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ABSTRACT

High Security Frequency/Time Hopping Sequence
Generators

Yun-Pyo Hong
Department of Electrical
and Electronic Eng.

The Graduate School
Yonsei University

We discuss some methods of constructing frequency/time hopping (FH/TH) sequences
overFF . by taking successive-tuples of given sequences ougy. We are able to char-
acterize thosg-ary sequences whosgetuple versions now ovef .« have the maximum
possible linear complexities (LCs). Then, we consider FH/TH sequence generators com-
posed of a combinatorial function generator and some registers. We are able to character-
ize the generators whose output FH/TH sequenceskyenave the maximum possible
LCs for the given algebraic normal form to resist a Berlekamp-Massey (BM) attack.

Next, we consider the cryptographic propertiepary functions, that is the com-
binatorial functions of the FH/TH sequence generators, to resist other cryptographic
attacks than the BM attack for high security. We are able to construct balarasd
functions by compositions. We are able to construct balapeay functions which sat-

isfy the propagation for the most of nonzero vectors and balanced functions which satisfy



the propagation of high degree. We are able to derive a necessary condition such that
p-ary functions are correlation-immune by the Fourier transforms and show that some of
nonlinearity criteria are invariant under cryptographically weak transformations.

Finally, we note a ultra-wide bandwidth (UWB) impulse radio (IR) as the example
of commercial TH spread spectrum communication systems. We consider a ¥eded
ary pulse position modulated UWB-IR, which exploits the chaotic inter-pulse intervals
in the framed-time structure and the polarity randomization for the coexistence with
conventional narrow bandwidth wireless communication systems. We show that the
proposed system has noise-like spectrum, that is line spectrum free, by calculating its
power spectral density function. We discuss its multi-user system with its line spectrum
property. Then, we confirm the bit error rate performance of the proposed system by

simulation based on the UWB indoor channel model.

Key words : Frequency/time hopping sequence, linear complexity, balancedness,
propagation, correlation-immunity, nonlinearipyary function, ultra-
wide bandwidth, line spectrum, polarity randomization, convolutional
code

Vi



Chapter 1

Introduction

1.1 Motivation

In a peer-to-peer frequency/time hopping (FH/TH) spread spectrum communication sys-
tem, an attacker may try to synthesize the entire FH/TH pattern from some frequency/time
slots successively observed. When the attacker observes successive twice frequency/time
slots as the linear complexity (LC) [1] [2] [3] [4] of the pattern, he can successfully syn-
thesize the next frequency/time slots. Thus, from the view point of the system designers,
the LCs of the FH/TH sequences in use should be as large as possible. Note that FH/TH
communication systems using a few hundreds, or even a few thousands frequency/time
slots are common in practice. Therefore, it is necessary to design non-binary sequences
() with “large” LCs, and (ii) over “large” alphabets, but (iii) with “little” increase in the
hardware complexity.

We consider the simple way of constructinggé-éry) FH/TH sequencé over a
large alphabet from a givem-ary) sequence& over a small alphabet, simply reading
its successivé-tuples. We believe that this method makes no significant increase in the

complexity in actual hardware design. Thus, this method satisfies the last two conditions



listed in the previous paragraph. We interpret the ternis, ahat isk-tuples oveif,, as

elements off « by using some but fixed basis ovy. We try to

e rule out any possibility that the decrease in its LC using some other basis than that

used in the design might help the attacker to track the FH/TH sequence.

Given any one basis, it is clear that the LCIofis at most that ofS. Therefore, it is

worthy to

e characterize thogeary sequenceS whosek-tuple versiond™ have the same LCs

asS (that is the maximum possible) for any choice of basis.

In addition, We consider FH/TH sequence generators composed of a combinatorial

function generator [5] and some registers. Then, it is necessary to

e characterize the generators whose output FH/TH sequences have the maximum

possible LCs.

However, we note that the above characterization is for resistance to the only Berlekamp-
Massey (BM) attack [6]. So, we consider desired cryptographic properties [5] of combi-
natorial functions, i.ep-ary functions, of the FH/TH sequence generators to resist other
cryptographic attacks than the BM attack for high security. The relevance of these prop-
erties is based on information theoretic grounds or on specific cryptographic attacks that
have their own attack scenarios. Unfortunately, it is clear that no function can satisfy all

these properties. So, it is necessary to

e characterize the-ary functions with a corresponding cryptographic property for

each possible attack on a case by case basis.



And these cryptographic properties of Boolean functions have been intensively studied

in many literatures. Thus, it is natural to
e extend the cryptographic properties of Boolean functions to thogeaof cases.

Recently, a ultra-wide bandwidth (UWB) impulse radio (IR) has been intensively
studied for short range multiple-access communications in dense multipath environ-
ments because of its fine time resolution properties [7]. We note the UWB-IR as the
example of commercial TH spread spectrum communication systems because this radio
adopt a TH binary pulse position modulation (PPM) for multi-user communications.

Because of its extremely large bandwidth, the UWB-IR and conventional narrow
bandwidth wireless communication systems cannot help giving interference to each
other, and furthermore, a UWB-IR signal accompanies line spectrums giving large in-
terference to the conventional systems. Therefore, the reduction and management of the
line spectrums of the UWB-IR signal is an essential problem to be solved for coexistence
with the conventional narrow bandwidth systems. We believe that a possible solution is
to make the UWB-IR work in lower signal to noise ratio at the same data rate and bit
error rate (BER). So, we consider a cod®dary PPM UWB-IR, which exploits the
chaotic inter-pulse intervals in the framed-time structure and the polarity randomization

for the coexistence. Then, we try to

¢ show that the proposed system has noise-like spectrum, that is line spectrum free

by calculating its power spectral density function.

The performance analyses of the UWB-IR in multipath environments are usually based

on narrowband channel models or straightforward extensions to finer delay resolutions



that, however, markedly differ from empirical UWB-IR channels in the distribution of

path gains. Thus, it is essential to

e confirm the BER performance of the proposed system by simulation based on

UWSB indoor channel models given in [8].
1.2 Overview

In chapter 2, we characterize thgsary sequences whogetuple versions now ove,

have the maximum possible LCs. Then, we propose FH/TH sequence generators and
characterize the generators whose output FH/TH sequences have the maximum possible
LCs for the given algebraic normal form.

In chapter 3, we construct balanced@ry functions by compositions. We construct
balanced-ary functions which satisfy the propagation for the most of nhonzero vectors
and balanced functions which satisfy the propagation of high degree. Then, we derive
a necessary condition such thaary functions are correlation-immune by the Fourier
transforms and show that some of nonlinearity criteria are invariant under cryptographi-
cally weak transformations.

Finally, in chapter 4 we propose a codddary PPM UWB-IR for the coexistence
with conventional narrow bandwidth wireless communication systems. We show that
the proposed system has noise-like spectrum, that is line spectrum free, and discuss its
multi-user system. Then, we confirm the bit error rate performance of the proposed

system by simulation based on the UWB indoor channel model.



Chapter 2

Frequency/Time Hopping
Seguences with Large Linear
Complexities

We discuss some methods of constructing frequency/time hopping (FH/TH) sequences
over Fx by taking successivé-tuples of given sequences ovEs. We are able to
characterize thoge-ary sequences whogetuple versions now ovef,» have the maxi-
mum possible linear complexities (LCs). Next, we consider FH/TH sequence generators
composed of a combinatorial function generator and some registers. We are able to
characterize the generators whose output FH/TH sequenceg pvgaive the maximum

possible LCs for the given algebraic normal form.
2.1 Detailed Motivation

In a peer-to-peer frequency/time hopping (FH/TH) spread spectrum communication sys-
tem, an attacker may try to synthesize the entire FH/TH pattern from some frequency/time

slots successively observed. That is, the attacker may try to synthesize the linear feed-



back shift register (LFSR) [1] [2] [3] [4] that can generate the next slots of the FH/TH
pattern using Berlekamp-Massey (BM) algorithm [6] over a finite field.

Let L be the linear complexity (LC) [1] [2] [3] [4] of an FH/TH sequence. When
the attacker observes succesf¥efrequency/time slots, he can successfully synthesize
the next frequency/time slots as long as the same FH/TH sequence is used. Therefore,
from the view point of the system designers, the system should change from one FH/TH
sequence to another befars slots of the sequence are used, and the LCs of the FH/TH
sequences in use should be as large as possible.

Note that any FH/TH sequences are non-binary in general since there are usually
more than2 frequency/time slots available. In fact, FH/TH communication systems
using a few hundreds, or even a few thousands frequency/time slots are common in
practice. It is well-known that the number of frequency/time slots affects directly the
processing gain [4] of the FH/TH spread spectrum communication systems, at the price
of the hardware complexity. Therefore, it is necessary to design non-binary sequences
(i) with “large” LCs, and (ii) over “large” alphabets, but (iii) with “little” increase in the
hardware complexity.

In this chapter, we consider the simple way of constructing a non-bipérgarg)
sequencéd’ over a large alphabet from a giveprdry) sequencg over a small alphabet,
simply reading its successivetuples. By increasing the parameterone may obtain
a sequence over as large alphabet as one wishes. We believe that this method is so
simple to construct @a-ary sequence compared with a construction dyerbecause
the multiplications oveif,» are much more complex than those o¥grin the LFSR

constructions which is general methods in the hardware systems. In this view point, there



will be no significant increase in the complexity in actual hardware design. Therefore,
this method satisfies the last two conditions listed in the previous paragraph.

On the other hand, we have to be very careful in analyzing the LCs of the new
sequences, including the definition of the LCTofover k-tuples overF,, which is not
a field any more. One way to solve this problem is to interpretitheples overfF, as
elements off, .. In this case, it is not much surprising to observe that two different basis
may result in two different LCs of" (now overF ), and hence, the LC df depends
on the choice of basis (@, overF,).

We are here trying to rule out any possibility that the decrease in its LC using some
other basis than that used in the design might help the intercepter to track the FH/TH
sequence, assuming that the FH/TH sequdnesth its LC equal toL (using the basis
used in the design process) is used for the durati®T.of 1 slots.

Given any one basis, it is clear that the LCTofis at most that ofS. We are able
to characterize thosg-ary sequence§ whosek-tuple versionsl' now overF . have
the same minimal polynomials [1] [2] [3] [4] &S, and therefore, the same LCs 8is
(that is the maximum possible), for any choice of basig gfover[F,. This leads to the
construction op*-ary sequences with minimal polynomials essentially @&yer

We apply the above characterization into two sequences with as large as possible
period when the number of registers,is given: binary de Bruijn sequences of period
2" [9] andp-ary mrsequences of perigd — 1.

We consider FH/TH sequence generators composed of a combinatorial function gen-
erator [5] and some registers. We are able to characterize the FH/TH sequence generators

which guarantee that a combinatorial function sequerttesyerF, have the maximum



possible LCs for the given algebraic normal form and théiple versiond” of .S now
overFF« have the same minimal polynomials 8sand therefore, the same LCs 8is

(that is the maximum possible) for any choice of basiB gfoverF,.
2.2 Preliminaries

The LC of a sequence is the size of the shortest LFSR which can generate the sequence
[1] [2] [3] [4]. Obviously, it means the difficulty of generating and perhaps analyzing
the sequence from some symbols of the sequence successively observed and must be an
important design criteria in the field of security (that is stream cipher systems, military
FH/TH spread spectrum communication systems, etc.).

Let F, be the finite field withy elements ang be a prime. Assume that the linear

recurrence relation of an LFSR that generates a sequeregs,|n = 0,1,2, ...} over

IF, is given by
L
Sp = Z CiSn—i, (2.2)
=1
wherec;, ¢ = 1,2,..., L, is a connection coefficient ovél,. Then, the characteristic

polynomial of S is given by [1] [2] [3] [4]
C(z) =z - Z cirt e (2.2)
=1
The minimal polynomial ofS corresponds to the characteristic polynomial of the mini-
mum degree [1] [2] [3] [4]. Note that the degree of minimal polynomial is the LG .of
Figure 2.1 shows the LFSR whose linear recurrence relation is given in (2.1).
BM algorithm regards the symbol of a sequence as the element of some finite field

and synthesizes the minimal polynomial of the sequence over the field [6].
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Figure 2.1: LFSR whose linear recurrence relation is given in (2.1).

2.3 Sequences oveF . with Minimal Polynomials over I,

Consider a given sequense= {s,|n =0,1,2,...} overF,. Letk be a positive integer,
and define a new sequence (an FH/TH sequefi¢e)S) = {t,|n = 0,1,2,...} based

on S by the following:

tn = (Sny Sn—1y -+ Sn—k+1) - (2.3)

Then, it is clear that the sequen€ék, S) is over]F’;, the k-tuple vector space over

IF,. By using some but fixed basis such as a simple polynomial basis given by
{akil, a2« 1}, (2.4)

wherea is a primitive element oFx, one can regard the sequericgk, S) being over
a fieldFF . This is a straightforward and simple way of enlarging the size of alphabet

over which a sequence is.

Proposition 2.1 The LFSR that generates a sequefice {s,} overF, also generates
T'(k, S) overF,: as defined in (2.3) regardless of the choice of basis. The converse holds
provided that the characteristic polynomial that generateserF . is essentially over

F,.
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Figure 2.2: LFSR generating and7”s of Example 2.1.

v

Example 2.1 A ternary sequenc$ with period26 is given by

0011102112101002220122120200 ... .

Then the sequencédy3, S) and7'(4, S) according to (2.3) are given by the following:

T(3,S) = 000 000 100 110 111 011 201 120 112 211 ...,

T(4,S) 0002 0000 1000 1100 1110 0111 2011 1201 1120 2112 ....

Note that bothl”s as well asS are generated by the LFSR shown in Figure 2.2 with

connection coefficients overF'(3).

Proposition 2.1 does not guarantee that the LFSRITgr, .5) overF,., k > 2, is
necessarily the shortest possible even if it is the shortesi farer[F,,, but that the LC
of T'(k, S) is at most that of5. In fact, the shortest LFSR faF(k, S) overF ., k > 2,
(and hence the LC df") cannot be uniquely determined unless a basig ofis fixed.

Following example shows this.

Example 2.2 (a) A binary sequenc#g; with period63 is given by

110010000011111110101001001001101010111011011011101001111110010. .. .

10



The LC of S; overGF(2) is 62, but that ofT'(3, S1) over GF(23) is 60 with respect to

any polynomial basis as in (2.4). (b) A binary sequefgevith period63 is given by
010111111100110000011011111101010011111100011001110100101001011 ... .

The LC of T(3, S2) over GF(23) is 55 or 53 with respect to the polynomial basis as

in (2.4) usingz® + = + 1 or 2% + 22 + 1, respectively.

A question at this point is the following: is it possible that the shortest LFSR that
generatess over [, is indeed the shortest LFSR that generdfgs, ) over[F,x with
respect to some basis Bfx over[F, for £ > 2 ? If it is possible to characterize such
p-ary sequence$, thenT'(k, S) overF . has the same minimal polynomial 4sand

hence it is oveff),.

Lemma 2.1 [1] (i) The minimal polynomial of a sequence ovéiF'(¢q) divides any
characteristic polynomial of the LFSR that generates the sequencé&d\en. There-
fore, it is uniquely determined up to the multiplication by a constant. (ii) An irreducible
polynomial overG F(q) of degreed remains irreducible ove® F(¢*) if and only if &

andd are relatively prime.

Theorem 2.1 [10] Let the minimal polynomial’(z) of S = {s,,} overF, be given by
C(x) = [Lie;(fi(x))™: for some irreducible polynomialg;(z) of degreed; over[F,,
some positive integers,;, and some index sét LetT'(k, S) overlF . be defined as in
(2.3) with respect to some but fixed basis fot> 1. Then, (i) the shortest LFSR that
generatesS is also the shortest LFSR that generdi&g, S) over F,:, and therefore,

their LCs are same, % andd; are relatively prime for all € I. Furthermore, (ii) it is

11



also the shortest LFSR @f(k, S) over GF(p™), and therefore, their LCs are same, for

anym > k such thatn andd; are relatively prime for all € 1.

Proof: (i) The LFSR withC(x) also generatd’(k, S) overIF,x by Proposition 2.1.
Suppose that the degree ©fx) is not the least fofl'(k, .S). Then the shortest LFSR
with characteristic polynomial”’(z) exists and”’(z) dividesC(x) by Lemma 2.1(i).
C'(x) = ;e (fi(z))%, wheres; is a non-negative integed, < s; < m; foralli € I,
and)_, ;s < ,c;m; by Lemma 2.1(ii). On the other hand, the polynon@ié{z) =
[L;c;(fi(x))* is over[F,, and Proposition 2.1 (the converse part) implies H&t:)
is also a characteristic polynomial f6r overIF,, which is a desired contradiction. (ii)
Furthermore, if we regard each term®fk, S) over GF'(p") for anym > k such that
m andd; are relatively prime by inserting so many 0’s at some fixed positions, all the
previous arguments will be similarly applied. ]

The converse of Theorem 2.1 is not generally true. We are able to constrany
FH/TH sequences as in Theorem 2.1 whose LCs are the same as the originals (that is the
maximum possible) with respect to any basis frerary sequences. Thus, if theary
sequences have large LCs, the resulting FH/TH sequences have the same large LCs as
the originals with respect to any basis. We would like to emphasize the following two

cases to which Theorem 2.1 applies.

Corollary 2.1 [10] (i) For ap-ary m-sequence of periodp” — 1 with p a prime, the
shortest LFSR that generatgss also the shortest LFSR that generdtés, S) overF
as defined in (2.3) with respect to any basis i relatively prime tor. Furthermore, it

is also the shortest LFSR @f(k, S) over GF(p™) for anym > k which is relatively

12



prime tor. (i) If a binary sequencé has a perio@” (for example, binary de Bruijn
sequences), then the shortest LFSR that genesaitealso the shortest LFSR that gen-
eratesl'(k, S) over GF'(2¥) as defined in (2.3) for any positive integerFurthermore,

it is also the shortest LFSR @f(k, S) overGF'(2™) for anym > k.

Proof: (i) Obvious. (ii) We note that the minimal polynomi@l(x) of a binary sequence
S with period2” is of the form(1 + x)™ for some positive integer [9]. |

For a binary de Bruijn sequenc#, with period2” and large LC which is at least
2r=1 4 r [9], T(k, S) over GF(2%) as defined in (2.3) has the same large LCSdsy
Corollary 2.1(ii). In addition, the symbol distribution of tii&%, S') in one period is uni-
form, that is any symbol of th&(k, S) appears exactly”* times,r>k, in one period.
In reality, the finite field of characteristic 2 would be a good choice for the algebraic
structure of FH/TH sequences because the computations over characteristic 2 are most
efficiently implemented as hardware systems and the usual practice follows this idea. In
above three pointg/(k, S) from binary de Bruijn sequences would be good candidates

for FH/TH sequences in a peer-to-peer FH/TH spread spectrum communication system.

Example 2.3 A binary sequencé with period16 is given by
0o0o00101111110100 ....
An 8-ary sequencé'(3, S) with £ = 3 overGF'(8) becomes
000 000 000 000 100 010 101 110 111 111 111 111 ....
An 8-ary sequencé”(3, S) overGF(16) becomes

0000 0000 0000 0000 0100 0010 0101 0110 O111 O111 O111 o111 ....

13
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Figure 2.3: Shortest LFSR generatifigand threel's of Example 2.3.

Here, the symbol O is padded at the leftmost position of the every terfy(&fS),
and the resulting 4-tuples are regarded as the elemeitg'¢16). A 16-ary sequence

T(4,S) becomes
0001 0000 0000 0000 1000 0100 1010 1101 1110 1111 1111 1111

All these sequences have the same minimal polynomial and the corresponding LFSR is

shown in Figure 2.3.

Remark 2.1 Some interesting discussions are given in [11] and [12] which are meth-
ods of constructing®-ary m-sequences using sevepairy m-sequences of the same
period. We note that the resulting m-sequences Byedo not have the same minimal
polynomial as the componeptary m-sequences. In [12], for example, if the minimal
polynomial C(z) of the componenp-ary m-sequence ovét, has degreén, then the
minimal polynomial of resulting*-ary m-sequence ovét,. has degree, and in fact,

itis a factor ofC'(z) overF .

Remark 2.2 Some interesting discussions are given in [13] which establish a lower

bound on the LC of a multisequence o\@F (¢*) in terms of the joint LC of itsk

14



element sequences of periddover GF'(q). We note that he characterize the peridd,

of which the LC of a multisequence is the same as the joint LC of element sequences.

Now, letU = {u,|n = 0,1,2,...} be ap-ary k-tuple FH/TH sequence in general. In
order to determine its minimal polynomial and therefore, LC/adverF ., we need to
fix one basis for BM algorithm. Following theorem characterizes ttidsehich do not

need this.

Theorem 2.2 [10] LetU = {u,|n = 0,1, 2, ...} be ap-ary k-tuple sequence in general,
whereu,, = (u%l), uff), . ug“)). Let a basis oF . overlF, be fixed, and the minimal
polynomial C(z) of U over[F,. using BM algorithm be determined to be of the form
[Lic;(fi(z))™, where f;(x) are irreducible polynomials of degrelg over [, m; are
positive integers, andlis some index set. Then;(z) is a uniquely determined minimal
polynomial of U overF,. regardless of the choice of basisifandd; are relatively
prime for alli € I. Furthermore('(z) is the unique minimal polynomial dff over

GF(p™) for anym > k using any basis such that andd; are relatively prime for all

1€ 1.

Proof:  SupposeC’(x) is the corresponding minimal polynomial 6f now overF
with respect to another basis. Theri(x) must divideC (x) overF . by Lemma 2.1(i),
sinceC(x) also generate§ over . with respect to another basis. Using the same
arguments as in the proof of Theorem 2.1, we have a contradiction @fless= C(z).

15



2.4 Frequency/Time Hopping Sequence Generators for Large
Linear Complexities

We pay attention to the construction$bverF,, with large LC. Whens® = {s)|n =
0,1,2,..}, i = 1,2,..., N, are sequences oVvE}, a termwise product sequense=

MY, 8% = {s,/n=0,1,2,...} overF, based or6"), i = 1,2,..., N, is defined as

N
Sp = H s& (multiplication in F) . (2.5)

=1

It is well-known that the LC of a termwise product sequence defined above is at most

the product of the LCs of multiplied sequences.

Lemma 2.2 [2] LetY = {y,} andZ = {z,} be sequences ové¥, with some irre-
ducible minimal polynomial€’y (x) andCz(z) of degreel andm, respectively. Ifl
andm are relatively prime, the§ = Y Z overF,, as defined in (2.5) has the irreducible

minimal polynomial of degreéx m.

Corollary 2.2 [10] Let.S = Y Z be a sequence ovéY, as constructed in Lemma 2.2.
If I x m andk are relatively prime, theff'(k, S) over[F,. as defined in (2.3) has the

same minimal polynomial aS.

Proof: Itis obvious by Lemma 2.2 and Theorem 2.1. |

Example 2.4 The irreducible minimal polynomial df andZ overGF(2) is Cy (z) =
rt+ 2+ 1andCy(x) = 2% + x + 1, respectively. The irreducible minimal polynomial
of S = YZ overGF(2) as defined in (2.5) is'? + 29 + 2° + 2* + 2 + = + 1 whose
degree isl2 = 3 x 4 becausgycd(3,4) = 1. T(k, S) over GF(2%) as defined in (2.3)

has the same minimal polynomial &dor k£ relatively prime to 12.

16



We consider the general case of Lemma 2.2, that is the case of termwise product
sequences based on arbitrary number of sequences with general minimal polynomials

composed of irreducible factors.

Lemma2.3 [2]Let S®, i = 1,2,..., N, be sequence ové, with a minimal poly-

(@)

nomial C; () of degreeM ¥, that dividesz?”™ ~! — 1 for somem®) and contains
no linear factor. For any pair of distinct roots,and 3, of Cg¢;)(x), i = 1,2,...,N,
af~' ¢ F, 1t m i=1,2,..., N,are pairwise relatively prime, thesi= [, S

overFF, as defined in (2.5) has the minimal polynomial of degkée= [, M.

The above lemma characterizes those LFSRs whose termwise product sequence has the
maximum possible LC, that is the product of the LCs of multiplied sequences. We note
thata3~1 never be irfF,, for any pair of distinct rootsy and3, of a minimal polynomial

Cgiy(x), i =1,2,..., N, for the case op = 2.

Corollary 2.3 [10] LetS = HiNzl S be a sequence OVEY, as constructed in Lemma
3.4. IF[IY, m® andk are relatively prime, the'(k, S) overF  as defined in (2.3)

has the same minimal polynomial &8s

Proof: Let Cg(z) be the minimal polynomial of, then the degree of any irreducible
factor of Cs(z) is of the form[Y, ), wherer®|m(, by Lemma 3.4 and Theorem

2.1 completes the proof. [ |

Example 2.5 The minimal polynomial ofY” over GF(2) is Cy(z) = 23 + 2% + 1
that dividesz2’~! — 1 andCy (1) = 1. The minimal polynomial oZ over GF(2) is

Cz(x) = 25 + 23 + 22 + = + 1 that dividesz?' ! — 1 andC(1) = 1. The minimal
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Figure 2.4: Frequency/Time hopping sequence generator for large linear complexity.

polynomial ofS = Y Z overGF(2) as defined in (2.5) i8'® + 24 4+ 212 + 211 4 210 4
29+ 2% + 2 + 23 + 2% + 1 whose degree i88 = 3 x 6 becausgcd(3,4) = 1. T'(k, S)
overGF(2%) as defined in (2.3) have the same minimal polynomia &sr k relatively

prime to3 x 4.

Now, we consider the FH/TH sequence generator composed of a combinatorial func-
tion generator [5] and registers shown in Figure 2.4. The combinatorial function gen-
erator is a natural device to generate sequences with large LCs and called a filtering
generator when the LFSRs are same. We note that we are only concerned with the case
that all LFSRs are different. Let a combinatorial function sequefic@verF, by a
combinatorial function,f, (that would makeS have large LC) be represented in the

algebraic normal form given by

sn= f(sW, @) 5Ny
N XX o (2.6)
=ap+ Zais%’) + Z Z aijss)sg) +...+ alg,,,Ns,(ll)sg) .. .S%N),
i=1 i=1 j=i+1
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whereS®, i =1.2,..., N, are sequences oVigy and the coefficients of are elements
of F,. We note that the algebraic normal form defined in (2.6) cannot represent all com-
binatorial functions. The maximum possible LC of a combinatorial function sequence,

S, for the given algebraic normal form is given by [14]
M=FMY M W)y, (2.7)

where F(MM, M®) ... MWN) is defined as (2.6) with a coefficient beifigf it is 0
or 1 otherwise and/(® is the LC of S, ¢ = 1,2, ..., N, and operations af are over
the integers.

R. A. Rueppel characterize those LFSRs such that a combinatorial function se-
quence,S, has the maximum possible LC for the given algebraic normal form [2].
In Theorem 2.1, we characterize thgs@ry sequencesS, whosek-tuple versions,
T'(k, S), now overF . have the maximum possible LCs. In this view point, we focus on
the relations between the above two characterizations. We are able to characterize those
LFSRs such that a resultinfgtuple sequence (an FH/TH sequencg)k, S), has the
maximum possible LC)M as defined in (2.7). That is, we are able to construct FH/TH

sequences with large LCs by the generators shown in Figure 2.4.

Lemma 2.4 [2] Let S, i = 1,2,..., N, be sequences ov&Y, with minimal poly-
nomialsCg(;) () of degreeM ), that dividez?"" =1 — 1 for somem() and contain
no linear factor. For any pair of distinct roots,and 3, of Cg (), i = 1,2,..., N,
aBt ¢ F,. lfm® i =1,2,... N are pairwise relatively prime, thesi overF,, as
defined in (2.6) has the minimal polynomial of degideas defined in (2.7) for the given

algebraic normal formf.
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Corollary 2.4 [10] Let S be a sequence ovét, as constructed in Lemma 3.6. If
[1.Y, m® andk are relatively prime, theff’(k, S) overFx as defined in (2.3) has

the same minimal polynomial &

Proof: Let Cs(z) be the minimal polynomial of, then the degree of any irre-
ducible factor ofCs(x) is of the form[[Y, @, wherer®|m(®, by Lemma 3.6 and

Theorem 2.1 completes the proof. |

Example 2.6 The minimal polynomial ofX, Y, Z overGF(2) is Cx (z) = x5 + 27 +
sttt a3+ 22+ 241, C0v(z) = 28 + 23+ 22 + 2+ 1, Oz(x) = 210 + 2% +
27 + 25 + 23 + 22 + 1 that dividesz?’ ! — 1, 22'~1 — 1, 22! — 1 respectively
and contains no linear factor. The minimal polynomialbver GF(2) defined by
Sn = f(@n,Yn,2n) = 1+ Tp + Yn + 2n + TnYn + Ynzn + 2nTn + TpYnz, aS (2.6) is
of degrees39 = M (6,6,10) =1+6+6+10+6-6+6-10+10-6+6-6-10 as
defined in (2.7) becausk 4, and5 are pairwise relatively primel’(k, S) over G F(2F)
as defined in (2.3) have the same minimal polynomiabdsr & relatively prime to

3-4-5. Forexample7'(7,S) is a 128-ary FH/TH sequence whose LC is 539.

We believe that FH/TH sequences as constructed in Corollary 2.4 must be a good
candidates of FH/TH patterns in a peer-to-peer FH/TH spread spectrum communica-
tion system for the following good reasons: (i) with “large” LCs, and (ii) over “large”
alphabets, but (iii) with “little” increase in the hardware complexity. Furthermore, for
multi-user FH/TH communication systems, a sequence as constructed in Corollary 2.4
can be]_[fil(pM(“ — 1) multi-user FH/TH sequences by changing the initial states of

the LFSRs.
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2.5 Remarks

We believe that the finite field of characteristic 2 would be a good choice for the algebraic
structure of FH/TH sequences because the computations over characteristic 2 are most
efficiently implemented as hardware systems and the usual practice follows this idea.

We have tried several other options but failed to extract any further reasonable behav-
ior of non-binary FH/TH sequences ov&y. whose minimal polynomials and therefore,
LCs are uniquely determined regardless of the choice of basis other than those given
in Theorem 2.1. Theorem 2.2 is slightly more general in thapthey k-tuple FH/TH
sequences are not necessarily constructedasiple version of a-ary sequence.

We note that Corollary 2.4 characterize those FH/TH sequence generators such that
a combinatorial function sequencg, and a resulting:-tuple sequence (an FH/TH se-
quence),I'(k, .S), has the maximum possible LC for any given algebraic normal form,
f,toresist the only BM attack. So, itis proper that we use the algebraic normal form,
that has desired cryptographic properties [5] to resist other attacks than the BM attack.
These cryptographic properties of a combinatorial function, i.@-aay function, are
discussed in the next chapter.

We note that the sequence termsTdf, S) are highly correlated with each other
becausé,, is the right shifted version of, _; with the only new leftmost component.
This correlation between consecutive terms must be a vulnerable point to some other
attacks. But, Theorem 2.1 and all corollaries in this chapter also apply equally well to

T'(k, S) defined by

ln = (Snfa(O)v Sn—a(1)s - -+ 7Snfa(k71))v (28)
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whereo is any permutation of0, 1, ..., k—1}. Afurther generalization is also possible
by using any integers instead ofi) for eachi. Therefore, we are able to solve the

correlation problem between consecutive terms by the above method.
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Chapter 3

High Security p-ary Functions

We consider the cryptographic propertiespediry functions, that is the combinatorial
functions of the frequency/time hopping sequence generators proposed in the previous
chapter. We are able to construct balanpeaty functions by compositions. We are
able to construct balancedary functions which satisfy the propagation for the most of
nonzero vectors and balanced functions which satisfy the propagation of high degree. We
are able to derive a necessary condition suchyttaal functions are correlation-immune

by the Fourier transforms and show that some of nonlinearity criteria are invariant under

cryptographically weak transformations.
3.1 Detailed Motivation

In a frequency/time hopping (FH/TH) spread spectrum communication, an attacker may
try several attacks such as a Berlekamp-Massey (BM) attack [6], a jamming [4], a lin-
ear attack [15], and a correlation attack [16] based on his information about the system.
In the previous chapter, we considered the FH/TH sequence generator composed of a

combinatorial function generator and some registers shown in Figure 2.4. We charac-
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terized the generator whose output FH/TH sequence has the maximum possible linear
complexity (LC) for the given algebraic normal form to resist the only BM attack. So,
we need to characterize the algebraic normal form that has desired cryptographic prop-
erties such as the balancedness [17], the nonlinearity [18], the propagation [19], and
the correlation-immunity [16] to resist other cryptographic attacks than the BM attack
for high security. The relevance of these properties is based on information theoretic
grounds or on specific cryptographic attacks that have their own attack scenarios. Un-
fortunately, it is clear that no function can satisfy all these properties. So, we consider
a corresponding cryptographic property for each possible attack on a case by case basis.
These cryptographic properties of Boolean functions have been intensively studied but
the combinatorial function of the generator ig-ary function, where is a prime. Thus,

we focus on the extensions of the cryptographic properties of Boolean functions to those

of p-ary cases.
3.2 Jamming and Balancedness

The attacker may jam an FH communication by radiating a Gaussian noise in the partial
band or a Gaussian (multi) tone. And he does not need to care about the structure of the
FH sequence generator. When some of frequency slots are more probable than the others
the attacker more efficiently jam the system by concentrating the limited jamming power
on these slots. Intuitively, a balanced function increases the randomness, and therefore
the security, of the outputs in response to random inputs. The balancedness is explic-
itly identified as one of the desired cryptographic properties of data encryption schemes

that rely on permutations and substitutions. For example, the S-boxes of the data en-
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cryption standard [20] are designed such that all their Boolean functions are balanced.
Let the outputs,sv(f), n = 1,2,..., of the linear feedback shift register (LFSR) in the
FH/TH sequence generator shown in Figure 2.4 be independent identically distributed
(7id) discrete uniform random variables (RVs) aﬁﬁ, 1 =1,2,..., N, be mutually
independent. Note that when the combinatorial functifnis balanced the outputs,
sn, n=1,2,..., areiid discrete uniform RVs, and therefore the FH/TH sequeicés
balanced. It means that we have the balanced FH/TH sequence which is resistent to the
partial band and (multi) tone jamming.

We extend the general theory of balanced Boolean functions given in [17]. We are
able to derive a necessary condition such thataay function is balanced by a bijec-
tion on the set of input vectors. We examine the composition properties of balanced
p-ary functions. We are able to construct a balangeaty function by the disjunc-
tive composition of balanced functions by a balanced function. We are able to charac-
terize non-disjunctive compositions which produce balaneedy functions. A dis-
junctive composition is the composition of functions such that the arguments of the
functions are disjoint. For example, the compositfiX ) = g(f1(X1), f2(X2)) =
g(f1(X1, X2), f2(X3, X4)) is disjunctive sinceX; N X» = (. The composition
F(X) = g(fi(X2), f2(X3)) = 9(f1(X3, X4), f2(X4, X5)) is non-disjunctive since
X2N X3 ={Xy} # 0. Note that we regard a vector as the set of arguments and use the
set operations.

Remind thafF, is the finite field withg elements ang be a prime. Letf(X) be a
p-ary function of a vector oveF,,. Let|f"| denote the number of input vectors, such

that f(X) = r, wherer € F,,.
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Definition 3.1 A p-ary function with N arguments f(X), is balanced if and only if

|f7| = pN~tforallr € F,.

Proposition 3.1 A p-ary functionf(X) = X1+ Xa+- - -+ Xy is balanced and(X) =

X1X5--- Xy is not balanced.

The above proposition is immediate. We derive a necessary condition suchptay a

function is balanced by a bijection on the set of input vectors, as follows.

Theorem 3.1 If a p-ary function withN argumentsyf (X)), is balanced, then there exists

a bijection, h, on the set of input vectors such that for all input vectors, f(X) #
F(h(X)).

Proof: LetS, = {X € F)| f(X) = r}, wherer € F,. Then,|S,| = |f"| = p" .
We can define a bijectioh as follows:h(X ) = X,.1, whereX, € S,, X,11 € Sr11,
and the addition of the subscripts is oy [
Now, we examine the composition properties of balansedy functions. First, we
consider disjunctive compositions and then extend the results to non-disjunctive compo-

sitions.

Proposition 3.2 A p-ary function withN arguments (U, X) is balanced if f (u, X)"| =

pN =2 for all pairr, u € F).

We construct a balancedary function by the disjunctive composition of balanced func-

tions by a balanced function.
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Theorem 3.2 Let f(X) = g(f1(X1), fo(X2), ..., fr(XK), XK+1), WwhereX =
(X1, X2, ..., Xgy1)andX,; NX; =0forl <4, j < K+1andi# j. If p-ary
functionsf;(X;), i = 1,2,...,K,andg(Uy, Us, ..., Uk, X g11) are balanced, then

f(X) is also balanced.

Proof: Let|X;| =m;, i =1,2,...,K, and|X k41| = N. For allr € F,, we have
Ifr] =p™t i =1,2,...,K, and|g"| = pE+tN~L. We claim that for allr € F,,

_ N-1 g"
‘f?“‘ — pm1+m2+ +mg+ . Let NUdl Udz UdK
1 Y2 eV

= \g(dla do, ..., dg, YK-H)T‘-

r d d: d
’fr‘: § NY UdK|f11Hf22""|fKK’
YK

vh gz, ...
d1,dz,....dK o
— pymitmet-t+mg—K Z 9"
-P NUdl Uz UtK
di,do,.ndy 12K (3.1)
_ . mi+tmo+-+mg—K| r
=pmTe g
— pm1+m2+---+mK+N71
|

Next, we characterize non-disjunctive compositions which produce balarasd
functions. We consider the non-disjunctive compositiop-aiy functionsf; (X;) and

g(U, YQ) such than 072 = {Xl, Xo, .., XK} 7'5 0.

Theorem 3.3 Let f(X) = g(f1(X1), X1 N X2, X2 — X 1), Wheref;(X) is ap-ary
function, X = X1 U X3, X5 — X; # 0, and|X»| = N. For any combinatiorl of
X1NXgandr € Fp, |g(s, d, X2 — X1)"| is constant fos € F,.. Then, f(X; U X»)

is balanced if and only ifg(s, X2)"| = p™¥~1 forall r, s € F,,.

Proof: Let|X,| = ndd = . We have con 9"
00 et| X 1| =mandd = (d, da, , dx’). We have co staerUs’del7X52inK
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for s € F),. Then,

- % oy N
|f | i dK . US,Xiil 7)(2127'”7)(;?( Xfl 7_)(52,.”’_)(?(1{
= E v d fo d
o, x xd2 | x9K xh xd2  xIK
d1,d2,...,d}( 1 2 K S 1 2 K (32)
_ . m—-K g"
=P Z NUO x4 xd2 | x9K
di,d2,....dK LT R
_ ,m—Karg"
=p Nijo-
f(X1 U X>) is balanced if and only iff"| = pm+N-K-1, ]

In the previous theorem, we note thatfifX; U X») is balanced, thep(U, Xs)
is also balanced by Proposition 3.2. The following corollary is easily proved by the

theorem.

Corollary 3.1 Let f2(X5) be ap-ary linear function. Thenf(X) = f1(X1) + f2(X2)

is balanced ity — X # 0.

Note that Theorem 3.3 and Corollary 3.1 are also hold wkem X, = (), which is
the disjunctive case. Thus, we are able to construct a balanagdfunction by simply

adding a linear function with disjoint arguments by Corollary 3.1.
3.3 Linear Attack and Propagation

When the attacker knows the structure of the FH/TH sequence generator shown in Fig-
ure 2.4 except thg-ary function, i.e. combinatorial function, he may try a linear attack
which is performed by obtaining the linear approximate expression gk#rg function.

The nonlinearity characteristics of a cryptographic function are crucial since a linear

system is easily breakable by the linear attack. A perfect nonlinear Boolean function
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is optimum with respect to both the minimum distance to affine functions and therefore
a resistance to the linear attack [18]. And this function was generalized to a perfect
nonlinearp-ary function in [21], which coincides with g-ary bent function defined
in [22]. Unfortunately, a perfect nonlineasary function is not be compatible with other
desired cryptographic properties, e.g. the balancedness. The perfect nonlinearity of a
p-ary function is generalized to a propagation [19], which is the randomness measure
of the differences of outputs for the differences of inputs. It is one of the most impor-
tant nonlinearity criteria because the differential cryptanalysis [23], which is one of the
successful attacks, utilizes the bias of the distribution of the difference of outputs and
the difference of inputs. Furthermore, somary functions satisfy both the propagation
and the balancedness. The propagation characteristics of a balanced Boolean function
were discussed in [24]. We are able to define the propagatiop-afrg function by the
Fourier transform. We are able to construct a balanead, function which satisfies the
propagation for the most of nonzero vectors. Furthermore, We are able to construct a
balanced-ary function which satisfies the propagation of high degree.

Let f(X) be ap-ary function with N arguments. LetV(A) denote the number
of the nonzero components df, i.e. the Hamming weight off. The autocorrelation
function of f(X) is defined as follows [21]

r(A) = Z of X+A)—F(X), (3.3)

XeFly

- 270
whereo = ¢' # , i.e. the primitivep-th root of unity in the complex field.

Definition 3.2 A p-ary function f(X) satisfies the propagation of degreé for all
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vectorA with 1 < W(A) <1
fX +4) - f(X) (3.4)
is balanced, that ig(A) = 0.

Thus, the strict avalanche criterion [25] is the propagation of degree one and the perfect
nonlinearity is the propagation of degrde The Fourier transform of /%) is defined

as follows [21]

F(w) = 72 of X=X (3.5)

We define the propagation of iaary function by the Fourier transform. The strict

avalanche criterion version for the binary case is given in [25].

Theorem 3.4 A p-ary functionf(X) satisfies the propagation of degieiéand only if

for all vectorA with 1 < W(A) <1

S F@)Pe A =0 (3.6)

R@) = |[F@). 3.7)
Thus, its inverse Fourier transform and Definition 3.2 completes the proof. |

Corollary 3.2 Ifap-ary functionf (X) satisfies the propagation of degi¢beng(X) =

f(m(X) + A) also satisfies it for a permutation operatoand A € F'.
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Now, we construct a balancedary function which satisfies the propagation for the
most of nonzero vectors from the bent function which is not balanced; hethep-ary

bent function, i.e. perfect nonlinear function, witharguments ang be given by
f(Xl, Xo, ..., XN+2) =a1 X1+ as Xs + a3g(X3, X4, .., XN+2), (3.8)

wherea, a2, andas are nonzero elements Iif),.

Theorem 3.5 A p-ary functionf(X) with N +2 arguments defined in (3.8) is balanced

and satisfies the propagation for all nonzero vecﬂ)lele:{,\“r2 with A # (c1, 2, 0, 0, ..., 0).
Next, let f be given by
J( X1, Xo, oo, Xny1) = a1 X1 +a29(Xo, X3, ..., Xny1), (3.9)

wherea; anday are nonzero elements k),.

Theorem 3.6 A p-ary functionf(X) with N + 1 arguments defined in (3.9) is balanced

and satisfies the propagation for all nonzero vectors F)' ™ with A # (c, 0, 0, ..., 0).

The proofs of Theorem 3.5 and Theorem 3.6 are analogous to those of the binary cases
given in [26]. Wherp = 2 the lower bounds of the minimum distances to affine func-
tions of the constructed functions in the above two theorems are given in [26]. We note
that thep-ary bent function with odd arguments does not exispfer 2. Thus, Theorem

3.5 construct the function with even arguments and Theorem 3.6 with odd arguments for
the binary case. We construct a balanpeaty function with NV + 1 arguments which

satisfies the propagation of deg®¥efrom the bent function. Lef* be given by

(X1, Xo, ooy Xvs) = a1 Xy + g(ae Xt + b2 X, a3 Xy + b3 X3,
(3.10)
oy a1 X1 + O XNg),
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whereq; andb;, i =1,2,..., N, are nonzero elementsli#), anda; + b; = 0.

Corollary 3.3 A p-ary functionf*(X) with N + 1 arguments defined in (3.10) is bal-

anced and satisfies the propagation of degvee

Proof: Considerf(X) defined in (3.9) fou; = as = 1, thenf*(X) = f(XM), where

M is a nonsingular matrix given by

ap a2 az --- Ga2p+1
0 b 0 --- 0

M=|[0 0 b3 --- 0 (3.12)
0 0 0 --- bopt1

f*(X) is balanced sinc& M is the bijection orf)/*! and f(X) is balanced by Theo-
rem 3.6.

ff(X+A) - (X)) = f(XM+ AM) — f(XM) (3.12)

The above function is balanced whefM # (c, 0, 0, ..., 0), wherec # 0 by
Theorem 3.6. Thusf*(X) satisfies the propagation for all nonzero vectdrs F)*!
with A # (¢, ¢, ..., ¢c) [ ]

We are able to constructyaary function which satisfies both the balancedness and the
propagation of high degree by Corollary 3.3. Note that Corollary 3.3 holds whHén

in (3.10) is multiplied by a nonzero constant sinteX) such thatf*(X) = f(XM)

always exists.
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3.4 Correlation Attack and Correlation-Immunity

Assume that the structure of the FH/TH sequence generator shown in Figure 2.4 is known
excepta keyk (), i = 1,2,..., N, which determines the initial state of ath LFSR.

Then, the attacker may try a correlation attack which is performed by correlating the
combinatorial function sequenéawith thei-th LFSR’s sequencé®) to chooses (). In

some cases, there may be no correlation betwees &hgndS but correlation between

the combination of5(), i = 1,2,..., N andS. In this case, a high order correlation
attack is still possible. Thus, to make the generator resistent to the correlation attack
we must use a-ary function, i.e. combinatorial function, which guarantees that there
is no correlation between any combination of LFSRs’ sequences and the combinatorial
function sequence.

Since Siegenthaler introduced the concept of correlation-immune Boolean functions
in [16], many results have been presented on the various aspects of the correlation-
immunity. The recursive constructions of correlation-immune functions were proposed
in [16], [27], and [28]. Especially, the constructions proposed in [28] are for a
ary correlation-immune function. The equivalent definition of a correlation-immune
Boolean function by the Fourier transform was proposed in [29]. Another equivalent
definition by orthogonal arrays was proposed in [27] and generalized in [30].

We examine the general relation between a correlation-immeary function and
the Fourier transform. We are able to derive a necessary condition such jtkeatya
function is correlation-immune by the Fourier transform. We are able to characterize a

first order correlation-immune function by its balancedness property.
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Let Z = f(X) be a discrete RV produced by whereX = (X1, , Xo, ..., Xy)

andX;, i =1,2,..., N, be mutually independent discrete uniform RVs.

Definition 3.3 [16] A p-ary functionf(X) is m-th order correlation-immune i =

f(X)isindependent of every subsetafrandom variables chosen fraky, X, ..., Xx.

Definition 3.4 [30] A balancedn-th order correlation-immune function is calledth

order resilient.

The following lemma is well known as the linear combination lemma.

Lemma 3.1 [30] A discrete random variabl¥ is independent ofn mutually inde-
pendent random variablé§, Ys, ..., Y,, ifand only if Y is independent of the sum
MY+ AoYs + -+ A, Y, for every choice o\, Ao, ..., A\, with not all zeros in

[F,, that isY is independent of any non-trivial linear combination of thevariables.
Because alb™ ! valuesz of X such thats - 7 = b € F,, are equally likely,

N —a.0-X= (w)
Pyux(alb) = %> (3.13)

whereN,_, %, (@) denotes the number of such thatf(X) = a and@ - X = b.
Now, we derive a necessary condition such thataay function is correlation-immune

by the Fourier transform.

Theorem 3.7 If a p-ary functionf (X ) is m-th order correlation-immune, then the Fourier

transform ofs/(X) satisfiesF(w) = 0 for 1 < W (@) < m.

Proof: By Definition 3.3, f(X) is m-th order correlation-immune if and only & is

independent of every subset of or fewer RVs chosen fronX;, X5, ..., Xy. By
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Lemma 3.1, it follows thatf(X) is m-th order correlation-immune if and only &
is independent of every - X for 1 < W(w) < m. Equation (3.13) shows that
is independent ofi - X just whenN_, (@) is constant fob. Thus, f(X) is
m-th order correlation-immune if and only i¥,_, - <_, (&) is constant fob, where
1 < W(w) < m. By this necessary and sufficient condition,fifX) is m-th order

correlation-immune, then

XeFy

=2 > N mxap@ot
acFy, belF,

Y N@) Y o 314
a€lFp bel,

= Z Nf:a(w) -0
aclF,

=0,

wherel < W(w) < m. [ |

We note that the converse of Theorem 3.7 holds providedpthat2 [29]. We charac-
terize a first order correlation-immune function by the following balancedness property.

Remind notations given in Section 3.2.

Definition 3.5 [17] A p-ary function,f(X), is balanced with respect f&; if and only

if [f( X1, ooy Xio1, b, X, oo, XN)O = %]f“\ for all paira, b € F,,.

Proposition 3.3 A p-ary function, f(X), is first order correlation-immune if and only

if it is balanced with respectto al;, ¢ = 1,2,..., V.

Proof: Equation (3.13) folV/ (@) = 1 completes the proof. |
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We have tried to generalize the several construction methods of a correlation-immune

Boolean function to those gfary cases, but unfortunately failed.
3.5 Invariant Nonlinearity Criteria

Recent progress in cryptanalysis, especially the discovery of a linear attack [15], has
highlighted the nonlinearity characteristics of Boolean functions. Well-known nonlin-
earity criteria include the minimum distance to affine functions [18] [31], the minimum
distance to Boolean functions with linear structures [18], the nonlinear order [18], the
strict avalanche criterion [19], the propagation [19], and the correlation-immunity [16].
In cryptography, a function is considered weak when it can be turned into a crypto-
graphically weak function by means of simple (e.g. linear or affine) transformations.
From this viewpoint, a useful nonlinearity criterion should be invariant under the large
group of transformations. For many applications this symmetry group should contain
the group of all affine transformations. Thus, it is worthy to characterize nonlinearity
criteria which are invariant under the group of all affine transformations.

We extend the result given in [18] to thosepséry cases regarding invariant nonlin-
earity criteria. We are able to show that the minimum distance to affine functions, the
minimum distance to functions with linear structures, the minimum distance to functions
of nonlinear ordek, and the nonlinear order ofiaary function are invariant under the
group of all affine transformations.

We note that the lemmas and corollaries of this section are presented without proofs
since they are direct extensions of the results given in [18] to thopeof cases. First,

we examine the minimum distance to affine functions pfaxry function. Remind that
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f(X) is ap-ary function withN arguments. Letl(/N') denote the set of ajl-ary affine
functionsL(X) = ¢o + 1 X1 + c2X2 + ... + ey Xn, WhereL(X) € F, ande¢; €
F,, i =0,1,..., N. Letd(f, L) denote the Hamming distance, that is the number of

differences, betweefiandL.

Definition 3.6 [18] The minimum distance( f), to affine functions of a-ary function,
f(X), is given by

() = min d(f, L), (3.15)

d(f) is generally called the nonlinearity ¢f Let (V') denote the group of all invertible
transformations, i.e. bijections, d?ﬁ’ AGL(N) denote the subgroup with all affine
transformations of2(N), and®(N) denote the set of afi-ary functions,f(X). The

operation of the grouf (V) on the setb(N) is defined as

a(f(X)) = fla(X)), (3.16)

wherea € Q(N) andf(X) € ®(N). Any design criterion is connected with a function
D, given by

D: &(N) -V, (3.17)

whereV is the set of suitable values for the criterighis considered to be good if the
value D( f) belong to the desired subsetf It must be essential for the criterion that
D(f) is invariant under those transformations{efN) which are considered crypto-
graphically weak. This guarantees that a good function cannot be made worse by means
of weak transformations. For nonlinearity criteria, weak transformations usually include

affine transformations. For any design criterion, it is of interest to introduce the largest
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subgroup!/ (D) which leavesD invariant, given by
I(D) ={a € Q(N)| D(a(f)) = D(f) forall f € ®(N)}. (3.18)

We call I(D) the symmetry group ob. It must be essential thd{ D) is large. LetH
be the subset ob(N) anddy(f) be the minimum distance of to the setd, where

f € ®(N). Moreover, let
QN ={a e UN)| a(h) € H forall h € H}, (3.19)

which is called the symmetry group of the set H. This terminology is justified by the

following theorem.

Theorem 3.8 For any subsell of (V) the symmetry group af; coincides with the
symmetry group ofd, i.e.

I(dy) = QN (3.20)

We show that the minimum distance to affine functions pfary function is invariant

under all operations of the affine groug=L (V).

Corollary 3.4 The symmetry group(¢), of the minimum distance to affine functions,

J, is the affine groupAGL(N).

Now, we consider the minimum distancepaary functions with linear structures.
In certain applications the class of affine functions has to be extended to another class
of cryptographically weak functions. The definition of these functions is motivated by
the fact that for an affing-ary function L(X + A) and L(X) always have the same

difference for allX, where A is fixed. However, note that many functions except all
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affine functions have this property, which is termed a linear structure [32]. The linear

structure of g-ary function can be identified with a vectdrsuch that the expression

f(X+A) - f(X) (3.21)

has the same value for all [18]. Let LS(N) denote the set gf-ary functions which
have linear structures. Observe tlizf (V) properly contains the set of all affine func-

tions, A(N).

Definition 3.7 [18] The minimum distance;( f), to functions with linear structures of

ap-ary function,f(X), is given by

n(f) = min d(f, S). (3.22)

We show that the minimum distance to functions with linear structurespediry func-

tion is invariant under all operations of the affine grodg; L(N).

Corollary 3.5 The symmetry group](n), of the minimum distance to functions with

linear structuresy, contains the affine grouglGL(N).

Now, we consider a polynomial whose argumenkis X», ..., Xy, thatis the
generalized algebraic normal form. Apyary function can be represented as this gener-

alized algebraic normal form.

Definition 3.8 [18] The nonlinear ordeg(f), of ap-ary function,f(X), is the degree

of the highest order term in its generalized algebraic normal form.

The following theorem shows that the nonlinear order gfary function is invariant

under all operations of the affine grouz L(N).
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Theorem 3.9 The symmetry group/(¢), of the nonlinear ordeg, is the affine group,

AGL(N).

Let 6x(f) denote the minimum distance to functions of nonlinear oddemMNote
thatdo(f) = d1(f). Then, the following theorem shows that the minimum distance
to functions of nonlinear ordek is invariant under all operations of the affine group,

AGL(N).

Theorem 3.10 The symmetry group/(dx), of the minimum distance to functions of

nonlinear ordek, J;, contains the affine grouplGL(N).

3.6 Remarks

In chapter 2, we proposed the FH/TH generators which are resistent to the only BM
attack. So, we considered the desired cryptographic propertiesugf functions, that

is the combinatorial functions of the generator, to resist other cryptographic attacks than
the BM attack for high security. These cryptographic properties of Boolean functions
have been intensively studied. Thus, we considered the extensions of the cryptographic
properties of Boolean functions to thosepséiry cases.

On the same assumption as that of the correlation attack, an attacker may try an
efficient algebraic attack by multiplying the combinatorial functiphy a well-chosen
multivariate polynomial [33]. If we increase the order@f, the monomials of linear
equations to be solved will considerably increase and so the FH/TH sequence generator
may be more resistent to the algebraic attack.

We have tried but failed to extend the several other properties of Boolean functions.
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We note that it is mainly due to the fact that thary field is more mathematically

difficult to characterize than the binary field.
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Chapter 4

Coded N-ary Pulse Position
Modulated Ultra-Wide Bandwidth
Impulse Radios

We consider a codely-ary pulse position modulated ultra-wide bandwidth (UWB) im-
pulse radio, which exploits the chaotic inter-pulse intervals in the framed-time structure
and the polarity randomization for the coexistence with conventional narrow bandwidth
wireless communication systems. We show that the proposed system has noise-like spec-
trum, that is line spectrum free, by calculating its power spectral density function. We
discuss its multi-user system with its line spectrum property. Then, we confirm the bit
error rate performance of the proposed system by simulation based on the UWB indoor

channel model.
4.1 Detailed Motivation

There have been large interests in recent years in exploiting chaotic signals in com-

munications [34]. The main premise in these studies is that broad-band signals gen-
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erated by simple deterministic systems with chaotic dynamics can potentially replace
pseudo-random carrier signals widely used in modern spread-spectrum communication
systems. A chaotic pulse position modulation (CPPM) was proposed in [35], which en-
codes the information in a pulse train by the alteration of the time positions of pulses.
This system avoids the difficulties, e.g. sensitivities to distortions and noise, of most
other chaos-based communication schemes by using chaotically (aperiodically) timed
pulse sequences rather than continuous chaotic waveforms.

And it belongs to the general class of time hopping (TH) ultra-wide bandwidth
(UWB) impulse radio (IR) communications, which has been intensively studied for short
range multiple-access communications in dense multipath environments because of its
fine time resolution properties [7]. This radio has some other attractive advantages com-
pared with conventional narrow bandwidth wireless communication systems, such as
low hardware complexity, low power consumption, and multi-user capability than im-
munity to multipath fading. We note the UWB-IR as the example of commercial TH
spread spectrum communication systems because this radio adopt a TH binary pulse po-
sition modulation (PPM) for multi-user communications. This radio communicates with
the baseband pulses of ultra short duratiads), i.e. impulses, thereby spreading the
energy of the radio signal very thinly from d.c. to several gigahertz. Because of this
extremely large bandwidth, the UWB-IR and conventional narrow bandwidth systems
cannot help giving interference to each other, and furthermore, a UWB-IR signal accom-
panies line spectrums giving large interference to the conventional systems. Therefore,
the reduction and management of the line spectrums of the UWB-IR signal is an essential

problem to be solved for coexistence with the conventional narrow bandwidth systems.
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Some analyses of the power spectral density (PSD) function and line spectrums of the
UWB-IR signal resulted in some criteria for the reduction of line spectrums depending
on TH sequences and modulation schemes [7] [36] [37] [38] [39].

We note that a possible solution is to make the UWB-IR work in lower signal to noise
ratio (SNR) at the same data rate and bit error rate (BER). A codady PPM UWB-
IR was proposed in [40], which uses the convolutional codes of low complexities for
coding gains, but the line spectrum properties of the system have not been analyzed. A
pseudo chaotic time hopping (PCTH) UWB-IR was proposed in [41], which combines
the chaotically varying spacing between pulses like the CPPM with the framed-time
structure. And its structure is aN-ary PPM UWB-IR combined with a PCTH code
based on the symbolic dynamics of a chaotic map. This radio intends to coexist with
conventional narrow bandwidth systems by both working in lower SNR at the same data
rate and BER due to the code and having the enhanced spread-spectrum characteristics,
that is the reduced number of line spectrums, rather than conventional TH UWB-IRs
due to a chaotic (aperiodic) TH sequence removing periodic structures from the signal.
As an alternative to the PCTH, an interleaved convolutional time hopping UWB-IR was
discussed in [42]. This radio replaces the PCTH code by an optimum convolutional code
(from the viewpoint of free distances) to improve a BER performance preserving the line
spectrum properties. Unfortunately, this radio does not have a coding gain compared to
the uncoded system because of using not the soft but the hard Viterbi decoder.

In this chapter, we also consider a cod€eary PPM UWB-IR, which exploits the
chaotic inter-pulse intervals in the framed-time structure like the PCTH and the polarity

randomization discussed in [39] for the coexistence. We show that the proposed system
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Figure 4.1: CodedV-ary PPM UWB-IR.

has noise-like spectrum, that is line spectrum free, by calculating its PSD function. We
discuss its multi-user system, which assigns a user signature sequence [43] to each user
as a multi-user sequence, with its line spectrum property. Then, we confirm the BER
performance of the proposed system by simulation based on the UWB-IR indoor channel

model given in [8].
4.2 System Structure

We consider the codefy-ary PPM UWB-IR shown in Figure 4.1. This radio uses a
convolutional code whose outputs’ linear equations are linearly independent. We can
improve a BER performance by using a good convolutional code rather than the PCTH
code. Note thatv = 2M andT; = N x T, whereTy is a frame time and’ is a

slot time. The symbold; € {0, 1, ..., N — 1}, can be determined by reading each

successivé/ output bitsb,,, in decimal as follows

M-1 '
dj, = Z bark+i2' (4.1)
=0
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We assume that the user data are independent identically distribid@diécrete uni-

form random variables (RVs). Theidf, given in (4.1) are notid because of a correlation
between successive terms but uniform to improve the security by the linear independence
of output bits. The time slot indexXy,, can beiid discrete uniform RVs by interleaving

d;.. Thus, a pulse is purely randomly distributedZin and a spacing between pulses
varies chaotically, that is a chaotic time hopping. The transmitted signal is given by

s(t) = Y pixw(t —iTy — diTy), (4.2)

1=—00
wherep; € {—1, 1} is a polarity randomization sequence an() is a transmit pulse.
In this paper, we use the second derivative of the Gaussian functiar{farThe output

of the correlator in the receiver foriath time slot in ak-th frame time is given by

kTp+(u+3)Ts
My = / r(t) x w(t — kT — uTy) dt. (4.3)
kT4 (u—$)Ts
A vectormy, = (mgo, mi1, --., mrN—1) IS deinterleaved anghy ,, is used as the

soft branch metric of a branch whose output is decimal in the following soft Viterbi
decoder. We note that not the hard but the soft Viterbi decoding has a coding gain in the

codedN-ary PPM UWB-IR.
4.3 Line Spectrum Properties

Without the polarity randomizer, the line spectrums of the transmitted sigalwould
exist at everyl /T Hz [44]. These are the same line spectrum properties as those of the
PCTH UWB-IR and these sparse lines can be set to fall outside the useful bandwidth by

design [41]. Though, signals that cause line spectrums are highly undesirable since they
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have a high peak PSD function. They hardly guarantee the low probability of detection
(LPD) and have to back off the average power until the peak of the spectrum complies
with the spectral mask established by the Federal Communication Commission (FCC)
[45]. We are able to eliminate these lines by using the polarity randomization discussed
in [39]. After the polarity randomization, the transmitted sigsal(t), is similar to that

of joint PPM/pulse amplitude modulation (PAM) but the sign of the transmit pulse does
not bear any information. The PSD function of ARary modulated signal with afid

input sequence is given by [46]

o0 N-1 2
w-gs £ {8 ns )6 5)}

(4.4)

L= N-1 2
+T{ZR-Si(f>2 S PSi(f) }
=0 1=0

whereT is a symbol periodS;(f) is the Fourier transform of afxth symbol, s;(¢),

of the constellationp; is the marginal probability of thé-th symbol, andj(-) is the
Kronecker delta function. We assume that the polarity randomization sequence, which
is actually a long pseudorandom sequencéjdsuniform RVs. Then, the transmitted
signal, s;-(t), can be treated as a pulse train with equiprob@iNeantipodal symbols.

From (4.4), the PSD function af,.(¢) is as follows

= 7 2 ISP *5
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Figure 4.2: Actual PSD function fav = 32, Ty = 32ns,T = 1ns, andE; = 1W/Hz.

whereT = Ty, s;(t) = w(t — iTy), siyn(t) = —si(t),i =0, 1, ..., N -1, and

W (f) is the Fourier transform af(t). Thus, the proposed system has no line spectrums
and the shape of its PSD function is determined by the transmit pu($e, WhenT

is fixed, we can get lower PSD function by increasiNg that is increasing’y. This
results in the compliance with the FCC mask, an improved LPD, and an improved BER
performance in the case of orthogonal PPM. Figure 4.2 shows the actual PSD of the

system by Matlab.
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Figure 4.3: Transmitted signals of the proposed systems.

4.4 Multi-User System

In multi-user communications, drth user uses his own sequence of pulses for the trans-

mit pulse like in code division multiple access schemes, given by

N.—1
wh(t) =Y ol xw(t —iT.), (4.6)
=0
whereagl) e{l, —1},i=0,1, ..., N.— 1, is the user signature sequence [43] of
thel-th user and’, is a chip time. Then, the transmitted signal of tki& user is given
by
e}
sty =" pix w0 —iTy - dTy), 4.7)

1=—00
wheredz@ is a time slot index in an-th frame time. Figure 4.3 shows the transmitted

signals of the single user and the multi-user system. A receiver structure féthhe

user is the same as that of the single user system except that the correlator is matched to
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w(t) given in (4.6) notw(t). The PSD function of the transmitted signal can calculated

similarly to the case of the single user system as follows

1 2
@,0(f) = = (W5
1f , (4.8)
= o WPV ().
f
whereW ()( ) is the Fourier transform af") (¢) and
Ne—1 2
cO(f) =13 alY exp[—j2n fiT.] (4.9)
=0

which is dependent on the user signature sequence. The multi-user system also has no
line spectrums and the shape of its PSD function is dependent on both the basic pulse
and the user signature sequence.

Considering the multi-user interferences of the other users, the BER performance
of the system mainly depends on the crosscorrelation properties of user signature se-
guences. A Hadamard matrix [4#, of ordern is a square matrix with all entries in
{1, —1} such that

HH' = nl,,, (4.10)

whereH! is the transpose dfl and1,, is the identity matrix of orden. This implies

that any two rows oH are orthogonal. Therefore, the rows of Hadamard matrix can be
good candidates for the user signature sequences. When the slot time is synchronized
(not necessarily frame time), that is the case of a forward link, the BER performance of
the system is the same as that of the single user system by the optimum crosscorrelation
properties of the sequences given in (4.10). By the way, when the slot time is not syn-

chronized but the chip time is synchronized, that is the case of a reverse link, the rows
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of Hadamard matrix do not guarantee the same good BER performance. In this case, the
user signature sequences with optimal aperiodic crosscorrelation properties are neces-
sary. A Welch-optimum family that is optimized with respect to mean-square aperiodic

correlations [48] can be a good candidate.
4.5 UWB-IR Indoor Channel

The channels of personal wireless communications which are important application
areas for UWB-IRs are dense multipath channels. The performance analyses of the
UWB-IRs in multipath environments are usually based on narrowband channel models
or straightforward extensions to finer delay resolutions that, however, markedly differ
from empirical UWB-IR channels in the distribution of path gains. To confirm the BER
performance, we use the UWB-IR indoor channel model given in [8] by the statistical
analysis of UWB-IR channel data obtained from an extensive measurement in a typical
modern office environment. A path log3/, is the function of a distancd, between a

transmitter and a receiver, given by

204 x 1 d if d <11
PL = { * 10810 hastm (4.11)

| -56+ 74 x logygd ifd>11m’

A total power gain,GG,, is lognormally distributed with a mean PL and a standard
deviation 4.3, denoted by

Gy = Ly(—PL, 4.3) (4.12)

A decay constant;,, and a power ratia;, are also lognormal RVs, given by

e = Ly(16.1, 1.27) (4.13)
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r=Ly(—4, 3) (4.14)

The power delay profile;(7), of the channel is given by

_ Gt
9 =T e
Non (4.15)
X {5(7’ —1)+ Z rexp [—(1x — 1) /e] 6(T — Tk)} ,
k=2
where
F(e) ! (4.16)

Tl exp[—AT/e]’
a bin widthA7 = 2ns, a delay, = (k — 1) A7, andNy,;, is the total number of bins in

an observation window whose widthis.
4.6 Simulation Results

Figure 4.4 and Figure 4.5 show the BER performance of the proposed single user sys-
tem. The proposed system uses the optimum convolutional code, whose outputs’ linear
equations are linearly independent, of the same codd y&tand constraint length 5 as
those of the PCTH code of the 32-ary PCTH UWB-IR, respectively. An uncoded system
transmits a pulse 5 times for each time slot index and uses the majority vote decoding
for the same data rat&,, as that of a coded system. Figure 4.4 shows the BER perfor-
mance in the additive white Gaussian noise (AWGN) channel. The proposed system and
the PCTH UWB-IR have the almost same BER curve and abdBtgain at BERZ0~6

in the AWGN channel. Figure 4.5 shows the BER performance in the UWB-IR indoor
channel described in the previous section. The figure (a) and (b) shows the performance
when a distance between a transmitter and a receiverigd 15 meters, respectively.

A rake receiver with 50 bins is used and the perfect channel estimation is assumed. A
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guard intervally, is inserted between time frames to obtain meaningful BER curves by
decreasing serious intersymbol interferences of the channel. Though insgytitige
PSD function given in (4.5) remains except for the increasgydfy 7;,. The proposed
system has a lower error floor below BER=? rather than the PCTH UWB-IR in the
UWB-IR indoor channel. Whed varies the BER curves are correspondingly shifted

and the error floors of the proposed system and the PCTH UWB-IR are preserved.

4.7 Remarks

We considered the coded-ary PPM UWB-IR which exploits the chaotic time hopping
and the polarity randomization. We believe that the proposed system is a possible so-
lution for the coexistence problem of the UWB-IR by the following reasons. First, the
system works lower SNR at the same data rate and the same BER by the code. Second,
the system has the line spectrum free PSD function by the polarity randomization.

We note that the PSD functions given in (4.5) and (4.8) is also applicable to any other

linear code whose outputs’ equations are linearly independent.
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Chapter 5

Concluding Remarks

5.1 Summary

In this dissertation, we considered high security frequency/time hopping (FH/TH) se-
guence generators and ultra-wide bandwidth (UWB) impulse radios (IRs), which are
commercial TH spread spectrum communication systems.

In chapter 2, we discussed some methods of constructing FH/TH sequences by tak-
ing successivé-tuples of given sequences. These methods can generate FH/TH se-
guences over large alphabets but with little increase in the hardware complexity. So, we
focused on the linear complexities (LCs) of the FH/TH sequences, which is the only left
design criterion for FH/TH sequences. We characterized thasg sequences whose
k-tuple versions now ovdek have the maximum LCs. Then, we considered FH/TH
sequence generators composed of a combinatorial function generator and some regis-
ters. We proposed the generators whose output FH/TH sequences have the maximum
possible LCs for the given algebraic normal form to resist a Berlekamp-Massey (BM)
attack.

In chapter 3, we considered the cryptographic propertiesarfy functions, that is
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the combinatorial functions of the proposed FH/TH sequence generators, to resist other
cryptographic attacks than the BM attack for high security. We constructed balanced
p-ary functions by compositions. We constructed balaneady functions which satisfy

the propagation for the most of nonzero vectors and balanced functions which satisfy
the propagation of high degree. Then, we derived a necessary condition sugtatiiat
functions are correlation-immune by the Fourier transforms and showed that some of
nonlinearity criteria are invariant under cryptographically weak transformations.

Finally, in chapter 4 we considered a ultra-wide bandwidth UWB-IR as the example
of commercial TH spread spectrum communication systems. We proposed a/¢eded
ary pulse position modulated (PPM) UWB-IR, which exploits the chaotic inter-pulse
intervals in the framed-time structure and the polarity randomization for the coexistence
with conventional narrow bandwidth wireless communication systems. We showed that
the proposed system has noise-like spectrum, that is line spectrum free, by calculating
its power spectral density function. We discussed its multi-user system with its line
spectrum property. Then, we confirmed the bit error rate performance of the proposed

system by simulation based on the UWB indoor channel model.

5.2 Future Directions and Open problems

Throughout this dissertation, we considered high security FH/TH sequence generators
and codedV-ary PPM UWB-IRs. In further research, the following unsolved problems

are desired to be studied.

1. For multi-user FH/TH communication systems, an FH/TH sequence constructed

by the proposed generator in chapter 2 can be multi-user sequences by changing
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the initial states of the linear feedback shift registers. We need to characterize the

correlation properties of these multi-user sequences to verify their performance.

. We need to verify that perfect nonlineadary functions, i.ep-ary bent functions,
discussed in chapter 3 are optimum with respect to the minimum distance to affine

functions and the minimum distance to functions with linear structures.

. In chapter 4, we discussed the multi-user system of the proposed ¢odey
PPM UWB-IR. For the case of areverse link, we need the user signature sequences

with optimal aperiodic crosscorrelation properties.
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