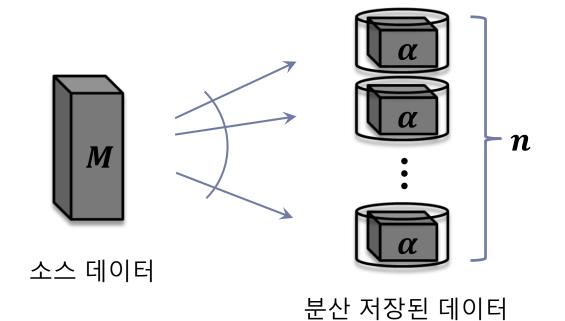
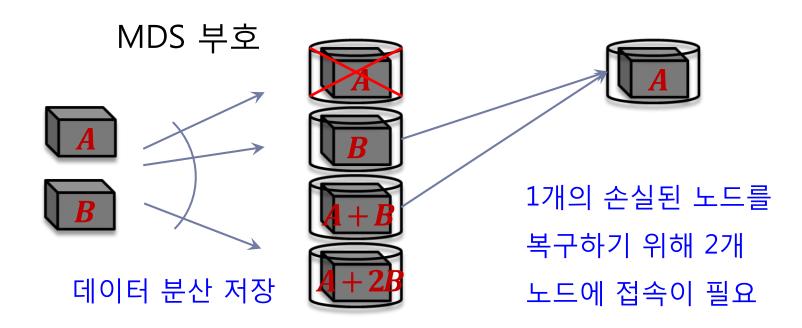
분산 저장 시스템을 위한 완전 그래프 기반 부분접속복구 부호

김정현, 남미영, 박진수, 박다빈, 송홍엽 연세대학교, 통신 신호 설계 연구실


2015 / 06 / 25 2015 한국통신학회 하계종합학술발표회

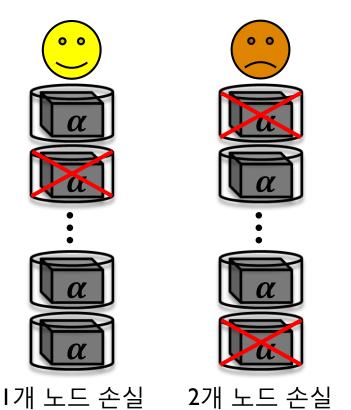
분산 저장 시스템

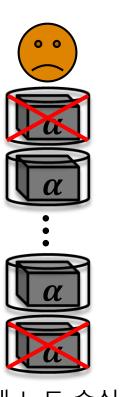
- 데이터를 분할하여 다수의 노드에 분산 저장
 - ▶ 하드웨어 결함, 소프트웨어 업데이트 등으로 빈번한 노드 손실 발생



부분접속수

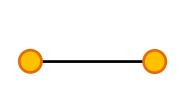
- 손실된 노드 복구를 위해 필요한 최소 노드 수
 - \triangleright l개 노드 손실 시 필요한 최소 노드 수를 η 로 표시
 - ▶ 기존 MDS 부호는 부분접속수 측면에서 최적화되지 못함

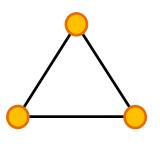


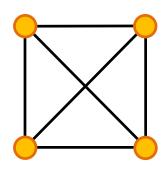

결합 부분접속수

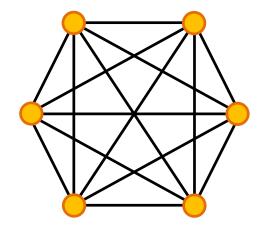
■ 두 가지 이상의 특정 개수의 노드 손실에 대해 이를 복구 하기 위해 접속해야 하는 최소 노드의 수

기존 부호들은 한 가지 특정 개수의 노드 손실 에 대해서만 최적화 됨 (대부분 1개 노드 손실)






완전그래프



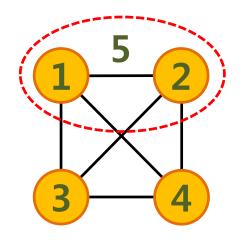
- k개의 점과 모든 점의 쌍을 선으로 연결한 단순 그래프
 - ightharpoonup 완전그래프에서 선의 개수는 k(k-1)/2개

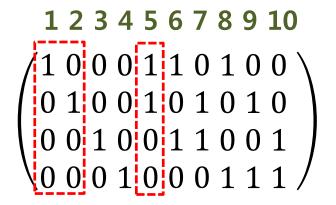
$$k = 2$$

k = 3

$$k = 4$$

$$k = 6$$




완전그래프 기반 부분접속복구 부호

부호 생성 방법: k개의 점으로 구성된 완전그래프에서 각점을 정보 심볼에 각 선을 패리티 심볼에 대응시키면 $[k(k+1)/2,k,d]_2$ 완전그래프 기반 부분접속복구 부호가생성됨

k = 4

[10,4,4]2 부호 생성 행렬

완전그래프 기반 부분접속복구 부호

Codes	Graphs	Generator matrices
[3,2,2] ₂ code	<u> </u>	$\left(\begin{smallmatrix}1&0&1\\0&1&1\end{smallmatrix}\right)$
[6,3,3] ₂ code		$\begin{pmatrix} 1 & 0 & 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 & 1 & 1 \end{pmatrix}$
[10, 4, 4] ₂ code		$\begin{pmatrix} 1 & 0 & 0 & 0 & 1 & 1 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 & 1 & 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 1 & 1 \end{pmatrix}$
[21, 6, 6] ₂ code		$\begin{pmatrix} 1 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 1 & 0 & 0$

완전그래프 기반 부분접속복구 부호

정리 1. \mathcal{C} 는 $[k(k+1)/2,k,d]_2$ 완전그래프 기반 부분접속 복구 부호라 하자. 그러면 \mathcal{C} 의 최소거리 $d \leftarrow k$ 이다.

정리 2. C는 $[k(k+1)/2,k,k]_2$ 완전그래프 기반 부분접속 복구 부호라 하자. 그러면 다음이 성립한다.

1) $k \ge 2$ 일 때, $r_1 = 2$.

1개 노드 손실 시 2개 노드 필요

2) $k \ge 3$ 일 때, $r_2 = 3$. 2개 노드 손실 시 3개 노드 필요

결론

■ 분산 저장 시스템에서 결합 부분접속수를 정의

■ 결합 부분접속수를 고려한 최초의 부호 설계

■ 그래프를 기반으로 부호 생성 및 분석 단순화

