35206 0.30681

 0.04237 0.11960 0.24632 0.28395 0.03290 0.15408 0.27317 0.26644

 0.57409 0.18393 0.11014 0.57990

 0.36988 0.49450 0.00819

 0.31112 0.37477

 0.03787

 0.41592 0.38069

 0.24123 0.24123

 0.75877 0.78555 0.76611 0.22919 0.75877 0.78555 0.76611 0.22919

 0.21445 0.23389 0.77081 0.21445 0.23389 0.77081

 0.50000 0.50000 0.50839 0.50013 0.50021 0.50436 0.51116 0.50038





 0.8736 0.8318 0.7997 0.5778 0.8727 0.7943 0.7760 0.5756




 0.6114 0.6056 0.6112 0.5713 0.6114 0.6056 0.6112 0.5713

Table 4.1 Some well-known degree distributions

and its code rate enhancement results

33

4.3 A new LDPC code design scheme combining

 differential evolution and iterative simplex algorithm

 From the result of Section 4.2, we can observe that threshold  will be

decreased and code rate  will be increased via the iterative simplex algorithm

for code rate enhancement. Thus we can think of a new LDPC code design

scheme in Figure 4.4.

At the first stage, we find a good ,  pair, that has low , with

differential evolution. Then, we can optimize code rate by using the iterative

simplex algorithm for code rate enhancement presented in Section 4.1. The result

of code rate enhancement is   and  that has enhanced code rate

with same . By the effect of enhanced code rate with same , the

 will be decreased.

 In the proposed new code design scheme, differential evolution is used to find a

good  and  and the iterative simplex algorithm for code rate enhancement

is used to enhance code rate for given   and . The optimized result is

compared with some well-known degree distributions and differential evolution

only in Tables 4.2, 4.3, 4.4, 4.5. In these tables, the results of differential

evolution only are the results of pre-processing in the iterative simplex algorithm

for code rate enhancement. By the effect of increased code rate, threshold


 becomes smaller than the result of differential evolution only.

34

, (close to global optimum)

Inputs :
Initial  vectors,
, max, 

Optimize 
by using

differential evolution

Enhance  with 

that is a result of

differential evolution

Outputs :
 ,  

Pre-processing :

Find good

,  by

using differential

evolution

Post-processing :

Enhance code rate

by using the

iterative simplex

algorithm for code

rate enhancement

Figure 4.4 A new LDPC code design scheme

35

Richardson [10]
Differential evolution

only
Proposed

 4 5 4 5 4 5

 0.38354 0.32660 0.37648 0.32063 0.38586 0.34065

 0.04237 0.11960 0.05434 0.04681 0.02148 0.11491

 0.57409 0.18393 0.56918 0.25301 0.59266

 0.36988 0.37955 0.54443

 0.24123 0.23938 0.23938

 0.75877 0.78555 0.76062 0.62913 0.76062 0.62913

 0.21445 0.37087 0.37087

 0.50000 0.50000 0.49908 0.49906 0.49851 0.50291





 0.8736 0.8318 0.8579 0.8297 0.8629 0.7960

Table 4.2 Degree distributions for = 4, 5.

36

Richardson [10]
Differential evolution

only
Proposed

 6 8 6 8 6 8

 0.33241 0.30013 0.31265 0.30819 0.34061 0.30259

 0.24632 0.28395 0.17269 0.24250 0.24400 0.26274

 0.11014 0.10492 0.00601

 0.24427 0.01471

 0.31112 0.16547 0.00148 0.41539

 0.00856

 0.41592 0.41855 0.43468

 0.76611 0.22919 0.65951 0.54864 0.65951 0.16636

 0.23389 0.77081 0.34049 0.45136 0.34049 0.83364

 0.50839 0.50013 0.49953 0.49918 0.50584 0.49927





 0.7997 0.5778 0.7836 0.5628 0.7288 0.5619

Table 4.3 Degree distributions for = 6, 8.

37

Richardson [10]
Differential evolution

only
Proposed

 9 10 9 10 9 10

 0.27684 0.25105 0.28683 0.28408 0.28432 0.28413

 0.28342 0.30938 0.24431 0.23683 0.24548 0.22737

 0.00104 0.01290 0.01003 0.03260 0.01930

 0.01349 0.01460 0.09475

 0.00009 0.05226

 0.01384 0.00484

 0.01169 0.09040

 0.43974 0.416867 0.05946

 0.43853 0.24750 0.43759 0.37446

 0.01568

 0.85244 0.63676 0.85899 0.80889 0.85900 0.80939

 0.13188 0.36324 0.14101 0.19111 0.14100 0.22737

 0.50013 0.50000 0.49975 0.49925 0.50015 0.500299





 0.5498 0.5456 0.5392 0.5351 0.5358 0.5260

Table 4.4 Degree distributions for = 9, 10.

38

Richardson [10]
Differential evolution

only
Proposed

 12 15 12 15 12 15

 0.24426 0.23802 0.25903 0.24454 0.25120 0.25039

 0.25907 0.20997 0.17584 0.23239 0.18200 0.19942

 0.01054 0.03492 0.04345 0.00996 0.10740

 0.05510 0.12015 0.03463 0.00243 0.06000

 0.00092 0.00342 0.15268

 0.01587 0.01625 0.04248

 0.01455 0.00164 0.02307

 0.03947 0.04856

 0.01275 0.02230 0.02322

 0.06518 0.10635

 0.40373 0.34130 0.03850 0.45944

 0.13364

 0.00480 0.00144

 0.37627 0.09000 0.33752

 0.25475

 0.73438 0.98013 0.99303 0.97786 0.99294 0.97786

 0.01087 0.01987 0.00697 0.02214 0.00707 0.02214

 0.50016 0.50001 0.49955 0.49965 0.50316 0.50443





 0.5355 0.5287 0.5514 0.5288 0.5202 0.4874

Table 4.5 Degree distributions for = 12, 15.

39

 7 13 14

 0.32721 0.25085 0.24250

 0.27415 0.15928 0.14597

 0.13275

 0.03823 0.14764



 0.39864

 0.41889

 0.42869

 0.52918

 0.47082

 0.97248 0.76507

 0.02752 0.23493

 0.50164 0.50465 0.50205





 0.6473 0.5055 0.4910

Table 4.6 New degree distributions from the proposed

algorithm for = 7, 13, 14.

 Also, we find optimized degree distributions with   . Table 4.6 shows

these results. We find good degree distributions for   ,   , and   .

We can see that the optimized results are good by comparing well-known degree

distributions that have similar maximum variable node degrees.

40

Chapter 5

Conclusion

5.1 Summary

 In this thesis, we describe a way to find good degree distribution by using

differential evolution and an iterative simplex algorithm.

 We discuss some implementation issues of threshold optimizer with differential

evolution.

 We propose an iterative simplex algorithm for code rate enhancement that tunes

 and  iteratively, and a new LDPC code design scheme, that uses

differential evolution for finding good ,  and use an iterative simplex

algorithm for code rate enhancement scheme to enhance code rate.

 We compare the optimization results of proposed LDPC code design scheme with

the optimization results of differential evolution only and some well-known degree

distributions. The optimized result of proposed LDPC code design has better

 than those obtained by differential evolution only.

41

5.2 Future work

 In the future research, the following problems are desired to be studied.

 For finding good  and , is there any other way that is better than

Differential evolution?

 How many generations in Differential evolution only scheme are required

to obtain optimized degree distribution as good as proposed scheme? And

what scheme requires low computational complexity?

42

Bibliography

[1] R. G. Galleger, "Low-density parity-check codes," IRE Trans. Information

Theory, vol IT-8, pp. 21-28, Jan. 1962.

[2] R. G. Galleger, Low-Density Parity-Check Codes. Cambridge, MA:MIT Press,

1963.

[3] M. Sipser and D. A. Spielman, "Expander codes," IEEE Trans. Information

Theory, vol. 42, pp. 1710-1722, Nov. 1996.

[4] D. J. C. MacKay and R. M. Neal, "Near Shannon limit performance of

low-density parity-check codes," Electron. Letter, vol. 32, pp. 1645-1646, Aug.

1996.

[5] D. J. C. MacKay, "Good error-correcting codes based on very sparse

matrices," IEEE Trans. Information Theory, vol. 45, pp. 399-431, Mar. 1999.

[6] M. Luby, M. Mitzenmacher, A. Shokrollahi, and D. Spielman, "Analysis of

low density codes and improved designs using irregular graphs," in Proc. 30th

Annu. ACM Symp. Theory of Computing, pp. 249-258, 1998.

[7] T. J. Richardson and R. Urbanke, "The capacity of low-density parity-check

codes under message-passing decoding," IEEE Trans. Information Theory, vol. 47,

pp. 599-618, Feb. 2001.

[8] Sae-Young Chung, Thomas J. Richardson, and Rüdiger L. Urbanke, "Analysis

of Sum-Product Decoding of Low-Density Parity-Check Codes Using a Gaussian

Approximation," IEEE Trans. Information Theory, vol. 47, pp. 657-670. Feb. 2001.

[9] M. Luby, M. Mitzenmacher, A. Shokrollahi, D. Speilman, and V. stemann,

"Practical loss-resilient codes," in Proc. 29th annu. ACM Symp. Theory of

Computing, pp. 150-159, 1997.

43

[10] T. J. Richardson, A. Shokrollahi, and R. Urbanke, "Design of

capacity-approaching Irregular low-density parity-check codes," IEEE Trans.

Information Theory, vol. 47, pp. 619-637, Feb. 2001.

[11] R. Storn and K. Price, "Differential evolution - A simple and efficient

heuristic for global optimization over continuous spaces," Journal of Global

Optimization, vol. 11, 341-359, 1997.

[12] K. Price, "Differential Evolution : A Fast and Simple Numerical Optimizer,"

NAFIPS'96, pp. 524-527, 1996.

[13] X. Y. Hu, E. Eleftheriou, and D. M. Arnold, "Regular and irregular

progressive edge-growth tanner graphs," IEEE Trans. Information Theory, vol. 51,

pp. 386-398, 2005

[14] D Vukobratovic, A Djurendic, V. Senk, "ACE Spectrum of LDPC Codes and

Generalized ACE Design," IEEE International Conference on Communications, pp.

665-670, 2007.

44

국문요약

Differential evolution과 Simplex 알고리듬을 이용한

새로운 LDPC 부호 설계 방법

 본 논문에서는 differential evolution과 반복적인 simplex 알고리듬을 혼합한 새

로운 LDPC 부호 설계 방법을 제시한다. 이 새로운 방법은, differential

evolution을 이용하여 좋은 임계값을 갖는 체크 노드와 변수 노드의 차수 분포

를 구하고, 이를 바탕으로 반복적인 simplex 알고리듬을 이용하여 부호율을 향

상시킨다. 이를 위해, differential evolution을 이용한 임계값 최적화의 구현상의

문제에 대해서 다룬다. 그리고 변수 노드와 체크 노드의 차수 분포를 최적화

하는 두 simplex 알고리듬으로 구성된 반복적인 simplex 알고리듬을 다룬다.

 모의 실험 결과를 통하여, 제안하는 새로운 LDPC 부호 설계 방법이 잘 알려

진 차수 분포보다 좋은 결과를 얻을 수 있음을 확인하였다. 또한 제안하는 새

로운 LDPC 부호 설계 방법을 이용하여 몇 가지 새로운 차수 분포를 찾았다.

핵심되는 말 : LDPC, 부호 설계, simplex 알고리듬, differential evolution, 차수

분포 최적화

