

A study on the minimum distance of linear binary codes with generator matrix containing all weight-3 column vectors

Mi-Young Nam, Jung-Hyun Kim, and Hong-Yeop Song Yonsei Univ. KICS Fall Conference 2015

Distributed Storage System (DSS)

Huge file

node #1 node #2 node #3 node #4 node #5

✓ A huge file is partitioned into several parts and stored in networked nodes.

Reliability of DSS

- ✓ A node failure occurs frequently due to hardware problems, network problems, and so on.
- ✓ Introducing an redundancy for reliability
- ✓ Erasure-correcting codes

Code with locality 2

Theorem: Let C_2 be a binary systematic $\left[\frac{k(k+1)}{2}, k, d\right]_2$ code, where its generator matrix contains all weight-2 column vector of length k. Then, the minimum distance of C_2 is k + 1.

* Jung-Hyun Kim, Mi-Young Nam, and Hong-Yeop Song, "Binary locally repairable codes from complete multipartite graphs," International Conference on ICT Convergence 2015 (ICTC2015), Jeju Island, Korea, Oct. 2015.

Code with locality 3 (our contribution)

Theorem 1: Let C_3 be a binary systematic

 $\begin{bmatrix} \frac{k(k^2-3k+8)}{6}, k, d \end{bmatrix}_2 \text{ code for } k \ge 3, \text{ where its}$ generator matrix contains all weight-3 column vector of length k. Then, the minimum distance

of \mathcal{C}_3 is $\binom{k-1}{2} + 1$.

Repair Problem in DSS

- ✓ To maintain the same level of reliability of DSS where frequent node failures are imposed, a code should repair a part of a codeword efficiently.
- ✓ A node repair from other surviving nodes

✓ Repair bandwidth:

the amount of data that should be communicated for a node repair

✓ Locality:

the number of nodes should be contacted for a node repair

Locality in a Generator Matrix (systematic form)

Comparisons

k	<i>n</i> ₂	<i>d</i> ₂	n_3	<i>d</i> ₃
3	6	4	4	2
4	10	5	8	4
5	15	6	15	7
6	21	7	26	11
7	28	8	42	16
8	36	9	64	22
9	45	10	93	29
10	55	11	130	37
:	:	:	:	:
20	210	21	1160	172

n₂: code length of C₂
n₃: code length of C₃

➢ d_2 : minimum distance of C_2

Concluding Remarks

- A simple explicit construction of LRC with locality 3
- The exact minimum distance of the proposed code
- How can we improve the rate performance of the proposed code?

