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Distributed Storage Systems

 Large-Scale Storage System
 Warehouse-scale data center

 Thousands of servers, Petabytes of disc space
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Google
Data Center

http://www.google.com/about/datacenters/



Distributed Storage Systems

 At Facebook, it is quite typical to have 20 or more 
node failures per day. (Sathiamoorthy-12)
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Number of failed nodes 

over a single month period

is 3000 nodes



Distributed Storage Systems

 Codes for Distributed Storage Systems
 Store data while protecting against node failures
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:  data blocks
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 Coding+Network → New open problems
 Minimize Storage Size

 Minimize Repair Bandwidth

 Minimize the number of nodes connected for repair
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Distributed Storage Systems

What is the optimal code??
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Distributed Storage Systems
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𝛼
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𝑀

𝑑

𝑛

𝑀 : Size of source data

𝛼 : Size of a storage node

𝑛 : # of storage nodes

𝑑 : # of storage nodes accessed

for repairing a node

𝛽 : The amount of data 

downloaded from one node 

during repair process



Distributed Storage Codes

 Minimum Storage Regenerating (MSR) Codes
 Interference Alignment method (Shah-12)
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Objective:
Minimize Storage Size 𝜶

(𝛼 : Size of a storage node)



Distributed Storage Codes

 Minimum Bandwidth Regenerating (MBR) Codes
 Repair-by-Transfer method (Shum-12)
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Objective:
Minimize Bandwidth 𝒅𝜷

(𝑑𝛽 : The total amount of data

downloaded for repairing a node)



Distributed Storage Codes

 Locally Repairable Codes (LRC)
 Minimize the number of nodes accessed for repairing a node
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X1 X2 X3 X4 X5 X6 X7 X8 P1 P2

L1 L2 L3

X :  Information data block P :  Parity data block (Global)

L :  Parity data block (Local)



Concept of Locality
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(Gopalan-12) introduced codes with locality & minimum distance 

bound

(Papailiopoulos-12) generalized the minimum distance bound for 

non-linear codes and vector codes

(Tamo-14, Prakash-14, Rawat-14) devoted the locality in handling of 

multiple node failures

(This presentation) introduces generalized locality and 

related bounds

A. S. Rawat, A. Mazumdar, and S. Vishwanath. (2014).  

“Cooperative local repair in distributed storage,” [Online]. 

Available: http://arxiv.org/abs/1409.3900.



Construction of Codes with Locality
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(Huang-07) Pyramid codes

(Kamath-13) MSR/MBR-local codes

(Huang-12) Local reconstruction codes

(Sathiamoorthy-13) Locally repairable codes

(Krishnan-14, Shahabinejad-14) Codes with locality for Hadoop

(This presentation) proposes a construction of codes 

with GOOD generalized locality



Generalized Locality (GL)

 Preliminary
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Let 𝐺 ∶ 𝔽𝑞
𝑀 ↦ 𝔽𝑞

𝑛⋅𝛼 be an encoding (generator) function:

𝐺 𝑿 = 𝒀 = (𝑌1, 𝑌2, … , 𝑌𝑛),

where 𝑿 ∈ 𝔽𝑞
𝑀 and 𝒀 ∈ 𝔽𝑞

𝑛⋅𝛼.

We denote the code determined by the encoding function 𝐺 as an 𝑛, 𝑀, 𝛼 , 𝑑 𝑞

code 𝒞, where 𝑑 is the minimum distance.  

𝑴

𝜶

𝒏
𝜶

𝜶

…

Source data block

Distributed data blocks

(# of nodes)



Generalized Locality (GL)

 Motivation
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To construct distributed storage codes,

We should consider all possible failure patterns together.

𝜶

𝜶

𝜶

…
Case 1

(1-erasure)

𝜶

𝜶

𝜶

𝜶

…

Case 2

(2-erasures)

𝜶

𝜶

𝜶

𝜶

…

Case 3

(3-erasures)

𝜶



Generalized Locality (GL)

 Motivation
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Assume that the code is optimized only for 2-erasures

𝜶

𝜶

𝜶

…

Case 2

(2-erasures)

𝜶

𝜶

𝜶

𝜶

…
Case 1

(1-erasure)

𝜶

𝜶

𝜶

𝜶

…

Case 3

(3-erasures)

𝜶



Generalized Locality (GL)

 Definition
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Consider an 𝑛, 𝑀, 𝛼 , 𝑑 𝑞 code 𝒞 given by the above. Let ℓ be an integer with 

1 ≤ ℓ ≤ 𝑑 − 1, and 𝐸 ⊂ [𝑛] with 𝐸 = ℓ.  We denote by 𝒀𝐸 the set of coded 

symbols 𝑌𝑖 , 𝑖 ∈ 𝐸.  That is 𝒀𝐸 = 𝑌𝑖|𝑖 ∈ 𝐸, 𝐸 = ℓ .  Then,

1)  𝑅 𝐸 ⊆ [𝑛] ∖ 𝐸 is called a repair set for 𝒀𝐸 if every 𝑌𝑖 , 𝑖 ∈ 𝐸 can be 

regenerated by a set of functions on 𝑌𝑗 , 𝑗 ∈ 𝑅(𝐸). (Rawat-14)

Note that there can be many different repair sets for a given set of symbols 𝒀𝐸 .

2)  The integer 𝑟 is called the locality of 𝒀𝐸 if 𝑟 is the minimum of all the 

cardinalities of the repair sets for 𝒀𝐸.

It is called the ℓ-locality of 𝒞 if every set of symbols 𝒀𝐸, 𝐸 = ℓ, has the locality 

at most 𝑟.  The ℓ-locality of 𝒞 is denoted by 𝑟ℓ.  (Rawat-14)

3)  The set of integers, 𝒓𝟏, 𝒓𝟐, …, 𝒓𝒅−𝟏, is called the generalized locality of 𝓒.



Generalized Locality (GL)

 Example
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1

3

4 5

6

2

A repair set of 𝑌1 :  𝑅 1 = {3,4}
A repair set of 𝑌2 :  𝑅 2 = 4,5,6

Locality of 𝑌1 :  2
Locality of 𝑌2 :  3

Let 𝐸 = {1,2}.
A repair set of 𝒀𝑬 :  𝑅 𝐸 = {3,4,5,6}

Locality of 𝑌𝐸 : 4

Locality (1-locality) of 𝒞 :  3
2-locality of 𝒞 :  4
Generalized Locality of 𝓒 :  (𝒓𝟏 = 𝟑, 𝒓𝟐 = 𝟒)



Bounds for Codes with GL

 Theorem
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Let 𝒞 be an 𝑛, 𝑀, 𝛼 , 𝑑 𝑞 code with generalized locality 𝑟1, 𝑟2, … , 𝑟ℓ, .  Then, 

the minimum distance of 𝒞 is bounded as

𝑑 ≤ min
ℓ≥1

𝑛 −
𝑀

𝛼
+ 1 − ℓ ⋅

𝑀

𝑟ℓ⋅𝛼
− 1 .

Target Codes LocalityTypes

Scalar

(𝛼 = 1)

Vector

(𝛼 ≥ 1)
Linear

Non-

linear

1-locality

(ℓ = 1)

ℓ-locality

(ℓ ≥ 1)

Generalized 

locality

Gopalan-12 O O O

Forbes-13 O O O O

Papailiopoulos-12 O O O O O

Rawat-14 O O O O O

Ours O O O O O O O



Simpler version (linear and scalar) and 
some derived new bounds
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Let 𝒞 be an 𝑛, 𝑘, 𝑑 𝑞code with generalized locality 𝑟1, 𝑟2, … , 𝑟ℓ, . 

𝑑 ≤ min
ℓ≥1

𝑛 − 𝑘 + 1 − ℓ ⋅
𝑘

𝑟ℓ
− 1

and, hence,

𝑅 𝒞 ≤ min
ℓ≥1

𝑟ℓ
𝑟ℓ + ℓ

and

𝑘⋅ℓ

𝑛−𝑘+1−𝑑+ℓ
≤ 𝑟ℓ ≤ 𝑘 for 1 ≤ ℓ ≤ 𝑑 − 1

Example: For 7,3,4 2 code and ℓ = 3,  

3 =
3⋅3

7−3+1−4+3
≤ 𝑟ℓ ≤ 3 implies 𝑟3 = 3.



𝑟ℓ ≤ ℓ +1  (Rawat-14)

Construction of codes with (𝒓𝟏, 𝒓𝟐) = (𝟐, 𝟑)

 One choice would be simplex codes with the 
parameter 𝑛 = 2𝑘 − 1, 𝑘, 𝑑 = 2𝑘−1.

 Examples:

 𝐺 =
1
0
0

0
1
0

0
0
1

1
1
0

1
0
1

0
1
1

1
1
1

for 𝑘=3

 𝐺 =

1
0
0
0

0
1
0
0

0
0
1
0

0
0
0
1

1
1
0
0

1
0
1
0

1
0
0
1

0
1
1
0

0
1
0
1

0
0
1
1

1
1
1
0

1
1
0
1

1
0
1
1

0
1
1
1

1
1
1
1

for 𝑘=4

 It has (𝑟1, 𝑟2) = (2, 𝟑).

 Code rate =
𝑘

2𝑘−1
(VERY LOW)

 Question: Can we improve the rate maintaining the 
property 𝒓𝟏, 𝒓𝟐 = 𝟐, 𝟑 ?
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One simple idea that works

 𝐺 =

1
0
0
0

0
1
0
0

0
0
1
0

0
0
0
1

1
1
0
0

1
0
1
0

1
0
0
1

0
1
1
0

0
1
0
1

0
0
1
1

1
1
1
0

1
1
0
1

1
0
1
1

0
1
1
1

1
1
1
1

for 𝑘=4

 Can we prove that this modified code STILL has 
𝒓𝟏, 𝒓𝟐 = 𝟐, 𝟑 ?

 What is the code ? Its generator matrix has all the 
columns of weight 1 and weight 2 ONLY.

 It can be described as a complete graph with 4 vertices.

Columns are all the vertices and edges of 𝐾4

21



Complete Graph Codes

 Construction of  𝑘 𝑘 + 1 2 , 𝑘, 𝒌 2 codes
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1
0
0
0
0
0

0
1
0
0
0
0

0
0
1
0
0
0

0
0
0
1
0
0

0
0
0
0
1
0

0
0
0
0
0
1

1
1
0
0
0
0

1
0
1
0
0
0

0
1
1
0
0
0

1
0
0
1
0
0

0
1
0
1
0
0

0
0
1
1
0
0

1
0
0
0
1
0

0
1
0
0
1
0

0
0
1
0
1
0

0
0
0
1
1
0

1
0
0
0
0
1

0
1
0
0
0
1

0
0
1
0
0
1

0
0
0
1
0
1

0
0
0
0
1
1

Generator matrix of 𝟐𝟏, 𝟔, 𝟔 𝟐 code𝑲𝟔 complete graph (𝒌 = 𝟔)

Theorem:  It has 𝑑𝑚𝑖𝑛 = 𝑘 and

1) 𝑟1 = 2 for 𝑘 ≥ 2.

2)  𝑟2 = 3 for 𝑘 ≥ 3.

3)  𝑟ℓ ≤ min 2ℓ, 𝑘 for 𝑘 ≥ 2 and ℓ ∈ [𝑘 − 1].



Complete Multipartite (𝒑-partite) Graph Codes

 Construction of  𝑘 𝑘 − 𝑞 + 2 2 , 𝑘, 𝑘 − 𝑞 + 1 2 codes
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1
0
0
0
0
0

0
1
0
0
0
0

0
0
1
0
0
0

0
0
0
1
0
0

0
0
0
0
1
0

0
0
0
0
0
1

1
0
0
1
0
0

1
0
0
0
1
0

1
0
0
0
0
1

0
1
0
1
0
0

0
1
0
0
1
0

0
1
1
0
0
1

0
0
1
1
0
0

0
0
1
0
1
0

0
0
1
0
0
1

Generator matrix of 𝟏𝟓, 𝟔, 𝟒 𝟐 codeComplete 2−partite 𝟑−uniform graph

with 𝟔 vertices (𝒑 = 𝟐, 𝒒 = 𝟑, 𝒌 = 𝟔)

Theorem:  It has 𝑑𝑚𝑖𝑛 = 𝑘 − 𝑞 + 1 and

1) 𝑟1 = 2 for 𝑘 ≥ 2.

2)  𝑟2 =  
3, for 𝑞 = 1 and 𝑘 ≥ 3,
4, for 𝑞 ≥ 2 and 𝑘 ≥ 3.

3)  𝑟ℓ ≤ min 2ℓ, 𝑘 for 𝑘 ≥ 2 and ℓ ∈ [𝑘 − 𝑞].



Complete Multipartite Graph Codes

 Code rates

 Minimum distances
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𝑅 =
2

𝑘−𝑞+2
≥ 𝑅𝑆 =

𝑘

2𝑘−1

𝑞 𝑝 𝑅

For complete multipartite graph codes with dimension 𝑘,

Size of a partition

# of partitions

Code rate

𝑑andor

Minimum distance

𝑑 = 𝑘 − 𝑞 + 1 ≤ 𝑑𝑆 = 2𝑘−1



Complete Multipartite Graph Codes

Codes Graphs Generator matrices

𝟑, 𝟐, 𝟐 𝟐 code

𝒒 = 𝟏, 𝒌 = 𝟐 (Complete graph)

1
0
0
1
1
1

𝟔, 𝟑, 𝟑 𝟐 code

𝒒 = 𝟏, 𝒌 = 𝟑

(Complete graph)

1
0
0

0
1
0

0
0
1

1
1
0

1
0
1

0
1
1

𝟏𝟎, 𝟒, 𝟒 𝟐 code

𝒒 = 𝟏, 𝒌 = 𝟒

(Complete graph)

1
0
0
0

0
1
0
0

0
0
1
0

0
0
0
1

1
1
0
0

1
0
1
0

0
1
1
0

1
0
0
1

0
1
0
1

0
0
1
1

𝟐𝟏, 𝟔, 𝟔 𝟐 code

𝒒 = 𝟏, 𝒌 = 𝟔

(Complete graph)

1
0
0
0
0
0

0
1
0
0
0
0

0
0
1
0
0
0

0
0
0
1
0
0

0
0
0
0
1
0

0
0
0
0
0
1

1
1
0
0
0
0

1
0
1
0
0
0

0
1
1
0
0
0

1
0
0
1
0
0

0
1
0
1
0
0

0
0
1
1
0
0

1
0
0
0
1
0

0
1
0
0
1
0

0
0
1
0
1
0

0
0
0
1
1
0

1
0
0
0
0
1

0
1
0
0
0
1

0
0
1
0
0
1

0
0
0
1
0
1

0
0
0
0
1
1
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Complete Multipartite Graph Codes

Codes Graphs Generator matrices

𝟏𝟖, 𝟔, 𝟓 𝟐 code

𝒒 = 𝟐, 𝒌 = 𝟔

(Complete tripartite 

graph)

1
0
0
0
0
0

0
1
0
0
0
0

0
0
1
0
0
0

0
0
0
1
0
0

0
0
0
0
1
0

0
0
0
0
0
1

1
0
1
0
0
0

1
0
0
1
0
0

1
0
0
0
1
0

1
0
0
0
0
1

0
1
1
0
0
0

0
1
0
1
0
0

0
1
0
0
1
0

0
1
0
0
0
1

0
0
1
0
1
0

0
0
1
0
0
1

0
0
0
1
1
0

0
0
0
1
0
1

𝟏𝟓, 𝟔, 𝟒 𝟐 code

𝒒 = 𝟑, 𝒌 = 𝟔

(Complete bipartite 

graph)

1
0
0
0
0
0

0
1
0
0
0
0

0
0
1
0
0
0

0
0
0
1
0
0

0
0
0
0
1
0

0
0
0
0
0
1

1
0
0
1
0
0

1
0
0
0
1
0

1
0
0
0
0
1

0
1
0
1
0
0

0
1
0
0
1
0

0
1
1
0
0
1

0
0
1
1
0
0

0
0
1
0
1
0

0
0
1
0
0
1
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Simplex Codes
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Let 𝑘 be a positive integer, 𝑛 = 2𝑘 − 1, and let 𝐺 be a 𝑘 × 𝑛 matrix whose columns 

are all the distinct non-zero vectors of 𝔽2
𝑘.  Let 𝒞 be an 𝑛, 𝑘, 𝑑 2 code that has 𝐺 as 

its generator matrix. Then, 𝒞 is called a binary simplex code with 𝑑 = 2𝑘−1.

𝐺 =
1
0
0

0
1
0

0
0
1

1
1
0

1
0
1

0
1
1

1
1
1

A generator matrix of 7,3,4 2 simplex code

Number of symbol sets

with cardinality 𝓵 and locality 𝒓
𝒓 = 𝟏 𝒓 = 𝟐 𝒓 = 𝟑 𝓵-locality of 𝓒

𝓵 = 𝟏 𝒏 𝒓𝟏 = 𝟐

𝓵 = 𝟐
𝒏
𝟐

𝒓𝟐 = 𝟑

𝓵 = 𝟑
𝒏
𝟑

𝒓𝟑 = 𝟑



Identity Repeated (IR) Simplex Codes
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Let 𝐺 be a 𝑘 × 𝑛 matrix constructed by adding an identity matrix in front of a 

generator matrix of a simplex code. Let 𝒞 be an 𝑛, 𝑘, 𝑑 2 code that has 𝐺 as its 

generator matrix. Then, 𝒞 is called an IR-simplex code with 𝑛 = 2𝑘 − 1 + 𝑘 and 𝑑 =

2𝑘−1 + 1.

Number of symbol sets

with cardinality 𝓵 and locality 𝒓
𝒓 = 𝟏 𝒓 = 𝟐 𝒓 = 𝟑 𝓵-locality of 𝓒

𝓵 = 𝟏 𝟐𝒌 𝒏 − 𝟐𝒌 𝒓𝟏 = 𝟐

𝓵 = 𝟐 𝒌 𝟐𝒏 − 𝟐𝒌 − 𝟏
𝒏 − 𝟐𝒌

𝟐
𝒓𝟐 = 𝟑

𝓵 = 𝟑 𝟒𝒌 𝒌 − 𝟏
𝒏
𝟑

− 𝟒𝒌 𝒌 − 𝟏 𝒓𝟑 = 𝟑

𝐺 =
1
0
0

0
1
0

0
0
1

1
0
0

0
1
0

0
0
1

1
1
0

1
0
1

0
1
1

1
1
1

A generator matrix of 10,3,5 2 IR-simplex code



Simplex Codes & IR-Simplex Codes

 Comparison of Localities
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𝐺 =
1
0
0

0
1
0

0
0
1

1
0
0

0
1
0

0
0
1

1
1
0

1
0
1

0
1
1

1
1
1

A generator matrix of 10,3,5 2 IR-simplex code

Number of symbol sets

with cardinality 𝓵 and locality 𝒓
𝒓 = 𝟏 𝒓 = 𝟐 𝒓 = 𝟑

𝟗, 𝟑, 𝟑 𝟐 repetition code
𝓵 = 𝟏 9

𝓵 = 𝟐 9 27

𝟕, 𝟑, 𝟒 𝟐 simplex code

𝓵 = 𝟏 7

𝓵 = 𝟐 21

𝓵 = 𝟑 35

𝟏𝟎, 𝟑, 𝟓 𝟐 IR-simplex code

𝓵 = 𝟏 6 4

𝓵 = 𝟐 39 6

𝓵 = 𝟑 24 96

𝓵 = 𝟒 210

𝑑 − 1 tolerance



Simplex Codes & IR-Simplex Codes

 Comparison of Localities
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𝐺 =
1
0
0

0
1
0

0
0
1

1
0
0

0
1
0

0
0
1

1
1
0

1
0
1

0
1
1

1
1
1

A generator matrix of 10,3,5 2 IR-simplex code

Number of symbol sets

with cardinality 𝓵 and locality 𝒓
𝒓 = 𝟏 𝒓 = 𝟐 𝒓 = 𝟑

𝟗, 𝟑, 𝟑 𝟐 repetition code
𝓵 = 𝟏 9

𝓵 = 𝟐 9 27

𝟕, 𝟑, 𝟒 𝟐 simplex code

𝓵 = 𝟏 7

𝓵 = 𝟐 21

𝓵 = 𝟑 35

𝟏𝟎, 𝟑, 𝟓 𝟐 IR-simplex code

𝓵 = 𝟏 6 4

𝓵 = 𝟐 39 6

𝓵 = 𝟑 24 96

𝓵 = 𝟒 210

Average locality : 2

Average locality : 1.4

60%



Conclusion

 review distributed storage codes

 introduce “generalized locality”

 improved bounds on various parameters

 complete graph codes 

 complete multipartite graph codes

 generalized locality of simplex codes

 IR-simplex codes

 some good algorithm of attaching a column to G for 
better locality
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