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ABSTRACT

New LDPC code design scheme combining

differential evolution and simplex algorithm

Song, Min Kyu
Dept. of Electronic Engineering
The Graduate School

Yonsei University

In this thesis, we propose a new LDPC code design scheme that combines
differential evolution and iterative simplex algorithm. In the proposed scheme, we
find good check and variable node degree distribution and threshold by using
differential evolution, and then, we find check and variable node degree
distribution that has enhanced code rate by using an iterative simplex algorithm.
We also discuss some practical implementation issues of wusing differential
evolution for threshold optimization and verify that it works well by comparing it
with some well-known degree distributions. An iterative simplex algorithm consists
of two simplex algorithms, optimizing p(z) and A(z), respectively.

Some simulation results show that we can find degree distribution with proposed

LDPC code design scheme better than some well-known degree distribution.

Key words : LDPC, code design, simplex algorithm, differential evolution, degee

distribution optimization



Chapter 1

Introduction

1.1 Motivation

From the discovery of turbo codes, iterative decoders have attracted a lot of
attention. As an example of the attention, LDPC codes - first discovered by
Gallager [1] - were rediscoverd by Spielman et al. [3] and Mackay et al. [4] and
there have been many researches to analyze the LDPC codes. The LDPC codes
have a very important property called threshold phenomenon: for any noise level
that is smaller than a certain value, an arbitrary small bit-error probability can be
achieved. This phenomenon is first observed by Gallager for binary symmetric
channels (BSCs) [1], [2] and generalized by Luby et. al. [6], Richardson and
Urbanke [7].

In [7], Richardson and Urbanke proved the decoder performance on random
graph converges to its expected value as the length of the code increases. In [10],
they proposed an analysis tool for LDPC codes, called Density evolution and
analyzed the expected behavior of ensemble of LDPC codes that is cycle-free and
has infinitely long length with density evolution. The key idea of density
evolution is to track the densities of the messages flowed in the Tanner graph of
LDPC code. To obtain the densities of the messages requires high computational
complexity that is a serious problem in practice. Thus, Sae-Young chung et al.

proposed Gaussian approximation to reduce the computational complexity [8]. In



Gaussian approximation, the message densities are assumed gaussian for the
convenience of calculation.

Since LDPC codes can be specified with check and variable node degree
distributions and their connection, LDPC code design consist of two steps, code
design and code construction. Code design is a process to design ensemble of
LDPC codes by determining check and variable node degree distributions. After
code design, code construction is followed. Code construction can be done with
Random, Progressive Edge Growth (PEG) [13], and Approximated Cycle Extrinsic
message degree (ACE) [14]. By using density evolution, code design problem can
be changed to a non-linear problem and degree distribution of an ensemble of
LDPC codes can be optimized using differential evolution, well-known non-linear
program solver [10]. But, in [10], there is no details about how to apply
differential to code design. There are only some degree distributions. In practice,
sometimes, we will be faced the code design with arbitrary code rate and
maximum check/variable node degree. Thus details about code design is important.
In this thesis, we describe details about code design by using differential
evolution, especially how to apply differential evolution to degree distribution
optimization. And we propose a new iterative simplex algorithm for code rate

enhancement and new code design scheme.

1.2 An overview

The remainder of this thesis is organized as follows. In Chapter 2, we give brief
description of the LDPC code design problem and two optimization methods,

simplex algorithm and differential evolution. Then, we will describe Gaussian



approximation for changing code design problem to optimization problem. In
Chapter 3, we describe details about threshold optimization with differential
evolution. In Chapter 4, we propose a new LDPC code design scheme and
compare it with some well-known degree distribution and differential evolution
only. And we find some new degree distributions. Conclusions are presented in

Chapter 5.



Chapter 2

Degree distribution optimization problem

In this chapter, we will describe LDPC code design problem. Then, we will
briefly describe some well-known linear and non-linear program solver, simplex
algorithm and differential evolution. Finally, we will convert code design problem
to two optimization problems, threshold optimization problem and code rate

optimization problem.

2.1 An overview of LDPC code design

As their name suggests, LDPC codes are block codes with parity-check matrices
that contain only a very small number of non-zero entries. Aside from the
requirement that parity-check matrix H be sparse, an LDPC code itself is no
different from any other block code. Indeed, classical block codes will work well
with iterative decoding algorithms. However, generally finding a sparse matrix for
an existing code is not practical. Instead LDPC codes are designed by
constructing a suitable sparse parity-check matrix first and then determining an
encoder for the code afterwards.

An ensemble of the LDPC code is specified by variable and check nodes degree
distributions A(z), p(z). Let d,, d. be maximum degree of the variable and check

nodes, respectively. Then, degree distribution of the LDPC code is defined as

d, d,
Mz) = EAix’_l, plz)= Epix’_l
i=2 i=2



where ), and p, are the fractions of edges belonging to degree-i variable and

check nodes, respectively [9]. Using this expression, the norminal rate 2 of the

/Olp(x)dx

1-—
/O)\(:Jc)dx

With these variable and check nodes degree distributions and connection between

code is given by [11]:

R=

variable and check nodes, an LDPC code is represented as bipartite graph, called

Tanner graph. An example of the Tanner graph is shown in Figure 2.1.

E EE Ea Hﬂ EE Check nodes

- -> edges

GOOO0O00D Q- e roes

Figure 2.1 Example : Tanner graph of an LDPC code.

If variable and check nodes degree distributions have only one non-zero term

pla)=p,z"
then the LDPC code is called regular. Otherwise, the LDPC code called irregular.
Since LDPC code can be specified with variable/check nodes degree distributions
and their connection, LDPC code design is generally has two steps, 'Code design'
and 'Code construction'. In the code design step, we select a good ensemble of
LDPC codes by determining variable and check nodes degree distributions. After

the code design, we construct bipartite graph using some construction methods.



This is called code construction. There exist some code construction methods such
as Random, PEG [13], and ACE [14]. The code design can be achieved with
Density evolution and differential evolution [10]. But there exist no details about
how to apply differential evolution to code design. Only some degree distributions
with code rate 0.5 were presented in [10]. Following table describes some degree

distribution and its threshold /N, obtained by Gaussian approximation. In the

table, (£/N,),; means threshold (&/N,),; In this thesis, some threshold values

will be represented as ()*.

Since there is no details about how to apply differential evolution to code
design, we will be faced with many problems when we want to design ensemble
of LDPC codes with arbitrary R, d, and d. And it is also a problem that if we
use differential evolution for code design, what is good differential evolution
scheme. We will try to solve these problems in this thesis.

There are two objects of LDPC code design, code rate 2 [8] and threshold s*
[10] where the threshold is defined as the maximum noise level such that the
probability of error tends to zero as the number of iterations tends to infinity.
This two optimization problems are described in Figure 2.2. Since code rate is
given in practice, optimizing threshold for given code rate is practically important.
To solve the threshold optimization problem, the constraint that bit error

probability p, goes to 0 as iteration [ goes to infinity should be some function of

p(z) and A(z). This process will be done by Gaussian approximation.



Table 2.1 Some well-known degree distributions

Richardson [10]

d, 4 5 6

A, 0.38354 0.32660 0.33241

Ay 0.04237 0.11960 0.24632

A 0.57409 0.18393 0.11014

A 0.36988

A 0.31112

P 0.24123

Ps 0.75877 0.78555 0.76611

pr 0.21445 0.23389

R 0.50000 0.50000 0.50839
%)j‘w 0.8736 0.8318 0.7997

& ) 0.6114 0.6056 0.6112




optimization algorithms:

-~

~

Optimize threshold

Minimize s*

subject to

d,
Z%Pz‘ =1

p.—0 as [0

by tuning

for given

/

-~

Optimize code rate

Maximize R
subject to
d,
sz' =1
1=2
dﬂ
E)V =1
i=2
p.—0 as [0
by tuning
plz), Az)
for given
s* d, d

~

/

Figure 2.2 Two objects of code design and their optimization problems

2.2 Optimization methods for degree distribution

optimization problems

Before we describe detail of code design, we will illustrate two well-known

simplex algorithm and differential

description of two methods is shown in Table 2.2,

evolution.

Brief



Table 2.2 Brief description of simplex algorithm and differential evolution

Simplex algorithm Differential evolution

Optimization algorithm for L.
Type . Heuristic
linear program (LP) problems

Standard form of LP

Requirement System parameter
problems
Solution Global optimum Close to global optimum
Stopping Optimality of current basic

Fixed iteration number

condition solution is guaranteed

2.2.1 Simplex Algorithm

Simplex algorithm is a commonly used linear programming technique. Every

linear program can be converted into a 'standard form’,

maximize ¢z, +...+c,z,

n-n

subject to ayz; +...+ay,x, =b

a, %, +--ta,,z, =b,

mn=—n

where the objective ¢z, +...+c,x, is maximized, the constraints are equalities

and the variables are all non-negative. To solve a linear program by using

simplex algorithm, this is done as follows:



* If the problem is minz, convert it to max —z.

* If a constraint is a;,x, +... +a,,x, = b, convert it into an equality constraint

by adding a nonnegative slack variable. The resulting constraint is

a;x, +...+a;,x, +s=0>b, where s = 0.

mon

* If a constraint is a;x, +...+a,,x, < b, convert it into an equality constraint

tnem

by subtracting a nonnegative slack variable. The resulting constraint is
ayr, +..+a,r, —s=0>b, where s > 0.

mTn

* If some variable z; is unrestricted in sign, replace it everywhere in the

where 2’ , z”.> 0.

- ! 14
formulation by T,—Z ; ;

After above process, the equations can be transformed to matrix form. simplex
algorithm solve the linear program by using this matrix.

In simplex algorithm, there are two variables, basic and nonbasic. The variables
(other than the special variable z) which appear in only one equation are the
basic variables. Other variables are nonbasic variables. A basic solution is obtained
from the system of equations by setting the nonbasic variables to zero. If there is
negative term in the leftmost column of the matrix, it can’t have basic feasible
solution. There are two steps to find optimal solution by using simplex algorithm,
Phase 1 and Phase 2. If there exist negative term in the leftmost column of the
matrix, we can transform the matrix to another matrix by pivoting with a row
that has negative term in the leftmost. This process is called Phase 1. If there
exist feasible solution, then Phase 1 will be skipped. In the Phase 2, we will
solve the linear program. Phase 2 is commonly known as simplex algorithm.

There are two rules in Phase 2.

10



Rule 1. If all variables have a nonnegative coefficient in Row 0, the current

basic solution is optimal. Otherwise, pick a variable z; with a negative

coefficient in Row 0. The chosen variable is called the entering variable.

Rule 2. For each Row i,5 > 1, where there is a strictly positive entering
variable coefficient, compute the ratio of the Right Hand Side (RHS) to the
entering variable coefficient. Choose the pivot row as being the one with

MINIMUM ratio.

The simplex algorithm iterates between Rules 1,2 and pivoting until Rule 1
guarantees that the current basic solution is optimal.

Using simplex algorithm to solve linear program, there are two problems,
'degeneracy’ and ‘'unbounded optimum'. The degeneracy problem denotes that, for
given iteration, there exist a basic variable which is equal to 0. If degeneracy is
occurred for many iterations, the solver repeats same process indefinitely, called
cycling. To avoid cycling, we must choose the entering variable with smallest
index in Rule 1. But, in commercial, no effort is made to avoid cycling Since
cycling is extremely rare and the precision of computer arithmetic takes care of
cycling by itself: The cumulative error will be a way that solve degeneracy. The
unbounded optimum problem will be occur if there is no positive entry in the
column of the entering variable. If it is occurred, the optimal solution is

unbounded for some basic variables.

Example

If the linear program problem is given as follow.

11



maximize z=z, +x,
subject to 2z, +x, < 4

z, +2z, < 3

Ty,Ty =0
At fist, we should transform the problem to its standard form,

maximize z= z, t+x,
subject to 2z, +x,+x; =4
r, T2z, +x, =3

Ty Toy Ty, = 0

where z, and x, are slack variable.

Matrix representation of the standard form is shown in Figure 2.3.

z (2] [ (9 &9 o

1 -1 -10 010 Basic variable

0 2 1 1 0|4 ONonbasic variable
0o 1 2 o0 113

Figure 2.3 Matrix representation of the standard form

Since there are negative terms in the row 0, the basic solution is not optimal. By
. R . 4 . 3
rule 1, we pick column 1 for pivoting. Since 522 is smaller than TZS’ we

pick row 1 for pivoting. By pivoting, we get a new matrix as Figure 2.4.

12



| Basic variable

2 . .
5 O Nonbasic variable
1

1 o -1/2 1/3
0 1 1/2 12
0 0 3/2 -1/2

z@ x5 [x3 @
; O
0
1

Figure 2.4 Result of first pivoting

Since there is a negative term in the row 0, the basic solution is not optimal. So,
we should pick column2 and row 2, and pivot the row. Then, we get a new

matrix as Figure 2.5

@O 6 @
1 0 0 1/3 1/3 |7/3 | |
o1 0 2/3 —1/3|5/3 ONonbasmvarlable
0 0 1 -1/3 2/3 | 2/3

Basic variable

Figure 2.5 Result of second pivoting

Since there is no negative term in row 0, Rule 1 guarantee that the basic solution

is optimal.

3% Optimal solution

2.2.2 Differential evolution

Differential evolution (DE) is a parallel direct search method which utilizes »

parameter vectors

13



af i=1,2,.,N
as a population for each generation G. /V does not change during the optimization
process. The initial vector population is chosen randomly and should cover the
entire parameter space. DE generates new parameter vectors by adding the
weighted difference between two population vectors to a third vector. This
operation is called mutation. The elements of a mutated vector are then mixed
with the elements of another predetermined vector, the target vector, to yield the
so-called trial vector. Mixing elements of mutated vector is often referred to as
‘crossover'. If the trial vector yields a lower cost function value than the target
vector, the trial vector replaces the target vector in the following generation. This
last operation is called 'selection'. Differential evolution is often represented as
DE/X/D/Z

where X specifies the vector to be mutated which currently can be 'rand' (a
randomly chosen population vector) or 'best' (the vector of lowest cost from the
current population), D is the number of difference vectors used to mutate, and 7
denotes the crossover scheme. Differential evolution is known as more efficient

scheme than 'Annealing methods' [11].

Mutation

G

For each target vector z;", i=1,...,/V, a mutant vector is generated as

G
2 T‘Zk.)

D
G+1 _ G G _
v =x; +F><k21(337.m x

with random indices 7, r, where D is the number of difference vectors

used to generate mutated vectors. The randomly chosen indexes 7, r, are

14



chosen to be different. 7 is a real and constant factor < [0,2] which controls

the amplification of the differential variation.

Crossover
In oder to increase the diversity of the pertubed parameter vectors, crossover

is introduced. In this process, the trial vector is mixing of the mutated vector

G+1
i .

and target vector to generate trial vector u

Selection

To decide whether or not it should become a member of population at

generation G-+1, the trial vector Mean

1

G
i

is compared to the target vector =z

using the greedy condition. If vector u’

1

"1 yields a smaller cost function value

G+1

i

G

1

G

than a:f’ then zx is set to "', Otherwise, the old value x;” 1S retained.

Example

Assume that we want to optimize following problem.
maximize  z= a, +a,
subject to  2a, +a, < 4
a; +2ay, < 3
a;,ay =0
We will solve this problem with differential evolution. The system parameters are

given as N=4, DE/best/1/bin where the crossover scheme bin means

element-wise mixing.

15



Then, initial populations are generated randomly. We assume that generated initial

populations are x,, x,, x5, x, in Figure 2.6.

[t generation

Population index X1 X2 X3 Xy |
Initial populations 0.3 1 0.5 0.7 Best!
(Target vectors) (0 5 (0.8) (1 2 0.9)

a, + a, =08 = 1.8 = 1.7 = 1.6

Figure 2.6 Generated initial vectors
Since a,+a, is best when =z, is selected, x, is best population in the initial

population.

Then, Mutated vectors are generated as Figure 2.7.

Best!
|** generation
IPQPLIJIationIindex X1 X2 X3 Xg
(Trgervecors (05) | (o) (3 (59)
wta, 208 <18 =17 =16
Mutated vectors :(0'9_)\1 (09 ) (1'35) (1'2)
1\0.95/) iloas/; o875 1
....... N B
| Result of x,5:° + 0.5(x5 — x4) |

Result of x,5:° + 0.5(x, — x4)
Result of x},,:° + 0.5(x, — x;)

Figure 2.7 Mutation process

16



After mutation process, we can obtain trial vectors via crossover and select better
one between target and trial. Figure 2.8 shows crossover and selection. We will

repeat this process for a fixed number of iteration to find solution that is close to

optimal.
|st generation

Population index X1 X3 Xy

Initial populations 0.3 0.7
(Target vectors) ([}_5) :_IT[) 8) - ( )_I (0_9)—|
a + a, =08 i|—|8 =17 i =16 |
Mutated vectors I_( 0.9 ) i L 35 (1 2) I
95 —|| 045 || 0875 | | |

I

. —>0.9 I'L(>1 135 TI
Trial vectors "0.95 i 0.45)_“ 09)

a, + a, =185 | =145 255 =
Select better one 0. 95) -)(D 8) ) - : 09 i
a, + a =18 =18 = |.7 2.1
v

Best in the result of the |** generation!

Figure 2.8 Crossover and Selection.

17



2.3 Density evolution and Gaussian approximation

2.3.1 Density evolution

Under the message passing algorithm (sometimes called sum-product algorithm),
variable and check nodes exchange messages at each iteration. At [-th iteration, a
check node gets messages from its neighbors, processes the messages and sends
the result back to its neighbors. The message that will be sent back from the
check node to a variable node will be made with all incoming messages except
the incoming message on the edge where the output message will be sent out. A
variable node operate similarly as check node. Only difference between variable
and check nodes are the process to generate output message with incoming
messages.

For convenience of the analysis, we use log-likelihood ratios (LLRs) as
messages. So, we use

plylz=0)
plylz=1)

v=log
as the output message of a variable node, where z is the value of the variable
node and y denotes all the information that is available to the variable node up
to the present iteration except the incoming message on the edge where the output
message will be sent out. Similarly, the output message of a check node is
defined as

pylz"=0)

u=log—5——+
plylz’ =1)

where z’ is the value of the variable node that gets the message from the check
node, and 3  denotes all the information that is available to the check node up to

the present iteration except the incoming message on the edge where the output

18



message will be sent out.

If the LDPC code is cycle-free, then we can analyze the decoding algorithm
straightforwardly because incoming messages to every node are independent. Thus
we assume that the LDPC code is cycle-free and infinitely long length.

The main idea of density evolution is tracking densities of messages that flow
on the graph. Under the sum-product algorithm, variable and check node equations

are given as
d—1
v::§3u¢
i=0

d—1 v.
tanh— = I Jtanh—,
2 =1 2

where d denote degree of the node. Since we know density of channel output, we
can track densities of messages. But obtaining densities of messages requires high

computational complexity.

2.3.2 Gaussian approximation
Since Density evolution require high complexity, Gaussian approximation is
proposed [8]. For the convenience of analysis, we assume that power of
transmitted symbol £, is 1. If the channel is BI-AWGN, the LLR message w,
2

from the channel is Gaussian with mean 2/¢” and variance 4/c

n?

where o7 is the
variance of the channel noise. Thus, if all u, except w, are independent and

identical Gaussian, then the resulting sum is also Gaussian. Even if the inputs are
not Gaussian, by the central limit theorem, the sum would look like a Gaussian if

many independent random variables are added.

19



From the idea described above, the Gaussian approximation assume that all of
the messages are gaussian. Since Gaussian is completely specified by its mean and

variance, we need to keep only the means and variances during iteration. By

enforcing symmetry condition, which can be expressed as f(z)=f(—x)e”, for the
approximated Gaussian densities at every iteration, we can greatly improve the

accuracy of the approximation [8]. For the Gaussian with mean m and variance
o, this condition reduces to ¢® =2m, which means that we need to keep only
the mean.

We denote the mean of « and v by m, and m,, respectively. Then (2.1) simply

becomes

m" =m +(d —1)m([71) (2.3)

v U v u

where m, is the mean of u, and [ denotes the Ith iteration. The index ¢ for v,

is omitted because w;'s are i.i.d. for 1 <7 <d, and have same mean. Note that

m\” is zero since the initial message from any check node is 0.

u

The updated mean m§f> at the [th iteration can be calculated by taking
expectations on each side of (2.2),

]d(,*l

v,
E[tanh%] = E[tanh;j (2.4)

where we have omitted the index j and simplified the product because the v;'s

are i.i.d. Note that E[tanh%] depends only on the mean m, of u, we define a

function to calculate E[tanh%],

20



(u—z)*

1 u - u4z :
¢(m): 1—ﬁ/1%tanh§e du, 1f$>0.

1, 1fr=0
The function ¢(z) is continuous and monotonically decreasing on [0, o), with
#(0)=1 and ¢(0)=0. Using ¢(z), the update rule for m, can be represented

as

ml) =g 1 (1= 1= ¢(m, +(d,~ Dm"V)""") (2.5)

u
where m ) =0 is the initial value for m,

If the LDPC code is irregular, then (2.5) will be (2.6).

ij 1—1—2A¢m Ha-Dm{TPY (26)
ji=2 1=2
For convenience, we denote m,'s update function as
ij (1— 1—2)\¢>s+ =1t~ ).
j=2 =2

In this case, the threshold s* is the infimum of all s=4xE,/N, in R" such

that m,ff) goes to co as [ goes to oco. With above equation, the threshold in terms

of noise power is equal to 2/s’. Since ¢(z) is monotonically decreasing on

0

IA

x < oo, g(s,t) is monotonically increasing on both 0<s<oo and
0 < t<oo. Thus, g(s,t) will converge to oo if and only if ¢<g(s,t) for all
tER",

In [10], by expecting behavior of m,’s update rule for a sufficiently large ¢,

stability condition is derived as

d.
A <x = TLG-1)" @.7)

j=2

21



An alternative expression of (2.6) is

d, d,
P =his, V)= E)\jqﬁ[s-l—(i—l)ijqﬁ_l(l—(1—r(l_1))j_1)], (2.8)
i=2 j=2

where h(s,r) denote r’s update function and ' goes to zero if and only if

r>h(s,r) for 0<r<e¢(s). With (2.6) and (2.7) (or (2.7) and (2.8)), the degree

distribution optimization can be done.

It is known that p(z)=pz™ "+(1—p)z™ is good enough to obtain good
performance [8]. With above, the code design problem can represented as Figure
2.9. For code rate optimization problem, it can be linear program if p(z) (or
A(z)) is given.

There is a problem that we can’t calculate s* directly since the representation of
s* in terms of p(z) and A(xz) is not known. Thus, we can obtain threshold s*

through trial and error.
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4 N

Optimize threshold

Minimize s*
subject to
Pa—1tps =1
d,
Z)‘i =1
1=2

r>h(s,r) for Vr

0<r<o¢l(s)

(or t < g(s,t) for tER™)

d
1/26% /7T, . )
)\2<€ /H(J_l)p
j=2

by tuning
plx), Ax)

for given

N

R, d, d,

/

4 N

Optimize code rate

Maximize R
subject to
Pa—1tpg =1
d,
Z)‘i =1
1=2

r>h(s,r) for Vr

0<r<o¢l(s)

(or t < g(s,t) for tER™)

d
1/26% /7T, . )
)\2<€ /H(J_l)p
j=2

by tuning
plx), Ax)

for given

Figure 2.9 Two optimization problems
with Gaussian approximation
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Chapter 3
Practical application of
differential evolution

to degree distribution optimization

In this Chapter, we will describe details about how to apply differential evolution
to optimize threshold s*. Then, we will explain about effect of parameters in

differential evolution to find good differential evolution scheme.

3.1 Differential evolution scheme for practical degree

distribution optimization

As mentioned in Section 2.1, differential evolution can be used to design
ensemble of LDPC codes. Since differential evolution consists of mutation,
crossover, and selection, we should define each step to solve the threshold
optimization problem.

At first, initial populations are chosen randomly. Since computers manipulate
finite length floating point, we choose initial populations uniformly that satisfy the

constraints

r> h(s,r) for 0 <r<o(s) (3.1)
d,
Y =1 (3.2)
i=2
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Py —1tp, =1 (3.3)

i,
A <X = TIG-1)" (3.4)

j=2

The populations at G-generation has following form,

In mutation process, the control parameter F' should be 1 to satisfy (3.2) and

(3.3). Thus, we use following mutation process

_xbesf +Z 1_‘T7 ,k )

There are some issues of implementing threshold optimizer with differential
evolution. First, the resolution of ¢(z) and ¢ '(z) should be carefully determined.
Since the function ¢(xz) and ¢ '(z) affect calculating threshold and checking
(3.1), an error introduced from the resolution of #(z) and ¢ '(x) cause wrong
checking result or calculated threshold. It is very critical to this scheme. Second,
r should be appropriately quantized for checking (3.1) and threshold calculation.
Third, the cumulative error of computer arithmetic cause a population not to
satisfy (3.2) and (3.3) after large iteration. It means that the output best
population is not degree distribution. Thus, we normalize the sum of p(z) and
A(x) at each mutation. Finally, the number of iterations should be large enough.
And the number of iterations should be increased if size of the parameter space is

increased. Increasing size of the parameter space means that the searching space is
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increased. Thus, required the number of iterations to find good solution should be
increased. By simulation, It turned out that the size N only affects the expected
best threshold at initial population, and the size D affect the slope of changing
best threshold. Since increasing NV and D cause high computational complexity,

the values of NV and D must be carefully selected

3.2 Threshold optimization result

Table 3.1 show that some well-known degree distribution and our optimization
result. For optimization, tolerable error of code rate is less than 0.001 and
differential evolution scheme is mentioned above. From the table, we can see that
optimization is successfully done and the degree distribution is as good as

well-known degree distributions.
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Table 3.1 Some well-known degree distributions
and optimization results

Richardson [10] Differential evolution

d, 4 5 6 8 4 5 6 8

Ao 0.38354 | 0.32660 | 0.33241 | 0.30013 | 0.37648 | 0.32063 | 0.31265 | 0.30819

Az 0.04237 | 0.11960 | 0.24632 | 0.28395 | 0.05434 | 0.04681 | 0.17269 | 0.24250

A, | 0.57409 | 0.18393 | 0.11014 0.56918 | 0.25301 | 0.10492 | 0.00601
As 0.36988 0.37955 | 0.24427 | 0.01471
Ag 0.31112 0.16547 | 0.00148
A 0.00856
Ag 0.41592 0.41855
ps | 0.24123 0.23938

P6 0.75877 | 0.78555 | 0.76611 | 0.22919 | 0.76062 | 0.62913 | 0.65951 | 0.16636

P7 0.21445 | 0.23389 | 0.77081 0.37087 | 0.34049 | 0.83364

R 0.50000 | 0.50000 | 0.50839 | 0.50013 | 0.49908 | 0.49906 | 0.49953 | 0.49918

(F)‘IB 0.8736 | 0.8318 | 0.7997 | 0.5778 | 0.8579 | 0.8297 | 0.7836 | 0.5628
0
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Chapter 4

A new LDPC code design scheme

In this chapter, we propose an iterative simplex algorithm for code rate
enhancement that tune p(xz) and A(x) iteratively for improving code rate. Since
we need initial p(x) to enhance code rate, we will use some well-known degree
distributions to enhance code rate and observe an effect of code rate enhancer for
given degree distribution. We propose a new LDPC code design scheme and
compare it to optimization result of differential evolution only. Finally, we find

some new degree distributions.

4.1 An iterative simplex algorithm for code rate

enhancement

We can't solve threshold optimization problem since there is no known
representation of s* in terms of p(xz) and A(z). But the code rate optimization
problem is a linear program if one of p(z) and A(z) is given. Thus we can
think of a scheme that optimizes s* by tuning p(z) and A(x) iteratively by using
simplex algorithm. This scheme is shown in Figure 4.1. In this scheme, we must
select an initial p(z) to enhance code rate. We can easily see that the code rate

at each iteration will converge as iteration number goes to oo.

28



Inputs :
pimt('r)’ 8*1 M1 d

v

dC

/ Optimize R \ / Optimize R \

Maximize r Maximize r
subject to subject to
d Ax) J
A =1 Ny =
; Z;Al 1

M Times t<g(s,t) for “ter”

0<r<aols) \

2 d;
)\2 < el/?a,,/H(j_ 1)/’j
ji=2

L tp, =1
Pa,—17 P, \ Pa,—1 ‘{‘/Odn =1
r>h(s,r) for Vr, f -

d.
A < TIG—1)
j=2

by tunin
by tuning p(az) 4 9

)\(33) P(w)

for given

for given

k s, d, d, plx) / k s*, d,, d, A\z) /

Outputs :
Penh (.’13) ) )\enh (SL’) y R

Figure 4.1 An iterative simplex algorithm for code rate enhancement
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Theorem 4.1. Let the linear program solver of the two optimization process in
Figure 4.1 be simplex algorithm. Then, the code rate will converge as iteration
number goes to oo because the solution of simplex algorithm is global optimum.
proof)

Let A% (z), p"(z) be an optimization result for given p'~V(z) (or A*~V(z)).

Then, by iterative optimization, the \* (z), ' (z) pairs are given as Figure 4.2.

Figure 4.2 Optimization process for given o) (z) or A" (z)

Let

Ed“]p
n=2

K
m=

By
=

o S

<
3

3

2 m

be the intermediate code rate that represented in terms of p”(z) and AY(z). For
given % (z), tuned A"V (z) is the best choice since the solution of simplex
algorithm is global optimum. But, if we want to tune PtV (z) for ATV (),
there may exist another choice better than p(” (z). If there is no choice better

than p'” (z), then p” (z) is the best choice. It means that
lzi,i-‘rl = Ri,i = [Zifl,i'
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Above statement means that the sequence of Z ; is non-decreasing. Since the
code rate is upper bounded by 1 and the sequence of £ ; is non-decreasing, £, ;

will converge. (End of proof)

By computer simulation, if £,/N, is small enough (0 to 1.2), then R, will

converge with few iterations (less than 10). We denote the converged code rate in

the above iterative simplex algorithm for code rate enhancement scheme by 7, ;.

An implementation of the iterative simplex algorithm for code rate enhancement

has some problems. First, since we can’t guarantee that 7

enh

is local or global
optimum. Thus, the choice of p,,,(z) is very important to obtain code rate that

close to local or global optimum. Second, » and ¢ should be quantized to make

linear program. Thus, we should carefully choose the quantization size of r and <.

4.2 Application and verification of the iterative simplex

algorithm

As mentioned in Section 4.1, we should choose p,(z) carefully to use

proposed code rate enhancement scheme. For the performance of code rate

enhancement, we choose p,.(z) in some well-known degree distribution and

enhance its code rate with the iterative simplex algorithm for code rate
enhancement. Table 4.1 shows some well-known degree distributions and its

results of enhancing code rate. From Table 4.1, we can see that threshold
(E,/N,), is become smaller than well-known degree distribution by the effect of

increased code rate.
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Table 4.1 Some well-known degree distributions
and its code rate enhancement results

Richardson [10] Results of code rate enhancement

Ag 0.38354 | 0.32660 | 0.33241 | 0.30013 | 0.38720 | 0.35140 | 0.35206 | 0.30681

A3 0.04237 | 0.11960 | 0.24632 | 0.28395 | 0.03290 | 0.15408 | 0.27317 | 0.26644

Ay | 0.57409 | 0.18393 | 0.11014 0.57990

A5 0.36988 0.49450 0.00819
Ag 0.31112 0.37477

Ay 0.03787
Ag 0.41592 0.38069
ps | 0.24123 0.24123

P6 0.75877 | 0.78555 | 0.76611 | 0.22919 | 0.75877 | 0.78555 | 0.76611 | 0.22919

P7 0.21445 | 0.23389 | 0.77081 0.21445 | 0.23389 | 0.77081

R 0.50000 | 0.50000 | 0.50839 | 0.50013 | 0.50021 | 0.50436 | 0.51116 | 0.50038

B, .
(3V?)43 0.8736 | 0.8318 | 0.7997 | 0.5778 | 0.8727 | 0.7943 | 0.7760 | 0.5756
0

“)" | 0.6114 | 0.6056 | 0.6112 | 0.5713 | 0.6114 | 0.6056 | 0.6112 | 0.5713
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4.3 A new LDPC code design scheme combining

differential evolution and iterative simplex algorithm

From the result of Section 4.2, we can observe that threshold £ /N, will be

decreased and code rate R will be increased via the iterative simplex algorithm
for code rate enhancement. Thus we can think of a new LDPC code design
scheme in Figure 4.4.

At the first stage, we find a good p(z), A(xz) pair, that has low s* with
differential evolution. Then, we can optimize code rate by using the iterative
simplex algorithm for code rate enhancement presented in Section 4.1. The result

of code rate enhancement is p,,,(x) and ), (z) that has enhanced code rate
with same ES/NU. By the effect of enhanced code rate with same s*, the
(£,/N,)* will be decreased.

In the proposed new code design scheme, differential evolution is used to find a
good p(x) and s* and the iterative simplex algorithm for code rate enhancement
is used to enhance code rate for given p,,(z) and s*. The optimized result is
compared with some well-known degree distributions and differential evolution
only in Tables 4.2, 43, 44, 45. In these tables, the results of differential
evolution only are the results of pre-processing in the iterative simplex algorithm

for code rate enhancement. By the effect of increased code rate, threshold

(E,/N,),;; becomes smaller than the result of differential evolution only.
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Inputs
Initial /V vectors,

G=0, G,... D
' Pre-processing :
Optimize s Find good
by using o(z), Mz) by
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evolution
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Post-processing :

i Enh de rat
Enhance R with p(az) nhance code rate

that i1s a result of
differential evolution

by using the
iterative simplex
algorithm for code

rate enhancement

v

Outputs
Popt () Ay ()

Figure 4.4 A new LDPC code design scheme
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Table 4.2 Degree distributions for d,= 4, 5.

Differential evolution

Richardson [10] only Proposed

d, 4 5 4 5 4 5

Ay 0.38354 | 0.32660 | 0.37648 | 0.32063 | 0.38586 | 0.34065

As 0.04237 | 0.11960 | 0.05434 | 0.04681 | 0.02148 | 0.11491

A 0.57409 | 0.18393 | 0.56918 | 0.25301 | 0.59266

As 0.36988 0.37955 0.54443

Ps 0.24123 0.23938 0.23938

P 0.75877 | 0.78555 | 0.76062 | 0.62913 | 0.76062 | 0.62913

pr 0.21445 0.37087 0.37087

R 0.50000 | 0.50000 | 0.49908 | 0.49906 | 0.49851 | 0.50291
(%)ZB 0.8736 0.8318 0.8579 0.8297 0.8629 0.7960

0
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Table 4.3 Degree distributions for d,= 6, 8.

Differential evolution

Richardson [10] only Proposed

d, 6 8 6 8 6 8

Ay 0.33241 | 0.30013 | 0.31265 | 0.30819 | 0.34061 | 0.30259

A 0.24632 0.28395 0.17269 0.24250 0.24400 0.26274

Ay 0.11014 0.10492 0.00601

As 0.24427 0.01471

g 0.31112 0.16547 0.00148 0.41539

A 0.00856

Ag 0.41592 0.41855 0.43468

P 0.76611 0.22919 0.65951 0.54864 0.65951 0.16636

Pr 0.23389 0.77081 0.34049 0.45136 0.34049 0.83364

R 0.50839 0.50013 0.49953 0.49918 0.50584 0.49927
(%)ZB 0.7997 0.5778 0.7836 0.5628 0.7288 0.5619

0
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Table 4.4 Degree distributions for d,= 9, 10.

Differential evolution

Richardson [10] only Proposed
d, 9 10 9 10 9 10
Ay 0.27684 0.25105 0.28683 0.28408 0.28432 0.28413
As 0.28342 0.30938 0.24431 0.23683 0.24548 0.22737
A\ 0.00104 0.01290 0.01003 0.03260 0.01930
A5 0.01349 0.01460 0.09475
g 0.00009 | 0.05226
A 0.01384 0.00484
Ag 0.01169 0.09040
Ag 0.43974 0.416867 | 0.05946
Ao 0.43853 0.24750 0.43759 0.37446
06 0.01568
Pr 0.85244 0.63676 0.85899 0.80889 0.85900 0.80939
Ps 0.13188 0.36324 0.14101 0.19111 0.14100 0.22737
R 0.50013 0.50000 0.49975 0.49925 0.50015 | 0.500299
(%)ZB 0.5498 0.5456 0.5392 0.5351 0.5358 0.5260
0

37




Table 4.5 Degree distributions for d,= 12, 15.

Differential evolution

Richardson [10] only Proposed
d, 12 15 12 15 12 15
Ay 0.24426 | 0.23802 | 0.25903 | 0.24454 | 0.25120 | 0.25039
As 0.25907 | 0.20997 | 0.17584 | 0.23239 | 0.18200 | 0.19942
A\ 0.01054 | 0.03492 | 0.04345 | 0.00996 | 0.10740
As 0.05510 | 0.12015 | 0.03463 | 0.00243 0.06000
N 0.00092 | 0.00342 0.15268
A 0.01587 | 0.01625 | 0.04248
As 0.01455 0.00164 | 0.02307
A 0.03947 | 0.04856
Ao 0.01275 0.02230 | 0.02322
A 0.06518 | 0.10635
Ao 0.40373 0.34130 | 0.03850 | 0.45944
i3 0.13364
A 0.00480 0.00144
Ais 0.37627 0.09000 0.33752
pr 0.25475
Ps 0.73438 | 0.98013 | 0.99303 | 0.97786 | 0.99294 | 0.97786
Po 0.01087 | 0.01987 | 0.00697 | 0.02214 | 0.00707 | 0.02214
R 0.50016 | 0.50001 | 0.49955 | 0.49965 | 0.50316 | 0.50443
(%)ZB 0.5355 0.5287 0.5514 0.5288 0.5202 0.4874
0
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Table 4.6 New degree distributions from the proposed
algorithm for d,= 7, 13, 14.

d, 7 13 14
Ay 0.32721 0.25085 0.24250
A3 0.27415 0.15928 0.14597
Ay 0.13275

As 0.03823 0.14764
)‘6

A, 0.39864

Au3 0.41889

Ay 0.42869
Pg 0.52918

P 0.47082

Ps 0.97248 0.76507
Py 0.02752 0.23493
R 0.50164 0.50465 0.50205

(E)ZB 0.6473 0.5055 0.4910

M

Also, we find optimized degree distributions with d, =7,13,14. Table 4.6 shows
these results. We find good degree distributions for d, =7, d, =13, and d, = 14.

We can see that the optimized results are good by comparing well-known degree

distributions that have similar maximum variable node degrees.
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Chapter 5

Conclusion

5.1 Summary

In this thesis, we describe a way to find good degree distribution by using
differential evolution and an iterative simplex algorithm.

We discuss some implementation issues of threshold optimizer with differential
evolution.

We propose an iterative simplex algorithm for code rate enhancement that tunes
p(z) and A(z) iteratively, and a new LDPC code design scheme, that uses
differential evolution for finding good p(z), s* and use an iterative simplex
algorithm for code rate enhancement scheme to enhance code rate.

We compare the optimization results of proposed LDPC code design scheme with
the optimization results of differential evolution only and some well-known degree
distributions. The optimized result of proposed LDPC code design has better

(E,/N,)* than those obtained by differential evolution only.
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5.2 Future work

In the future research, the following problems are desired to be studied.

e For finding good p(z) and s*, is there any other way that is better than
Differential evolution?

* How many generations in Differential evolution only scheme are required
to obtain optimized degree distribution as good as proposed scheme? And

what scheme requires low computational complexity?
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