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ABSTRACT

High Security Frequency/Time Hopping Sequence
Generators

Yun-Pyo Hong
Department of Electrical
and Electronic Eng.
The Graduate School
Yonsei University

We discuss some methods of constructing frequency/time hopping (FH/TH) sequences

overFpk by taking successivek-tuples of given sequences overFp. We are able to char-

acterize thosep-ary sequences whosek-tuple versions now overFpk have the maximum

possible linear complexities (LCs). Then, we consider FH/TH sequence generators com-

posed of a combinatorial function generator and some registers. We are able to character-

ize the generators whose output FH/TH sequences overFpk have the maximum possible

LCs for the given algebraic normal form to resist a Berlekamp-Massey (BM) attack.

Next, we consider the cryptographic properties ofp-ary functions, that is the com-

binatorial functions of the FH/TH sequence generators, to resist other cryptographic

attacks than the BM attack for high security. We are able to construct balancedp-ary

functions by compositions. We are able to construct balancedp-ary functions which sat-

isfy the propagation for the most of nonzero vectors and balanced functions which satisfy
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the propagation of high degree. We are able to derive a necessary condition such that

p-ary functions are correlation-immune by the Fourier transforms and show that some of

nonlinearity criteria are invariant under cryptographically weak transformations.

Finally, we note a ultra-wide bandwidth (UWB) impulse radio (IR) as the example

of commercial TH spread spectrum communication systems. We consider a codedN -

ary pulse position modulated UWB-IR, which exploits the chaotic inter-pulse intervals

in the framed-time structure and the polarity randomization for the coexistence with

conventional narrow bandwidth wireless communication systems. We show that the

proposed system has noise-like spectrum, that is line spectrum free, by calculating its

power spectral density function. We discuss its multi-user system with its line spectrum

property. Then, we confirm the bit error rate performance of the proposed system by

simulation based on the UWB indoor channel model.

Key words : Frequency/time hopping sequence, linear complexity, balancedness,
propagation, correlation-immunity, nonlinearity,p-ary function, ultra-
wide bandwidth, line spectrum, polarity randomization, convolutional
code
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Chapter 1

Introduction

1.1 Motivation

In a peer-to-peer frequency/time hopping (FH/TH) spread spectrum communication sys-

tem, an attacker may try to synthesize the entire FH/TH pattern from some frequency/time

slots successively observed. When the attacker observes successive twice frequency/time

slots as the linear complexity (LC) [1] [2] [3] [4] of the pattern, he can successfully syn-

thesize the next frequency/time slots. Thus, from the view point of the system designers,

the LCs of the FH/TH sequences in use should be as large as possible. Note that FH/TH

communication systems using a few hundreds, or even a few thousands frequency/time

slots are common in practice. Therefore, it is necessary to design non-binary sequences

(i) with “large” LCs, and (ii) over “large” alphabets, but (iii) with “little” increase in the

hardware complexity.

We consider the simple way of constructing a (pk-ary) FH/TH sequenceT over a

large alphabet from a given (p-ary) sequenceS over a small alphabet, simply reading

its successivek-tuples. We believe that this method makes no significant increase in the

complexity in actual hardware design. Thus, this method satisfies the last two conditions
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listed in the previous paragraph. We interpret the terms ofT , that isk-tuples overFp, as

elements ofFpk by using some but fixed basis overFp. We try to

• rule out any possibility that the decrease in its LC using some other basis than that

used in the design might help the attacker to track the FH/TH sequence.

Given any one basis, it is clear that the LC ofT is at most that ofS. Therefore, it is

worthy to

• characterize thosep-ary sequencesS whosek-tuple versionsT have the same LCs

asS (that is the maximum possible) for any choice of basis.

In addition, We consider FH/TH sequence generators composed of a combinatorial

function generator [5] and some registers. Then, it is necessary to

• characterize the generators whose output FH/TH sequences have the maximum

possible LCs.

However, we note that the above characterization is for resistance to the only Berlekamp-

Massey (BM) attack [6]. So, we consider desired cryptographic properties [5] of combi-

natorial functions, i.e.p-ary functions, of the FH/TH sequence generators to resist other

cryptographic attacks than the BM attack for high security. The relevance of these prop-

erties is based on information theoretic grounds or on specific cryptographic attacks that

have their own attack scenarios. Unfortunately, it is clear that no function can satisfy all

these properties. So, it is necessary to

• characterize thep-ary functions with a corresponding cryptographic property for

each possible attack on a case by case basis.

2



And these cryptographic properties of Boolean functions have been intensively studied

in many literatures. Thus, it is natural to

• extend the cryptographic properties of Boolean functions to those ofp-ary cases.

Recently, a ultra-wide bandwidth (UWB) impulse radio (IR) has been intensively

studied for short range multiple-access communications in dense multipath environ-

ments because of its fine time resolution properties [7]. We note the UWB-IR as the

example of commercial TH spread spectrum communication systems because this radio

adopt a TH binary pulse position modulation (PPM) for multi-user communications.

Because of its extremely large bandwidth, the UWB-IR and conventional narrow

bandwidth wireless communication systems cannot help giving interference to each

other, and furthermore, a UWB-IR signal accompanies line spectrums giving large in-

terference to the conventional systems. Therefore, the reduction and management of the

line spectrums of the UWB-IR signal is an essential problem to be solved for coexistence

with the conventional narrow bandwidth systems. We believe that a possible solution is

to make the UWB-IR work in lower signal to noise ratio at the same data rate and bit

error rate (BER). So, we consider a codedN -ary PPM UWB-IR, which exploits the

chaotic inter-pulse intervals in the framed-time structure and the polarity randomization

for the coexistence. Then, we try to

• show that the proposed system has noise-like spectrum, that is line spectrum free

by calculating its power spectral density function.

The performance analyses of the UWB-IR in multipath environments are usually based

on narrowband channel models or straightforward extensions to finer delay resolutions
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that, however, markedly differ from empirical UWB-IR channels in the distribution of

path gains. Thus, it is essential to

• confirm the BER performance of the proposed system by simulation based on

UWB indoor channel models given in [8].

1.2 Overview

In chapter 2, we characterize thosep-ary sequences whosek-tuple versions now overFpk

have the maximum possible LCs. Then, we propose FH/TH sequence generators and

characterize the generators whose output FH/TH sequences have the maximum possible

LCs for the given algebraic normal form.

In chapter 3, we construct balancedp-ary functions by compositions. We construct

balancedp-ary functions which satisfy the propagation for the most of nonzero vectors

and balanced functions which satisfy the propagation of high degree. Then, we derive

a necessary condition such thatp-ary functions are correlation-immune by the Fourier

transforms and show that some of nonlinearity criteria are invariant under cryptographi-

cally weak transformations.

Finally, in chapter 4 we propose a codedN -ary PPM UWB-IR for the coexistence

with conventional narrow bandwidth wireless communication systems. We show that

the proposed system has noise-like spectrum, that is line spectrum free, and discuss its

multi-user system. Then, we confirm the bit error rate performance of the proposed

system by simulation based on the UWB indoor channel model.
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Chapter 2

Frequency/Time Hopping
Sequences with Large Linear
Complexities

We discuss some methods of constructing frequency/time hopping (FH/TH) sequences

over Fpk by taking successivek-tuples of given sequences overFp. We are able to

characterize thosep-ary sequences whosek-tuple versions now overFpk have the maxi-

mum possible linear complexities (LCs). Next, we consider FH/TH sequence generators

composed of a combinatorial function generator and some registers. We are able to

characterize the generators whose output FH/TH sequences overFpk have the maximum

possible LCs for the given algebraic normal form.

2.1 Detailed Motivation

In a peer-to-peer frequency/time hopping (FH/TH) spread spectrum communication sys-

tem, an attacker may try to synthesize the entire FH/TH pattern from some frequency/time

slots successively observed. That is, the attacker may try to synthesize the linear feed-
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back shift register (LFSR) [1] [2] [3] [4] that can generate the next slots of the FH/TH

pattern using Berlekamp-Massey (BM) algorithm [6] over a finite field.

Let L be the linear complexity (LC) [1] [2] [3] [4] of an FH/TH sequence. When

the attacker observes successive2L frequency/time slots, he can successfully synthesize

the next frequency/time slots as long as the same FH/TH sequence is used. Therefore,

from the view point of the system designers, the system should change from one FH/TH

sequence to another before2L slots of the sequence are used, and the LCs of the FH/TH

sequences in use should be as large as possible.

Note that any FH/TH sequences are non-binary in general since there are usually

more than2 frequency/time slots available. In fact, FH/TH communication systems

using a few hundreds, or even a few thousands frequency/time slots are common in

practice. It is well-known that the number of frequency/time slots affects directly the

processing gain [4] of the FH/TH spread spectrum communication systems, at the price

of the hardware complexity. Therefore, it is necessary to design non-binary sequences

(i) with “large” LCs, and (ii) over “large” alphabets, but (iii) with “little” increase in the

hardware complexity.

In this chapter, we consider the simple way of constructing a non-binary (pk-ary)

sequenceT over a large alphabet from a given (p-ary) sequenceS over a small alphabet,

simply reading its successivek-tuples. By increasing the parameterk, one may obtain

a sequence over as large alphabet as one wishes. We believe that this method is so

simple to construct apk-ary sequence compared with a construction overFpk because

the multiplications overFpk are much more complex than those overFp in the LFSR

constructions which is general methods in the hardware systems. In this view point, there
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will be no significant increase in the complexity in actual hardware design. Therefore,

this method satisfies the last two conditions listed in the previous paragraph.

On the other hand, we have to be very careful in analyzing the LCs of the new

sequences, including the definition of the LC ofT overk-tuples overFp which is not

a field any more. One way to solve this problem is to interpret thek-tuples overFp as

elements ofFpk . In this case, it is not much surprising to observe that two different basis

may result in two different LCs ofT (now overFpk ), and hence, the LC ofT depends

on the choice of basis (ofFpk overFp).

We are here trying to rule out any possibility that the decrease in its LC using some

other basis than that used in the design might help the intercepter to track the FH/TH

sequence, assuming that the FH/TH sequenceT with its LC equal toL (using the basis

used in the design process) is used for the duration of2L− 1 slots.

Given any one basis, it is clear that the LC ofT is at most that ofS. We are able

to characterize thosep-ary sequencesS whosek-tuple versionsT now overFpk have

the same minimal polynomials [1] [2] [3] [4] asS, and therefore, the same LCs asS

(that is the maximum possible), for any choice of basis ofFpk overFp. This leads to the

construction ofpk-ary sequences with minimal polynomials essentially overFp.

We apply the above characterization into two sequences with as large as possible

period when the number of registers,r, is given: binary de Bruijn sequences of period

2r [9] andp-arym-sequences of periodpr − 1.

We consider FH/TH sequence generators composed of a combinatorial function gen-

erator [5] and some registers. We are able to characterize the FH/TH sequence generators

which guarantee that a combinatorial function sequences,S, overFp have the maximum
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possible LCs for the given algebraic normal form and thatk-tuple versionsT of S now

overFpk have the same minimal polynomials asS, and therefore, the same LCs asS

(that is the maximum possible) for any choice of basis ofFpk overFp.

2.2 Preliminaries

The LC of a sequence is the size of the shortest LFSR which can generate the sequence

[1] [2] [3] [4]. Obviously, it means the difficulty of generating and perhaps analyzing

the sequence from some symbols of the sequence successively observed and must be an

important design criteria in the field of security (that is stream cipher systems, military

FH/TH spread spectrum communication systems, etc.).

Let Fq be the finite field withq elements andp be a prime. Assume that the linear

recurrence relation of an LFSR that generates a sequenceS = {sn|n = 0, 1, 2, ...} over

Fp is given by

sn =
L∑

i=1

cisn−i, (2.1)

whereci, i = 1, 2, . . . , L, is a connection coefficient overFp. Then, the characteristic

polynomial ofS is given by [1] [2] [3] [4]

C(x) = xL −
L∑

i=1

cix
L−i. (2.2)

The minimal polynomial ofS corresponds to the characteristic polynomial of the mini-

mum degree [1] [2] [3] [4]. Note that the degree of minimal polynomial is the LC ofS.

Figure 2.1 shows the LFSR whose linear recurrence relation is given in (2.1).

BM algorithm regards the symbol of a sequence as the element of some finite field

and synthesizes the minimal polynomial of the sequence over the field [6].
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Figure 2.1: LFSR whose linear recurrence relation is given in (2.1).

2.3 Sequences overFpk with Minimal Polynomials over Fp

Consider a given sequenceS = {sn|n = 0, 1, 2, ...} overFp. Letk be a positive integer,

and define a new sequence (an FH/TH sequence)T (k, S) = {tn|n = 0, 1, 2, ...} based

onS by the following:

tn = (sn, sn−1, . . . , sn−k+1) . (2.3)

Then, it is clear that the sequenceT (k, S) is overFk
p, thek-tuple vector space over

Fp. By using some but fixed basis such as a simple polynomial basis given by

{αk−1, αk−2, . . . , α, 1}, (2.4)

whereα is a primitive element ofFpk , one can regard the sequenceT (k, S) being over

a fieldFpk . This is a straightforward and simple way of enlarging the size of alphabet

over which a sequence is.

Proposition 2.1 The LFSR that generates a sequenceS = {sn} overFp also generates

T (k, S) overFpk as defined in (2.3) regardless of the choice of basis. The converse holds

provided that the characteristic polynomial that generatesT overFpk is essentially over

Fp.
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Figure 2.2: LFSR generatingS andT ’s of Example 2.1.

Example 2.1 A ternary sequenceS with period26 is given by

0 0 1 1 1 0 2 1 1 2 1 0 1 0 0 2 2 2 0 1 2 2 1 2 0 2 0 0 . . . .

Then the sequencesT (3, S) andT (4, S) according to (2.3) are given by the following:

T (3, S) = 000 000 100 110 111 011 201 120 112 211 . . . ,

T (4, S) = 0002 0000 1000 1100 1110 0111 2011 1201 1120 2112 . . . .

Note that bothT ’s as well asS are generated by the LFSR shown in Figure 2.2 with

connection coefficients overGF (3).

Proposition 2.1 does not guarantee that the LFSR forT (k, S) overFpk , k ≥ 2, is

necessarily the shortest possible even if it is the shortest forS overFp, but that the LC

of T (k, S) is at most that ofS. In fact, the shortest LFSR forT (k, S) overFpk , k ≥ 2,

(and hence the LC ofT ) cannot be uniquely determined unless a basis ofFpk is fixed.

Following example shows this.

Example 2.2 (a) A binary sequenceS1 with period63 is given by

110010000011111110101001001001101010111011011011101001111110010 . . . .

10



The LC ofS1 overGF (2) is 62, but that ofT (3, S1) overGF (23) is 60 with respect to

any polynomial basis as in (2.4). (b) A binary sequenceS2 with period63 is given by

010111111100110000011011111101010011111100011001110100101001011 . . . .

The LC of T (3, S2) over GF (23) is 55 or 53 with respect to the polynomial basis as

in (2.4) usingx3 + x + 1 or x3 + x2 + 1, respectively.

A question at this point is the following: is it possible that the shortest LFSR that

generatesS overFp is indeed the shortest LFSR that generatesT (k, S) overFpk with

respect to some basis ofFpk overFp for k ≥ 2 ? If it is possible to characterize such

p-ary sequencesS, thenT (k, S) overFpk has the same minimal polynomial asS and

hence it is overFp.

Lemma 2.1 [1] (i) The minimal polynomial of a sequence overGF (q) divides any

characteristic polynomial of the LFSR that generates the sequence overGF (q). There-

fore, it is uniquely determined up to the multiplication by a constant. (ii) An irreducible

polynomial overGF (q) of degreed remains irreducible overGF (qk) if and only if k

andd are relatively prime.

Theorem 2.1 [10] Let the minimal polynomialC(x) of S = {sn} overFp be given by

C(x) =
∏

i∈I(fi(x))mi for some irreducible polynomialsfi(x) of degreedi overFp,

some positive integersmi, and some index setI. Let T (k, S) overFpk be defined as in

(2.3) with respect to some but fixed basis fork ≥ 1. Then, (i) the shortest LFSR that

generatesS is also the shortest LFSR that generatesT (k, S) overFpk , and therefore,

their LCs are same, ifk anddi are relatively prime for alli ∈ I. Furthermore, (ii) it is

11



also the shortest LFSR ofT (k, S) overGF (pm), and therefore, their LCs are same, for

anym ≥ k such thatm anddi are relatively prime for alli ∈ I.

Proof: (i) The LFSR withC(x) also generateT (k, S) over Fpk by Proposition 2.1.

Suppose that the degree ofC(x) is not the least forT (k, S). Then the shortest LFSR

with characteristic polynomialC ′(x) exists andC ′(x) dividesC(x) by Lemma 2.1(i).

C ′(x) =
∏

i∈I(fi(x))si , wheresi is a non-negative integer,0 ≤ si ≤ mi for all i ∈ I,

and
∑

i∈I si <
∑

i∈I mi by Lemma 2.1(ii). On the other hand, the polynomialC ′(x) =
∏

i∈I(fi(x))si is overFp, and Proposition 2.1 (the converse part) implies thatC ′(x)

is also a characteristic polynomial forS overFp which is a desired contradiction. (ii)

Furthermore, if we regard each term ofT (k, S) overGF (pm) for anym ≥ k such that

m anddi are relatively prime by inserting so many 0’s at some fixed positions, all the

previous arguments will be similarly applied.

The converse of Theorem 2.1 is not generally true. We are able to constructpk-ary

FH/TH sequences as in Theorem 2.1 whose LCs are the same as the originals (that is the

maximum possible) with respect to any basis fromp-ary sequences. Thus, if thep-ary

sequences have large LCs, the resulting FH/TH sequences have the same large LCs as

the originals with respect to any basis. We would like to emphasize the following two

cases to which Theorem 2.1 applies.

Corollary 2.1 [10] (i) For ap-ary m-sequenceS of periodpr − 1 with p a prime, the

shortest LFSR that generatesS is also the shortest LFSR that generatesT (k, S) overFpk

as defined in (2.3) with respect to any basis ifk is relatively prime tor. Furthermore, it

is also the shortest LFSR ofT (k, S) overGF (pm) for anym ≥ k which is relatively

12



prime tor. (ii) If a binary sequenceS has a period2r (for example, binary de Bruijn

sequences), then the shortest LFSR that generatesS is also the shortest LFSR that gen-

eratesT (k, S) overGF (2k) as defined in (2.3) for any positive integerk. Furthermore,

it is also the shortest LFSR ofT (k, S) overGF (2m) for anym ≥ k.

Proof: (i) Obvious. (ii) We note that the minimal polynomialC(x) of a binary sequence

S with period2r is of the form(1 + x)τ for some positive integerτ [9].

For a binary de Bruijn sequence,S, with period2r and large LC which is at least

2r−1 + r [9], T (k, S) overGF (2k) as defined in (2.3) has the same large LC asS by

Corollary 2.1(ii). In addition, the symbol distribution of theT (k, S) in one period is uni-

form, that is any symbol of theT (k, S) appears exactly2r−k times,r≥k, in one period.

In reality, the finite field of characteristic 2 would be a good choice for the algebraic

structure of FH/TH sequences because the computations over characteristic 2 are most

efficiently implemented as hardware systems and the usual practice follows this idea. In

above three points,T (k, S) from binary de Bruijn sequences would be good candidates

for FH/TH sequences in a peer-to-peer FH/TH spread spectrum communication system.

Example 2.3 A binary sequenceS with period16 is given by

0 0 0 0 1 0 1 1 1 1 1 1 0 1 0 0 . . . .

An 8-ary sequenceT (3, S) with k = 3 overGF (8) becomes

000 000 000 000 100 010 101 110 111 111 111 111 . . . .

An 8-ary sequenceT ′(3, S) overGF (16) becomes

0000 0000 0000 0000 0100 0010 0101 0110 0111 0111 0111 0111 . . . .

13



Figure 2.3: Shortest LFSR generatingS and threeT ’s of Example 2.3.

Here, the symbol 0 is padded at the leftmost position of the every term ofT (3, S),

and the resulting 4-tuples are regarded as the elements ofGF (16). A 16-ary sequence

T (4, S) becomes

0001 0000 0000 0000 1000 0100 1010 1101 1110 1111 1111 1111 . . . .

All these sequences have the same minimal polynomial and the corresponding LFSR is

shown in Figure 2.3.

Remark 2.1 Some interesting discussions are given in [11] and [12] which are meth-

ods of constructingpk-ary m-sequences using severalp-ary m-sequences of the same

period. We note that the resulting m-sequences overFpk do not have the same minimal

polynomial as the componentp-ary m-sequences. In [12], for example, if the minimal

polynomialC(x) of the componentp-ary m-sequence overFp has degreekn, then the

minimal polynomial of resultingpk-ary m-sequence overFpk has degreen, and in fact,

it is a factor ofC(x) overFpk .

Remark 2.2 Some interesting discussions are given in [13] which establish a lower

bound on the LC of a multisequence overGF (qk) in terms of the joint LC of itsk

14



element sequences of periodN overGF (q). We note that he characterize the period,N ,

of which the LC of a multisequence is the same as the joint LC of element sequences.

Now, letU = {un|n = 0, 1, 2, ...} be ap-aryk-tuple FH/TH sequence in general. In

order to determine its minimal polynomial and therefore, LC ofU overFpk , we need to

fix one basis for BM algorithm. Following theorem characterizes thoseU which do not

need this.

Theorem 2.2 [10] LetU = {un|n = 0, 1, 2, ...} be ap-aryk-tuple sequence in general,

whereun = (u(1)
n , u

(2)
n , . . . , u

(k)
n ). Let a basis ofFpk overFp be fixed, and the minimal

polynomialC(x) of U overFpk using BM algorithm be determined to be of the form

∏
i∈I(fi(x))mi , wherefi(x) are irreducible polynomials of degreedi overFp, mi are

positive integers, andI is some index set. Then,C(x) is a uniquely determined minimal

polynomial ofU overFpk regardless of the choice of basis, ifk anddi are relatively

prime for all i ∈ I. Furthermore,C(x) is the unique minimal polynomial ofU over

GF (pm) for anym ≥ k using any basis such thatm anddi are relatively prime for all

i ∈ I.

Proof: SupposeC ′(x) is the corresponding minimal polynomial ofU now overFpk

with respect to another basis. Then,C ′(x) must divideC(x) overFpk by Lemma 2.1(i),

sinceC(x) also generatesU overFpk with respect to another basis. Using the same

arguments as in the proof of Theorem 2.1, we have a contradiction unlessC ′(x) = C(x).
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2.4 Frequency/Time Hopping Sequence Generators for Large
Linear Complexities

We pay attention to the construction ofS overFp with large LC. WhenS(i) = {s(i)
n |n =

0, 1, 2, ...}, i = 1, 2, . . . , N , are sequences overFp, a termwise product sequenceS =
∏N

i=1 S(i) = {sn|n = 0, 1, 2, ...} overFp based onS(i), i = 1, 2, . . . , N , is defined as

sn =
N∏

i=1

s(i)
n (multiplication in Fp) . (2.5)

It is well-known that the LC of a termwise product sequence defined above is at most

the product of the LCs of multiplied sequences.

Lemma 2.2 [2] Let Y = {yn} andZ = {zn} be sequences overFp with some irre-

ducible minimal polynomialsCY (x) andCZ(x) of degreel andm, respectively. Ifl

andm are relatively prime, thenS = Y Z overFp as defined in (2.5) has the irreducible

minimal polynomial of degreel ×m.

Corollary 2.2 [10] Let S = Y Z be a sequence overFp as constructed in Lemma 2.2.

If l × m andk are relatively prime, thenT (k, S) overFpk as defined in (2.3) has the

same minimal polynomial asS.

Proof: It is obvious by Lemma 2.2 and Theorem 2.1.

Example 2.4 The irreducible minimal polynomial ofY andZ overGF (2) is CY (x) =

x4 + x + 1 andCZ(x) = x3 + x + 1, respectively. The irreducible minimal polynomial

of S = Y Z overGF (2) as defined in (2.5) isx12 + x9 + x5 + x4 + x3 + x + 1 whose

degree is12 = 3 × 4 becausegcd(3, 4) = 1. T (k, S) overGF (2k) as defined in (2.3)

has the same minimal polynomial asS for k relatively prime to 12.
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We consider the general case of Lemma 2.2, that is the case of termwise product

sequences based on arbitrary number of sequences with general minimal polynomials

composed of irreducible factors.

Lemma 2.3 [2] Let S(i), i = 1, 2, . . . , N , be sequence overFp with a minimal poly-

nomialCS(i)(x) of degreeM (i), that dividesxpm(i)−1 − 1 for somem(i) and contains

no linear factor. For any pair of distinct roots,α andβ, of CS(i)(x), i = 1, 2, . . . , N ,

αβ−1 /∈ Fp. If m(i), i = 1, 2, . . . , N , are pairwise relatively prime, thenS =
∏N

i=1 S(i)

overFp as defined in (2.5) has the minimal polynomial of degreeM =
∏N

i=1 M (i).

The above lemma characterizes those LFSRs whose termwise product sequence has the

maximum possible LC, that is the product of the LCs of multiplied sequences. We note

thatαβ−1 never be inFp for any pair of distinct roots,α andβ, of a minimal polynomial

CS(i)(x), i = 1, 2, . . . , N , for the case ofp = 2.

Corollary 2.3 [10] Let S =
∏N

i=1 S(i) be a sequence overFp as constructed in Lemma

3.4. If
∏N

i=1 m(i) andk are relatively prime, thenT (k, S) overFpk as defined in (2.3)

has the same minimal polynomial asS.

Proof: Let CS(x) be the minimal polynomial ofS, then the degree of any irreducible

factor ofCS(x) is of the form
∏N

i=1 r(i), wherer(i)|m(i), by Lemma 3.4 and Theorem

2.1 completes the proof.

Example 2.5 The minimal polynomial ofY over GF (2) is CY (x) = x3 + x2 + 1

that dividesx23−1 − 1 andCY (1) = 1. The minimal polynomial ofZ overGF (2) is

CZ(x) = x6 + x3 + x2 + x + 1 that dividesx24−1 − 1 andCZ(1) = 1. The minimal

17



Figure 2.4: Frequency/Time hopping sequence generator for large linear complexity.

polynomial ofS = Y Z overGF (2) as defined in (2.5) isx18 +x14 +x12 +x11 +x10 +

x9 +x6 +x4 +x3 +x2 +1 whose degree is18 = 3× 6 becausegcd(3, 4) = 1. T (k, S)

overGF (2k) as defined in (2.3) have the same minimal polynomial asS for k relatively

prime to3× 4.

Now, we consider the FH/TH sequence generator composed of a combinatorial func-

tion generator [5] andk registers shown in Figure 2.4. The combinatorial function gen-

erator is a natural device to generate sequences with large LCs and called a filtering

generator when the LFSRs are same. We note that we are only concerned with the case

that all LFSRs are different. Let a combinatorial function sequence,S, overFp by a

combinatorial function,f , (that would makeS have large LC) be represented in the

algebraic normal form given by

sn = f(s(1)
n , s(2)

n , . . . , s(N)
n )

= a0 +
N∑

i=1

ais
(i)
n +

N∑

i=1

N∑

j=i+1

aijs
(i)
n s(j)

n + . . . + a12...Ns(1)
n s(2)

n . . . s(N)
n ,

(2.6)
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whereS(i), i = 1, 2, . . . , N , are sequences overFp and the coefficients off are elements

of Fp. We note that the algebraic normal form defined in (2.6) cannot represent all com-

binatorial functions. The maximum possible LC of a combinatorial function sequence,

S, for the given algebraic normal form is given by [14]

M = F (M (1),M (2), . . . , M (N)), (2.7)

whereF (M (1), M (2), . . . ,M (N)) is defined as (2.6) with a coefficient being0 if it is 0

or 1 otherwise andM (i) is the LC ofS(i), i = 1, 2, . . . , N , and operations ofF are over

the integers.

R. A. Rueppel characterize those LFSRs such that a combinatorial function se-

quence,S, has the maximum possible LC for the given algebraic normal form [2].

In Theorem 2.1, we characterize thosep-ary sequences,S, whosek-tuple versions,

T (k, S), now overFpk have the maximum possible LCs. In this view point, we focus on

the relations between the above two characterizations. We are able to characterize those

LFSRs such that a resultingk-tuple sequence (an FH/TH sequence),T (k, S), has the

maximum possible LC,M as defined in (2.7). That is, we are able to construct FH/TH

sequences with large LCs by the generators shown in Figure 2.4.

Lemma 2.4 [2] Let S(i), i = 1, 2, . . . , N , be sequences overFp with minimal poly-

nomialsCS(i)(x) of degreeM (i), that dividexpm(i)−1 − 1 for somem(i) and contain

no linear factor. For any pair of distinct roots,α andβ, of CS(i)(x), i = 1, 2, . . . , N ,

αβ−1 /∈ Fp. If m(i), i = 1, 2, . . . , N are pairwise relatively prime, thenS overFp as

defined in (2.6) has the minimal polynomial of degreeM as defined in (2.7) for the given

algebraic normal form,f .
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Corollary 2.4 [10] Let S be a sequence overFp as constructed in Lemma 3.6. If

∏N
i=1 m(i) and k are relatively prime, thenT (k, S) over Fpk as defined in (2.3) has

the same minimal polynomial asS.

Proof: Let CS(x) be the minimal polynomial ofS, then the degree of any irre-

ducible factor ofCS(x) is of the form
∏N

i=1 r(i), wherer(i)|m(i), by Lemma 3.6 and

Theorem 2.1 completes the proof.

Example 2.6 The minimal polynomial ofX, Y , Z overGF (2) is CX(x) = x6 + x5 +

x4 + x3 + x2 + x + 1, CY (x) = x6 + x3 + x2 + x + 1, CZ(x) = x10 + x8 +

x7 + x5 + x3 + x2 + 1 that dividesx23−1 − 1, x24−1 − 1, x25−1 − 1 respectively

and contains no linear factor. The minimal polynomial ofS over GF (2) defined by

sn = f(xn, yn, zn) = 1 + xn + yn + zn + xnyn + ynzn + znxn + xnynzn as (2.6) is

of degree539 = M(6, 6, 10) = 1 + 6 + 6 + 10 + 6 · 6 + 6 · 10 + 10 · 6 + 6 · 6 · 10 as

defined in (2.7) because3, 4, and5 are pairwise relatively prime.T (k, S) overGF (2k)

as defined in (2.3) have the same minimal polynomial asS for k relatively prime to

3 · 4 · 5. For example,T (7, S) is a 128-ary FH/TH sequence whose LC is 539.

We believe that FH/TH sequences as constructed in Corollary 2.4 must be a good

candidates of FH/TH patterns in a peer-to-peer FH/TH spread spectrum communica-

tion system for the following good reasons: (i) with “large” LCs, and (ii) over “large”

alphabets, but (iii) with “little” increase in the hardware complexity. Furthermore, for

multi-user FH/TH communication systems, a sequence as constructed in Corollary 2.4

can be
∏N

i=1(p
M(i) − 1) multi-user FH/TH sequences by changing the initial states of

the LFSRs.
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2.5 Remarks

We believe that the finite field of characteristic 2 would be a good choice for the algebraic

structure of FH/TH sequences because the computations over characteristic 2 are most

efficiently implemented as hardware systems and the usual practice follows this idea.

We have tried several other options but failed to extract any further reasonable behav-

ior of non-binary FH/TH sequences overFpk whose minimal polynomials and therefore,

LCs are uniquely determined regardless of the choice of basis other than those given

in Theorem 2.1. Theorem 2.2 is slightly more general in that thep-ary k-tuple FH/TH

sequences are not necessarily constructed as ak-tuple version of ap-ary sequence.

We note that Corollary 2.4 characterize those FH/TH sequence generators such that

a combinatorial function sequence,S, and a resultingk-tuple sequence (an FH/TH se-

quence),T (k, S), has the maximum possible LC for any given algebraic normal form,

f , to resist the only BM attack. So, it is proper that we use the algebraic normal form,f ,

that has desired cryptographic properties [5] to resist other attacks than the BM attack.

These cryptographic properties of a combinatorial function, i.e. ap-ary function, are

discussed in the next chapter.

We note that the sequence terms ofT (k, S) are highly correlated with each other

becausetn is the right shifted version oftn−1 with the only new leftmost component.

This correlation between consecutive terms must be a vulnerable point to some other

attacks. But, Theorem 2.1 and all corollaries in this chapter also apply equally well to

T (k, S) defined by

tn = (sn−σ(0), sn−σ(1), . . . , sn−σ(k−1)), (2.8)
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whereσ is any permutation on{0, 1, . . . , k−1}. A further generalization is also possible

by using any integers instead ofσ(i) for eachi. Therefore, we are able to solve the

correlation problem between consecutive terms by the above method.
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Chapter 3

High Security p-ary Functions

We consider the cryptographic properties ofp-ary functions, that is the combinatorial

functions of the frequency/time hopping sequence generators proposed in the previous

chapter. We are able to construct balancedp-ary functions by compositions. We are

able to construct balancedp-ary functions which satisfy the propagation for the most of

nonzero vectors and balanced functions which satisfy the propagation of high degree. We

are able to derive a necessary condition such thatp-ary functions are correlation-immune

by the Fourier transforms and show that some of nonlinearity criteria are invariant under

cryptographically weak transformations.

3.1 Detailed Motivation

In a frequency/time hopping (FH/TH) spread spectrum communication, an attacker may

try several attacks such as a Berlekamp-Massey (BM) attack [6], a jamming [4], a lin-

ear attack [15], and a correlation attack [16] based on his information about the system.

In the previous chapter, we considered the FH/TH sequence generator composed of a

combinatorial function generator and some registers shown in Figure 2.4. We charac-
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terized the generator whose output FH/TH sequence has the maximum possible linear

complexity (LC) for the given algebraic normal form to resist the only BM attack. So,

we need to characterize the algebraic normal form that has desired cryptographic prop-

erties such as the balancedness [17], the nonlinearity [18], the propagation [19], and

the correlation-immunity [16] to resist other cryptographic attacks than the BM attack

for high security. The relevance of these properties is based on information theoretic

grounds or on specific cryptographic attacks that have their own attack scenarios. Un-

fortunately, it is clear that no function can satisfy all these properties. So, we consider

a corresponding cryptographic property for each possible attack on a case by case basis.

These cryptographic properties of Boolean functions have been intensively studied but

the combinatorial function of the generator is ap-ary function, wherep is a prime. Thus,

we focus on the extensions of the cryptographic properties of Boolean functions to those

of p-ary cases.

3.2 Jamming and Balancedness

The attacker may jam an FH communication by radiating a Gaussian noise in the partial

band or a Gaussian (multi) tone. And he does not need to care about the structure of the

FH sequence generator. When some of frequency slots are more probable than the others

the attacker more efficiently jam the system by concentrating the limited jamming power

on these slots. Intuitively, a balanced function increases the randomness, and therefore

the security, of the outputs in response to random inputs. The balancedness is explic-

itly identified as one of the desired cryptographic properties of data encryption schemes

that rely on permutations and substitutions. For example, the S-boxes of the data en-
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cryption standard [20] are designed such that all their Boolean functions are balanced.

Let the outputs,s(i)
n , n = 1, 2, . . ., of the linear feedback shift register (LFSR) in the

FH/TH sequence generator shown in Figure 2.4 be independent identically distributed

(iid) discrete uniform random variables (RVs) ands
(i)
n , i = 1, 2, . . . , N , be mutually

independent. Note that when the combinatorial function,f , is balanced the outputs,

sn, n = 1, 2, . . ., areiid discrete uniform RVs, and therefore the FH/TH sequence,T , is

balanced. It means that we have the balanced FH/TH sequence which is resistent to the

partial band and (multi) tone jamming.

We extend the general theory of balanced Boolean functions given in [17]. We are

able to derive a necessary condition such that ap-ary function is balanced by a bijec-

tion on the set of input vectors. We examine the composition properties of balanced

p-ary functions. We are able to construct a balancedp-ary function by the disjunc-

tive composition of balanced functions by a balanced function. We are able to charac-

terize non-disjunctive compositions which produce balancedp-ary functions. A dis-

junctive composition is the composition of functions such that the arguments of the

functions are disjoint. For example, the compositionf(X) = g(f1(X1), f2(X2)) =

g(f1(X1, X2), f2(X3, X4)) is disjunctive sinceX1 ∩ X2 = ∅. The composition

f(X) = g(f1(X2), f2(X3)) = g(f1(X3, X4), f2(X4, X5)) is non-disjunctive since

X2 ∩X3 = {X4} 6= ∅. Note that we regard a vector as the set of arguments and use the

set operations.

Remind thatFq is the finite field withq elements andp be a prime. Letf(X) be a

p-ary function of a vector overFp. Let |f r| denote the number of input vectors,X, such

thatf(X) = r, wherer ∈ Fp.
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Definition 3.1 A p-ary function withN arguments,f(X), is balanced if and only if

|f r| = pN−1 for all r ∈ Fp.

Proposition 3.1 A p-ary functionf(X) = X1+X2+· · ·+XN is balanced andf(X) =

X1X2 · · ·XN is not balanced.

The above proposition is immediate. We derive a necessary condition such that ap-ary

function is balanced by a bijection on the set of input vectors, as follows.

Theorem 3.1 If a p-ary function withN arguments,f(X), is balanced, then there exists

a bijection,h, on the set of input vectors such that for all input vectors,X, f(X) 6=

f(h(X)).

Proof: Let Sr = {X ∈ FN
p | f(X) = r}, wherer ∈ Fp. Then,|Sr| = |f r| = pN−1.

We can define a bijectionh as follows:h(Xr) = Xr+1, whereXr ∈ Sr, Xr+1 ∈ Sr+1,

and the addition of the subscripts is overFp.

Now, we examine the composition properties of balancedp-ary functions. First, we

consider disjunctive compositions and then extend the results to non-disjunctive compo-

sitions.

Proposition 3.2 A p-ary function withN argumentsf(U, X) is balanced if|f(u, X)r| =

pN−2 for all pairr, u ∈ Fp.

We construct a balancedp-ary function by the disjunctive composition of balanced func-

tions by a balanced function.
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Theorem 3.2 Let f(X) = g(f1(X1), f2(X2), . . . , fK(XK), XK+1), whereX =

(X1, X2, . . . , XK+1) andXi ∩ Xj = ∅ for 1 ≤ i, j ≤ K + 1 andi 6= j. If p-ary

functionsfi(Xi), i = 1, 2, . . . , K, andg(U1, U2, . . . , UK , XK+1) are balanced, then

f(X) is also balanced.

Proof: Let |Xi| = mi, i = 1, 2, . . . ,K, and|XK+1| = N . For all r ∈ Fp, we have

|f r
i | = pmi−1, i = 1, 2, . . . , K, and|gr| = pK+N−1. We claim that for allr ∈ Fp,

|f r| = pm1+m2+···+mK+N−1. Let Ngr

U
d1
1 ,U

d2
2 ,...,U

dK
K

= |g(d1, d2, . . . , dK , XK+1)r|.

|f r| =
∑

d1,d2,...,dK

Ngr

U
d1
1 ,U

d2
2 ,...,U

dK
K

|fd1
1 ||fd2

2 | · · · |fdK
K |

= pm1+m2+···+mK−K
∑

d1,d2,...,dK

Ngr

U
d1
1 ,U

d2
2 ,...,U

dK
K

= pm1+m2+···+mK−K |gr|

= pm1+m2+···+mK+N−1.

(3.1)

Next, we characterize non-disjunctive compositions which produce balancedp-ary

functions. We consider the non-disjunctive composition ofp-ary functionsf1(X1) and

g(U, X2) such thatX1 ∩X2 = {X1, X2, . . . , XK} 6= ∅.

Theorem 3.3 Let f(X) = g(f1(X1), X1 ∩X2, X2 −X1), wheref1(X1) is ap-ary

function,X = X1 ∪ X2, X2 − X1 6= ∅, and|X2| = N . For any combinationd of

X1 ∩X2 andr ∈ Fp, |g(s, d, X2 −X1)r| is constant fors ∈ Fp. Then,f(X1 ∪X2)

is balanced if and only if|g(s, X2)r| = pN−1 for all r, s ∈ Fp.

Proof: Let |X1| = m andd = (d1, d2, . . . , dK). We have constantNgr

Us,X
d1
1 ,X

d2
2 ,...,X

dK
K

27



for s ∈ Fp. Then,

|f r| =
∑

d1,d2,...,dK

∑
s

Ngr

Us,X
d1
1 ,X

d2
2 ,...,X

dK
K

N
fs
1

X
d1
1 ,X

d2
2 ,...,X

dK
K

=
∑

d1,d2,...,dK

Ngr

U0,X
d1
1 ,X

d2
2 ,...,X

dK
K

∑
s

N
fs
1

X
d1
1 ,X

d2
2 ,...,X

dK
K

= pm−K
∑

d1,d2,...,dK

Ngr

U0,X
d1
1 ,X

d2
2 ,...,X

dK
K

= pm−KNgr

U0 .

(3.2)

f(X1 ∪X2) is balanced if and only if|f r| = pm+N−K−1.

In the previous theorem, we note that iff(X1 ∪ X2) is balanced, theng(U, X2)

is also balanced by Proposition 3.2. The following corollary is easily proved by the

theorem.

Corollary 3.1 Let f2(X2) be ap-ary linear function. Then,f(X) = f1(X1) + f2(X2)

is balanced ifX2 −X1 6= ∅.

Note that Theorem 3.3 and Corollary 3.1 are also hold whenX1 ∩ X2 = ∅, which is

the disjunctive case. Thus, we are able to construct a balancedp-ary function by simply

adding a linear function with disjoint arguments by Corollary 3.1.

3.3 Linear Attack and Propagation

When the attacker knows the structure of the FH/TH sequence generator shown in Fig-

ure 2.4 except thep-ary function, i.e. combinatorial function, he may try a linear attack

which is performed by obtaining the linear approximate expression of thep-ary function.

The nonlinearity characteristics of a cryptographic function are crucial since a linear

system is easily breakable by the linear attack. A perfect nonlinear Boolean function
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is optimum with respect to both the minimum distance to affine functions and therefore

a resistance to the linear attack [18]. And this function was generalized to a perfect

nonlinearp-ary function in [21], which coincides with ap-ary bent function defined

in [22]. Unfortunately, a perfect nonlinearp-ary function is not be compatible with other

desired cryptographic properties, e.g. the balancedness. The perfect nonlinearity of a

p-ary function is generalized to a propagation [19], which is the randomness measure

of the differences of outputs for the differences of inputs. It is one of the most impor-

tant nonlinearity criteria because the differential cryptanalysis [23], which is one of the

successful attacks, utilizes the bias of the distribution of the difference of outputs and

the difference of inputs. Furthermore, somep-ary functions satisfy both the propagation

and the balancedness. The propagation characteristics of a balanced Boolean function

were discussed in [24]. We are able to define the propagation of ap-ary function by the

Fourier transform. We are able to construct a balancedp-ary function which satisfies the

propagation for the most of nonzero vectors. Furthermore, We are able to construct a

balancedp-ary function which satisfies the propagation of high degree.

Let f(X) be ap-ary function withN arguments. LetW (A) denote the number

of the nonzero components ofA, i.e. the Hamming weight ofA. The autocorrelation

function off(X) is defined as follows [21]

r(A) =
∑

X∈FN
p

σf(X+A)−f(X), (3.3)

whereσ = e
i 2π

p , i.e. the primitivep-th root of unity in the complex field.

Definition 3.2 A p-ary functionf(X) satisfies the propagation of degreel if for all
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vectorA with 1 ≤ W (A) ≤ l

f(X + A)− f(X) (3.4)

is balanced, that isr(A) = 0.

Thus, the strict avalanche criterion [25] is the propagation of degree one and the perfect

nonlinearity is the propagation of degreeN . The Fourier transform ofσf(X) is defined

as follows [21]

F (ω) =
∑

X∈FN
p

σf(X)−ω·X . (3.5)

We define the propagation of ap-ary function by the Fourier transform. The strict

avalanche criterion version for the binary case is given in [25].

Theorem 3.4 A p-ary functionf(X) satisfies the propagation of degreel if and only if

for all vectorA with 1 ≤ W (A) ≤ l

∑

ω∈FN
p

|F (ω)|2σω·A = 0 (3.6)

Proof: The Fourier transform of the autocorrelation function off(X) is given by

R(ω) = |F (ω)|2. (3.7)

Thus, its inverse Fourier transform and Definition 3.2 completes the proof.

Corollary 3.2 If a p-ary functionf(X) satisfies the propagation of degreel theng(X) =

f(π(X) + A) also satisfies it for a permutation operatorπ andA ∈ FN
p .
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Now, we construct a balancedp-ary function which satisfies the propagation for the

most of nonzero vectors from the bent function which is not balanced. Letg be thep-ary

bent function, i.e. perfect nonlinear function, withN arguments andf be given by

f(X1, X2, . . . , XN+2) = a1X1 + a2X2 + a3g(X3, X4, . . . , XN+2), (3.8)

wherea1, a2, anda3 are nonzero elements inFp.

Theorem 3.5 A p-ary functionf(X) with N +2 arguments defined in (3.8) is balanced

and satisfies the propagation for all nonzero vectorsA ∈ FN+2
p with A 6= (c1, c2, 0, 0, . . . , 0).

Next, letf be given by

f(X1, X2, . . . , XN+1) = a1X1 + a2g(X2, X3, . . . , XN+1), (3.9)

wherea1 anda2 are nonzero elements inFp.

Theorem 3.6 A p-ary functionf(X) with N +1 arguments defined in (3.9) is balanced

and satisfies the propagation for all nonzero vectorsA ∈ FN+1
p with A 6= (c, 0, 0, . . . , 0).

The proofs of Theorem 3.5 and Theorem 3.6 are analogous to those of the binary cases

given in [26]. Whenp = 2 the lower bounds of the minimum distances to affine func-

tions of the constructed functions in the above two theorems are given in [26]. We note

that thep-ary bent function with odd arguments does not exist forp = 2. Thus, Theorem

3.5 construct the function with even arguments and Theorem 3.6 with odd arguments for

the binary case. We construct a balancedp-ary function withN + 1 arguments which

satisfies the propagation of degreeN from the bent function. Letf∗ be given by

f∗(X1, X2, . . . , XN+1) = a1X1 + g(a2X1 + b2X2, a3X1 + b3X3,

. . . , aN+1X1 + bN+1XN+1),
(3.10)
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whereai andbi, i = 1, 2, . . . , N , are nonzero elements inFp andai + bi = 0.

Corollary 3.3 A p-ary functionf∗(X) with N + 1 arguments defined in (3.10) is bal-

anced and satisfies the propagation of degreeN .

Proof: Considerf(X) defined in (3.9) fora1 = a2 = 1, thenf∗(X) = f(XM), where

M is a nonsingular matrix given by

M =




a1 a2 a3 · · · a2h+1

0 b2 0 · · · 0

0 0 b3 · · · 0
...

...
...

...
...

0 0 0 · · · b2h+1




(3.11)

f∗(X) is balanced sinceXM is the bijection onFN+1
p andf(X) is balanced by Theo-

rem 3.6.

f∗(X + A)− f∗(X) = f(XM + AM)− f(XM) (3.12)

The above function is balanced whenAM 6= (c, 0, 0, . . . , 0), wherec 6= 0 by

Theorem 3.6. Thus,f∗(X) satisfies the propagation for all nonzero vectorsA ∈ FN+1
p

with A 6= (c, c, . . . , c)

We are able to construct ap-ary function which satisfies both the balancedness and the

propagation of high degree by Corollary 3.3. Note that Corollary 3.3 holds wheng(·)

in (3.10) is multiplied by a nonzero constant sincef(X) such thatf∗(X) = f(XM)

always exists.
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3.4 Correlation Attack and Correlation-Immunity

Assume that the structure of the FH/TH sequence generator shown in Figure 2.4 is known

except a keyK(i), i = 1, 2, . . . , N , which determines the initial state of ani-th LFSR.

Then, the attacker may try a correlation attack which is performed by correlating the

combinatorial function sequenceS with thei-th LFSR’s sequenceS(i) to chooseK(i). In

some cases, there may be no correlation between anyS(i) andS but correlation between

the combination ofS(i), i = 1, 2, . . . , N andS. In this case, a high order correlation

attack is still possible. Thus, to make the generator resistent to the correlation attack

we must use ap-ary function, i.e. combinatorial function, which guarantees that there

is no correlation between any combination of LFSRs’ sequences and the combinatorial

function sequence.

Since Siegenthaler introduced the concept of correlation-immune Boolean functions

in [16], many results have been presented on the various aspects of the correlation-

immunity. The recursive constructions of correlation-immune functions were proposed

in [16], [27], and [28]. Especially, the constructions proposed in [28] are for aq-

ary correlation-immune function. The equivalent definition of a correlation-immune

Boolean function by the Fourier transform was proposed in [29]. Another equivalent

definition by orthogonal arrays was proposed in [27] and generalized in [30].

We examine the general relation between a correlation-immunep-ary function and

the Fourier transform. We are able to derive a necessary condition such that ap-ary

function is correlation-immune by the Fourier transform. We are able to characterize a

first order correlation-immune function by its balancedness property.
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Let Z = f(X) be a discrete RV produced byf , whereX = (X1, , X2, . . . , XN )

andXi, i = 1, 2, . . . , N , be mutually independent discrete uniform RVs.

Definition 3.3 [16] A p-ary functionf(X) is m-th order correlation-immune ifZ =

f(X) is independent of every subset ofm random variables chosen fromX1, X2, . . . , XN .

Definition 3.4 [30] A balancedm-th order correlation-immune function is calledm-th

order resilient.

The following lemma is well known as the linear combination lemma.

Lemma 3.1 [30] A discrete random variableY is independent ofm mutually inde-

pendent random variablesY1, Y2, . . . , Ym if and only if Y is independent of the sum

λ1Y1 + λ2Y2 + · · · + λmYm for every choice ofλ1, λ2, . . . , λm with not all zeros in

Fp, that isY is independent of any non-trivial linear combination of them variables.

Because allpN−1 valuesx of X such thatω · x = b ∈ Fp are equally likely,

PZ|ω·X(a|b) =
Nf=a,ω·X=b(ω)

pN−1
, (3.13)

whereNf=a,ω·X=b(ω) denotes the number ofX such thatf(X) = a andω · X = b.

Now, we derive a necessary condition such that ap-ary function is correlation-immune

by the Fourier transform.

Theorem 3.7 If a p-ary functionf(X) ism-th order correlation-immune, then the Fourier

transform ofσf(X) satisfiesF (ω) = 0 for 1 ≤ W (ω) ≤ m.

Proof: By Definition 3.3,f(X) is m-th order correlation-immune if and only ifZ is

independent of every subset ofm or fewer RVs chosen fromX1, X2, . . . , XN . By
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Lemma 3.1, it follows thatf(X) is m-th order correlation-immune if and only ifZ

is independent of everyω · X for 1 ≤ W (ω) ≤ m. Equation (3.13) shows thatZ

is independent ofω · X just whenNf=a,ω·X=b(ω) is constant forb. Thus,f(X) is

m-th order correlation-immune if and only ifNf=a,ω·X=b(ω) is constant forb, where

1 ≤ W (ω) ≤ m. By this necessary and sufficient condition, iff(X) is m-th order

correlation-immune, then

F (ω) =
∑

X∈FN
p

σf(X)−ω·X

=
∑

a∈Fp

∑

b∈Fp

Nf=a,ω·X=b(ω)σa−b

=
∑

a∈Fp

Nf=a(ω)
∑

b∈Fp

σa−b

=
∑

a∈Fp

Nf=a(ω) · 0

= 0,

(3.14)

where1 ≤ W (ω) ≤ m.

We note that the converse of Theorem 3.7 holds provided thatp = 2 [29]. We charac-

terize a first order correlation-immune function by the following balancedness property.

Remind notations given in Section 3.2.

Definition 3.5 [17] A p-ary function,f(X), is balanced with respect toXi if and only

if |f(X1, . . . , Xi−1, b, Xi−1, . . . , XN )a| = 1
p |fa| for all paira, b ∈ Fp.

Proposition 3.3 A p-ary function,f(X), is first order correlation-immune if and only

if it is balanced with respect to allXi, i = 1, 2, . . . , N .

Proof: Equation (3.13) forW (ω) = 1 completes the proof.
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We have tried to generalize the several construction methods of a correlation-immune

Boolean function to those ofp-ary cases, but unfortunately failed.

3.5 Invariant Nonlinearity Criteria

Recent progress in cryptanalysis, especially the discovery of a linear attack [15], has

highlighted the nonlinearity characteristics of Boolean functions. Well-known nonlin-

earity criteria include the minimum distance to affine functions [18] [31], the minimum

distance to Boolean functions with linear structures [18], the nonlinear order [18], the

strict avalanche criterion [19], the propagation [19], and the correlation-immunity [16].

In cryptography, a function is considered weak when it can be turned into a crypto-

graphically weak function by means of simple (e.g. linear or affine) transformations.

From this viewpoint, a useful nonlinearity criterion should be invariant under the large

group of transformations. For many applications this symmetry group should contain

the group of all affine transformations. Thus, it is worthy to characterize nonlinearity

criteria which are invariant under the group of all affine transformations.

We extend the result given in [18] to those ofp-ary cases regarding invariant nonlin-

earity criteria. We are able to show that the minimum distance to affine functions, the

minimum distance to functions with linear structures, the minimum distance to functions

of nonlinear orderk, and the nonlinear order of ap-ary function are invariant under the

group of all affine transformations.

We note that the lemmas and corollaries of this section are presented without proofs

since they are direct extensions of the results given in [18] to those ofp-ary cases. First,

we examine the minimum distance to affine functions of ap-ary function. Remind that
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f(X) is ap-ary function withN arguments. LetA(N) denote the set of allp-ary affine

functionsL(X) = c0 + c1X1 + c2X2 + . . . + cNXN , whereL(X) ∈ Fp andci ∈

Fp, i = 0, 1, . . . , N . Let d(f, L) denote the Hamming distance, that is the number of

differences, betweenf andL.

Definition 3.6 [18] The minimum distance,δ(f), to affine functions of ap-ary function,

f(X), is given by

δ(f) = min
L∈A(N)

d(f, L). (3.15)

δ(f) is generally called the nonlinearity off . LetΩ(N) denote the group of all invertible

transformations, i.e. bijections, onFN
p , AGL(N) denote the subgroup with all affine

transformations ofΩ(N), andΦ(N) denote the set of allp-ary functions,f(X). The

operation of the groupΩ(N) on the setΦ(N) is defined as

α(f(X)) = f(α(X)), (3.16)

whereα ∈ Ω(N) andf(X) ∈ Φ(N). Any design criterion is connected with a function

D, given by

D : Φ(N) → V, (3.17)

whereV is the set of suitable values for the criterion.f is considered to be good if the

valueD(f) belong to the desired subset ofV . It must be essential for the criterion that

D(f) is invariant under those transformations ofΩ(N) which are considered crypto-

graphically weak. This guarantees that a good function cannot be made worse by means

of weak transformations. For nonlinearity criteria, weak transformations usually include

affine transformations. For any design criterion, it is of interest to introduce the largest
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subgroupI(D) which leavesD invariant, given by

I(D) = {α ∈ Ω(N)| D(α(f)) = D(f) for all f ∈ Φ(N)}. (3.18)

We callI(D) the symmetry group ofD. It must be essential thatI(D) is large. LetH

be the subset ofΦ(N) anddH(f) be the minimum distance off to the setH, where

f ∈ Φ(N). Moreover, let

Ω(N)H = {α ∈ Ω(N)| α(h) ∈ H for all h ∈ H}, (3.19)

which is called the symmetry group of the set H. This terminology is justified by the

following theorem.

Theorem 3.8 For any subsetH of Φ(N) the symmetry group ofdH coincides with the

symmetry group ofH, i.e.

I(dH) = Ω(N)H . (3.20)

We show that the minimum distance to affine functions of ap-ary function is invariant

under all operations of the affine groupAGL(N).

Corollary 3.4 The symmetry group,I(δ), of the minimum distance to affine functions,

δ, is the affine group,AGL(N).

Now, we consider the minimum distance top-ary functions with linear structures.

In certain applications the class of affine functions has to be extended to another class

of cryptographically weak functions. The definition of these functions is motivated by

the fact that for an affinep-ary functionL(X + A) andL(X) always have the same

difference for allX, whereA is fixed. However, note that many functions except all
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affine functions have this property, which is termed a linear structure [32]. The linear

structure of ap-ary function can be identified with a vectorA such that the expression

f(X + A)− f(X) (3.21)

has the same value for allX [18]. Let LS(N) denote the set ofp-ary functions which

have linear structures. Observe thatLS(N) properly contains the set of all affine func-

tions,A(N).

Definition 3.7 [18] The minimum distance,η(f), to functions with linear structures of

ap-ary function,f(X), is given by

η(f) = min
S∈LS(N)

d(f, S). (3.22)

We show that the minimum distance to functions with linear structures of ap-ary func-

tion is invariant under all operations of the affine group,AGL(N).

Corollary 3.5 The symmetry group,I(η), of the minimum distance to functions with

linear structures,η, contains the affine group,AGL(N).

Now, we consider a polynomial whose argument isX1, X2, . . . , XN , that is the

generalized algebraic normal form. Anyp-ary function can be represented as this gener-

alized algebraic normal form.

Definition 3.8 [18] The nonlinear order,ζ(f), of ap-ary function,f(X), is the degree

of the highest order term in its generalized algebraic normal form.

The following theorem shows that the nonlinear order of ap-ary function is invariant

under all operations of the affine group,AGL(N).
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Theorem 3.9 The symmetry group,I(ζ), of the nonlinear order,ζ, is the affine group,

AGL(N).

Let δk(f) denote the minimum distance to functions of nonlinear orderk. Note

that δ(f) = δ1(f). Then, the following theorem shows that the minimum distance

to functions of nonlinear orderk is invariant under all operations of the affine group,

AGL(N).

Theorem 3.10 The symmetry group,I(δk), of the minimum distance to functions of

nonlinear orderk, δk, contains the affine group,AGL(N).

3.6 Remarks

In chapter 2, we proposed the FH/TH generators which are resistent to the only BM

attack. So, we considered the desired cryptographic properties ofp-ary functions, that

is the combinatorial functions of the generator, to resist other cryptographic attacks than

the BM attack for high security. These cryptographic properties of Boolean functions

have been intensively studied. Thus, we considered the extensions of the cryptographic

properties of Boolean functions to those ofp-ary cases.

On the same assumption as that of the correlation attack, an attacker may try an

efficient algebraic attack by multiplying the combinatorial functionf by a well-chosen

multivariate polynomial [33]. If we increase the order ofFp, the monomials of linear

equations to be solved will considerably increase and so the FH/TH sequence generator

may be more resistent to the algebraic attack.

We have tried but failed to extend the several other properties of Boolean functions.
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We note that it is mainly due to the fact that thep-ary field is more mathematically

difficult to characterize than the binary field.

41



Chapter 4

CodedN -ary Pulse Position
Modulated Ultra-Wide Bandwidth
Impulse Radios

We consider a codedN -ary pulse position modulated ultra-wide bandwidth (UWB) im-

pulse radio, which exploits the chaotic inter-pulse intervals in the framed-time structure

and the polarity randomization for the coexistence with conventional narrow bandwidth

wireless communication systems. We show that the proposed system has noise-like spec-

trum, that is line spectrum free, by calculating its power spectral density function. We

discuss its multi-user system with its line spectrum property. Then, we confirm the bit

error rate performance of the proposed system by simulation based on the UWB indoor

channel model.

4.1 Detailed Motivation

There have been large interests in recent years in exploiting chaotic signals in com-

munications [34]. The main premise in these studies is that broad-band signals gen-
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erated by simple deterministic systems with chaotic dynamics can potentially replace

pseudo-random carrier signals widely used in modern spread-spectrum communication

systems. A chaotic pulse position modulation (CPPM) was proposed in [35], which en-

codes the information in a pulse train by the alteration of the time positions of pulses.

This system avoids the difficulties, e.g. sensitivities to distortions and noise, of most

other chaos-based communication schemes by using chaotically (aperiodically) timed

pulse sequences rather than continuous chaotic waveforms.

And it belongs to the general class of time hopping (TH) ultra-wide bandwidth

(UWB) impulse radio (IR) communications, which has been intensively studied for short

range multiple-access communications in dense multipath environments because of its

fine time resolution properties [7]. This radio has some other attractive advantages com-

pared with conventional narrow bandwidth wireless communication systems, such as

low hardware complexity, low power consumption, and multi-user capability than im-

munity to multipath fading. We note the UWB-IR as the example of commercial TH

spread spectrum communication systems because this radio adopt a TH binary pulse po-

sition modulation (PPM) for multi-user communications. This radio communicates with

the baseband pulses of ultra short duration (<1ns), i.e. impulses, thereby spreading the

energy of the radio signal very thinly from d.c. to several gigahertz. Because of this

extremely large bandwidth, the UWB-IR and conventional narrow bandwidth systems

cannot help giving interference to each other, and furthermore, a UWB-IR signal accom-

panies line spectrums giving large interference to the conventional systems. Therefore,

the reduction and management of the line spectrums of the UWB-IR signal is an essential

problem to be solved for coexistence with the conventional narrow bandwidth systems.
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Some analyses of the power spectral density (PSD) function and line spectrums of the

UWB-IR signal resulted in some criteria for the reduction of line spectrums depending

on TH sequences and modulation schemes [7] [36] [37] [38] [39].

We note that a possible solution is to make the UWB-IR work in lower signal to noise

ratio (SNR) at the same data rate and bit error rate (BER). A codedN -ary PPM UWB-

IR was proposed in [40], which uses the convolutional codes of low complexities for

coding gains, but the line spectrum properties of the system have not been analyzed. A

pseudo chaotic time hopping (PCTH) UWB-IR was proposed in [41], which combines

the chaotically varying spacing between pulses like the CPPM with the framed-time

structure. And its structure is anN -ary PPM UWB-IR combined with a PCTH code

based on the symbolic dynamics of a chaotic map. This radio intends to coexist with

conventional narrow bandwidth systems by both working in lower SNR at the same data

rate and BER due to the code and having the enhanced spread-spectrum characteristics,

that is the reduced number of line spectrums, rather than conventional TH UWB-IRs

due to a chaotic (aperiodic) TH sequence removing periodic structures from the signal.

As an alternative to the PCTH, an interleaved convolutional time hopping UWB-IR was

discussed in [42]. This radio replaces the PCTH code by an optimum convolutional code

(from the viewpoint of free distances) to improve a BER performance preserving the line

spectrum properties. Unfortunately, this radio does not have a coding gain compared to

the uncoded system because of using not the soft but the hard Viterbi decoder.

In this chapter, we also consider a codedN -ary PPM UWB-IR, which exploits the

chaotic inter-pulse intervals in the framed-time structure like the PCTH and the polarity

randomization discussed in [39] for the coexistence. We show that the proposed system

44



Figure 4.1: CodedN -ary PPM UWB-IR.

has noise-like spectrum, that is line spectrum free, by calculating its PSD function. We

discuss its multi-user system, which assigns a user signature sequence [43] to each user

as a multi-user sequence, with its line spectrum property. Then, we confirm the BER

performance of the proposed system by simulation based on the UWB-IR indoor channel

model given in [8].

4.2 System Structure

We consider the codedN -ary PPM UWB-IR shown in Figure 4.1. This radio uses a

convolutional code whose outputs’ linear equations are linearly independent. We can

improve a BER performance by using a good convolutional code rather than the PCTH

code. Note thatN = 2M andTf = N × Ts, whereTf is a frame time andTs is a

slot time. The symbol,d′k ∈ {0, 1, . . . , N − 1}, can be determined by reading each

successiveM output bits,bn, in decimal as follows

d′k =
M−1∑

i=0

bMk+i2i. (4.1)
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We assume that the user data are independent identically distributed (iid) discrete uni-

form random variables (RVs). Then,d′k given in (4.1) are notiid because of a correlation

between successive terms but uniform to improve the security by the linear independence

of output bits. The time slot index,dk, can beiid discrete uniform RVs by interleaving

d′k. Thus, a pulse is purely randomly distributed inTf and a spacing between pulses

varies chaotically, that is a chaotic time hopping. The transmitted signal is given by

str(t) =
∞∑

i=−∞
pi × w(t− iTf − diTs), (4.2)

wherepi ∈ {−1, 1} is a polarity randomization sequence andw(t) is a transmit pulse.

In this paper, we use the second derivative of the Gaussian function forw(t). The output

of the correlator in the receiver for au-th time slot in ak-th frame time is given by

mk,u =
∫ kTf+(u+ 1

2
)Ts

kTf+(u− 1
2
)Ts

r(t)× w(t− kTf − uTs) dt. (4.3)

A vectormk = (mk,0, mk,1, . . . , mk,N−1) is deinterleaved andmk,u is used as the

soft branch metric of a branch whose output isu in decimal in the following soft Viterbi

decoder. We note that not the hard but the soft Viterbi decoding has a coding gain in the

codedN -ary PPM UWB-IR.

4.3 Line Spectrum Properties

Without the polarity randomizer, the line spectrums of the transmitted signal,s(t), would

exist at every1/Ts Hz [44]. These are the same line spectrum properties as those of the

PCTH UWB-IR and these sparse lines can be set to fall outside the useful bandwidth by

design [41]. Though, signals that cause line spectrums are highly undesirable since they
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have a high peak PSD function. They hardly guarantee the low probability of detection

(LPD) and have to back off the average power until the peak of the spectrum complies

with the spectral mask established by the Federal Communication Commission (FCC)

[45]. We are able to eliminate these lines by using the polarity randomization discussed

in [39]. After the polarity randomization, the transmitted signal,str(t), is similar to that

of joint PPM/pulse amplitude modulation (PAM) but the sign of the transmit pulse does

not bear any information. The PSD function of anN -ary modulated signal with aniid

input sequence is given by [46]

Φ(f) =
1
T 2

∞∑
n=−∞





∣∣∣∣∣
N−1∑

i=0

Pi · Si

( n

T

)∣∣∣∣∣

2

δ
(
f − n

T

)




+
1
T





N−1∑

i=0

Pi · |Si (f)|2 −
∣∣∣∣∣
N−1∑

i=0

Pi · Si (f)

∣∣∣∣∣

2


 ,

(4.4)

whereT is a symbol period,Si(f) is the Fourier transform of ani-th symbol,si(t),

of the constellation,Pi is the marginal probability of thei-th symbol, andδ(·) is the

Kronecker delta function. We assume that the polarity randomization sequence, which

is actually a long pseudorandom sequence, isiid uniform RVs. Then, the transmitted

signal,str(t), can be treated as a pulse train with equiprobable2N antipodal symbols.

From (4.4), the PSD function ofstr(t) is as follows

Φstr(f) =
1
T

2N−1∑

i=0

Pi · |Si(f)|2

=
1

N · T
N−1∑

i=0

|Si(f)|2

=
1
Tf
|W (f)|2 ,

(4.5)
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Figure 4.2: Actual PSD function forN = 32, Tf = 32ns,Ts = 1ns, andEs = 1W/Hz.

whereT = Tf , si(t) = w(t − iTs), si+N (t) = −si(t), i = 0, 1, . . . , N − 1, and

W (f) is the Fourier transform ofw(t). Thus, the proposed system has no line spectrums

and the shape of its PSD function is determined by the transmit pulse,w(t). WhenTs

is fixed, we can get lower PSD function by increasingN , that is increasingTf . This

results in the compliance with the FCC mask, an improved LPD, and an improved BER

performance in the case of orthogonal PPM. Figure 4.2 shows the actual PSD of the

system by Matlab.
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Figure 4.3: Transmitted signals of the proposed systems.

4.4 Multi-User System

In multi-user communications, anl-th user uses his own sequence of pulses for the trans-

mit pulse like in code division multiple access schemes, given by

w(l)(t) =
Nc−1∑

i=0

a
(l)
i × w(t− iTc), (4.6)

wherea
(l)
i ∈ {1, − 1}, i = 0, 1, . . . , Nc − 1, is the user signature sequence [43] of

the l-th user andTc is a chip time. Then, the transmitted signal of thel-th user is given

by

s
(l)
tr (t) =

∞∑

i=−∞
pi × w(l)(t− iTf − d

(l)
i Ts), (4.7)

whered
(l)
i is a time slot index in ani-th frame time. Figure 4.3 shows the transmitted

signals of the single user and the multi-user system. A receiver structure for thel-th

user is the same as that of the single user system except that the correlator is matched to

49



w(l)(t) given in (4.6) notw(t). The PSD function of the transmitted signal can calculated

similarly to the case of the single user system as follows

Φ
s
(l)
tr

(f) =
1
Tf

∣∣∣W (l)(f)
∣∣∣
2

=
1
Tf
|W (f)|2 C(l)(f),

(4.8)

whereW (l)(f) is the Fourier transform ofw(l)(t) and

C(l)(f) =

∣∣∣∣∣
Nc−1∑

i=0

a
(l)
i exp[−j2πfiTc]

∣∣∣∣∣

2

(4.9)

which is dependent on the user signature sequence. The multi-user system also has no

line spectrums and the shape of its PSD function is dependent on both the basic pulse

and the user signature sequence.

Considering the multi-user interferences of the other users, the BER performance

of the system mainly depends on the crosscorrelation properties of user signature se-

quences. A Hadamard matrix [47],H, of ordern is a square matrix with all entries in

{1,−1} such that

HHt = nIn, (4.10)

whereHt is the transpose ofH andIn is the identity matrix of ordern. This implies

that any two rows ofH are orthogonal. Therefore, the rows of Hadamard matrix can be

good candidates for the user signature sequences. When the slot time is synchronized

(not necessarily frame time), that is the case of a forward link, the BER performance of

the system is the same as that of the single user system by the optimum crosscorrelation

properties of the sequences given in (4.10). By the way, when the slot time is not syn-

chronized but the chip time is synchronized, that is the case of a reverse link, the rows
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of Hadamard matrix do not guarantee the same good BER performance. In this case, the

user signature sequences with optimal aperiodic crosscorrelation properties are neces-

sary. A Welch-optimum family that is optimized with respect to mean-square aperiodic

correlations [48] can be a good candidate.

4.5 UWB-IR Indoor Channel

The channels of personal wireless communications which are important application

areas for UWB-IRs are dense multipath channels. The performance analyses of the

UWB-IRs in multipath environments are usually based on narrowband channel models

or straightforward extensions to finer delay resolutions that, however, markedly differ

from empirical UWB-IR channels in the distribution of path gains. To confirm the BER

performance, we use the UWB-IR indoor channel model given in [8] by the statistical

analysis of UWB-IR channel data obtained from an extensive measurement in a typical

modern office environment. A path loss,PL, is the function of a distance,d, between a

transmitter and a receiver, given by

PL =

{
20.4× log10 d if d ≤ 11m

−56 + 74× log10 d if d > 11m
. (4.11)

A total power gain,Gt, is lognormally distributed with a mean−PL and a standard

deviation 4.3, denoted by

Gt = LN (−PL, 4.3) (4.12)

A decay constant,ε, and a power ratio,r, are also lognormal RVs, given by

ε = LN (16.1, 1.27) (4.13)
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r = LN (−4, 3) (4.14)

The power delay profile,g(τ), of the channel is given by

g(τ) =
Gt

1 + rF (ε)

×
{

δ(τ − τ1) +
Nbin∑

k=2

r exp [−(τk − τ2)/ε] δ(τ − τk)

}
,

(4.15)

where

F (ε) =
1

1− exp[−∆τ/ε]
, (4.16)

a bin width∆τ = 2ns, a delayτk = (k − 1)∆τ , andNbin is the total number of bins in

an observation window whose width is5ε.

4.6 Simulation Results

Figure 4.4 and Figure 4.5 show the BER performance of the proposed single user sys-

tem. The proposed system uses the optimum convolutional code, whose outputs’ linear

equations are linearly independent, of the same code rate1/5 and constraint length 5 as

those of the PCTH code of the 32-ary PCTH UWB-IR, respectively. An uncoded system

transmits a pulse 5 times for each time slot index and uses the majority vote decoding

for the same data rate,Rd, as that of a coded system. Figure 4.4 shows the BER perfor-

mance in the additive white Gaussian noise (AWGN) channel. The proposed system and

the PCTH UWB-IR have the almost same BER curve and about3dB gain at BER=10−6

in the AWGN channel. Figure 4.5 shows the BER performance in the UWB-IR indoor

channel described in the previous section. The figure (a) and (b) shows the performance

when a distance between a transmitter and a receiver is7 and15 meters, respectively.

A rake receiver with 50 bins is used and the perfect channel estimation is assumed. A
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guard interval,Tg, is inserted between time frames to obtain meaningful BER curves by

decreasing serious intersymbol interferences of the channel. Though insertingTg, the

PSD function given in (4.5) remains except for the increase ofTf by Tg. The proposed

system has a lower error floor below BER=10−5 rather than the PCTH UWB-IR in the

UWB-IR indoor channel. Whend varies the BER curves are correspondingly shifted

and the error floors of the proposed system and the PCTH UWB-IR are preserved.

4.7 Remarks

We considered the codedN -ary PPM UWB-IR which exploits the chaotic time hopping

and the polarity randomization. We believe that the proposed system is a possible so-

lution for the coexistence problem of the UWB-IR by the following reasons. First, the

system works lower SNR at the same data rate and the same BER by the code. Second,

the system has the line spectrum free PSD function by the polarity randomization.

We note that the PSD functions given in (4.5) and (4.8) is also applicable to any other

linear code whose outputs’ equations are linearly independent.
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Figure 4.4: BER in the AWGN channel (N = 32, Tf = 32ns, Ts = 1ns, Rd =
31.25Mbps,Tg = 0ns).
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(a)d = 7m

(b) d = 15m

Figure 4.5: BER in the UWB-IR indoor channel (N = 32, Tf = 32ns, Ts = 1ns,
Rd = 7.58Mbps, andTg = 100ns).
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Chapter 5

Concluding Remarks

5.1 Summary

In this dissertation, we considered high security frequency/time hopping (FH/TH) se-

quence generators and ultra-wide bandwidth (UWB) impulse radios (IRs), which are

commercial TH spread spectrum communication systems.

In chapter 2, we discussed some methods of constructing FH/TH sequences by tak-

ing successivek-tuples of given sequences. These methods can generate FH/TH se-

quences over large alphabets but with little increase in the hardware complexity. So, we

focused on the linear complexities (LCs) of the FH/TH sequences, which is the only left

design criterion for FH/TH sequences. We characterized thosep-ary sequences whose

k-tuple versions now overFpk have the maximum LCs. Then, we considered FH/TH

sequence generators composed of a combinatorial function generator and some regis-

ters. We proposed the generators whose output FH/TH sequences have the maximum

possible LCs for the given algebraic normal form to resist a Berlekamp-Massey (BM)

attack.

In chapter 3, we considered the cryptographic properties ofp-ary functions, that is
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the combinatorial functions of the proposed FH/TH sequence generators, to resist other

cryptographic attacks than the BM attack for high security. We constructed balanced

p-ary functions by compositions. We constructed balancedp-ary functions which satisfy

the propagation for the most of nonzero vectors and balanced functions which satisfy

the propagation of high degree. Then, we derived a necessary condition such thatp-ary

functions are correlation-immune by the Fourier transforms and showed that some of

nonlinearity criteria are invariant under cryptographically weak transformations.

Finally, in chapter 4 we considered a ultra-wide bandwidth UWB-IR as the example

of commercial TH spread spectrum communication systems. We proposed a codedN -

ary pulse position modulated (PPM) UWB-IR, which exploits the chaotic inter-pulse

intervals in the framed-time structure and the polarity randomization for the coexistence

with conventional narrow bandwidth wireless communication systems. We showed that

the proposed system has noise-like spectrum, that is line spectrum free, by calculating

its power spectral density function. We discussed its multi-user system with its line

spectrum property. Then, we confirmed the bit error rate performance of the proposed

system by simulation based on the UWB indoor channel model.

5.2 Future Directions and Open problems

Throughout this dissertation, we considered high security FH/TH sequence generators

and codedN -ary PPM UWB-IRs. In further research, the following unsolved problems

are desired to be studied.

1. For multi-user FH/TH communication systems, an FH/TH sequence constructed

by the proposed generator in chapter 2 can be multi-user sequences by changing
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the initial states of the linear feedback shift registers. We need to characterize the

correlation properties of these multi-user sequences to verify their performance.

2. We need to verify that perfect nonlinearp-ary functions, i.e.p-ary bent functions,

discussed in chapter 3 are optimum with respect to the minimum distance to affine

functions and the minimum distance to functions with linear structures.

3. In chapter 4, we discussed the multi-user system of the proposed codedN -ary

PPM UWB-IR. For the case of a reverse link, we need the user signature sequences

with optimal aperiodic crosscorrelation properties.
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