# ON THE EXISTENCE OF SOME CYCLIC HADAMARD DIFFERENCE SETS

Jeong-heon Kim, Hong-Yeop Song, Kyu Tae Park Electronic Engineering Dept. Yonsei Univ.

> 제 8 회 통신 정보 합동 학술 대회 1998년 4월 22일 ~ 24일

### Two-level ideal autocorrelation

**Definition** A balanced binary sequence  $\{b_i\}$  of length V has two-level ideal autocorrelation if it satisfy the following equation ( $b_i \in \{0,1\}$ ):

$$\sum_{i=0}^{v-1} (-1)^{b_i + b_{i+\tau}} = \begin{cases} v & \tau = 0 \\ -1 & otherwise \end{cases}$$

## Example 1

(7,3,1)-cyclic difference set

binary sequence of period 7 with ideal autocorrelation

# $(v, k, \lambda)$ -cyclic difference sets

**Definition**: Given a positive integer V, let U denote the set of nonnegative integers smaller than V. Let D be a subset of U. One calls D a  $(v, k, \lambda)$ -cyclic difference set if D contains k elements of U, and for any  $d \in U$ ,  $d \neq 0$ , there are exactly  $\lambda$  pairs of (x, y),  $x, y \in D$  such that  $d \equiv x - y \pmod{V}$ .

**Definition**: D is called a cyclic Hadamard difference set if v = 4n - 1, k = 2n - 1,  $\lambda = n - 1$  for some n.

### Classification of $(v, k, \lambda)$ -CHDS

- a) V = 4n 1 is prime.
- b) v = p(p+2), where both p and p+2 are prime.
- c)  $v = 2^{t} 1$ , for  $t = 2, 3, 4, \cdots$ .

Is there a cyclic Hadamard difference set with *V* none of the above three types?

## Search results up to 1994.

- v < 1000 are confirmed except for the six cases v = 399, 495, 627, 651, 783, 975 by Baumert (1971).
- $\bullet$  v < 10000 are confirmed except for the 17 cases v = 1295, 1599, 1935, 3135, 3439, 4355, 4623, 5775, 7395, 7743, 8227, 8463, 8591, 8835, 9135, 9215, 9423 by Song and Golomb (1994).
- The cases V = 1295, 1599, 1935, 3135 are confirmed.

#### Multiplier of a $(v, k, \lambda)$ -CDS

If two cyclic difference sets  $D = \{d_1, d_2, \cdots, d_k\}$  and  $D' = \{td_1, td_2, \cdots, td_k\}$  are the same set, D is said to be fixed by t. If  $D' = \{d_1 + s, d_2 + s, d_3 + s, \cdots, d_k + s\}$  for some s, t is called a multiplier of D.

**Known**: If a  $(v, k, \lambda)$  -CDS with multiplier t exists, then there is some shift D'' of D such that D'' is fixed by t.

# Multiplier of (15,7,3)-CDS



**Theorem 1** If a  $(v, k, \lambda)$ -cyclic difference set exists, then for every divisor of v, there exist integers  $b_i$   $(i = 0, 1, 2, \dots, w - 1)$  satisfying the diophantine equations

$$\sum_{\substack{i=0\\w-1\\w-1}}^{w-1}b_i=k$$

$$\sum_{\substack{i=0\\w-1\\b=0}}^{w-1}b_i^2=k-\lambda+v\lambda/w$$

$$\sum_{\substack{i=0\\b=0}}^{w-1}b_ib_{i-j}=v\lambda/w \quad \text{for} \quad 1 \leq j \leq w-1$$

Here, the subscript i-j is taken modulo W.

**Fact**:  $b_i$  denotes the number of residues  $i \mod w$  that must belong to D if D exists.

# Basic procedure for non-existence proof

- 1. Find a multiplier and cyclotomic cosets for each divisor of *V*.
- 2. For each prime divisor, find solutions for the three equations in Theorem 1.
- 3. For each composite divisor, find solutions which satisfy the three equations and relations with its prime divisors.

# Non-existence proof of (175,87,43)-CDS

- Multiplier is 11.
- $\bullet$  175 = 5<sup>2</sup>×7.

$$C_{0}^{5} = \{0\}$$

$$C_{1}^{5} = \{1\}$$

$$C_{1}^{5} = \{1\}$$

$$C_{2}^{5} = \{2\}$$

$$C_{2}^{5} = \{3\}$$

$$C_{3}^{7} = \{1,2,4\}$$

$$C_{3}^{5} = \{6,26,31\}$$

$$C_{4}^{7} = \{4\}$$

$$C_{2}^{7} = \{3,5,6\}$$

$$C_{3}^{7} = \{1,11,16\}$$

$$C_{4}^{7} = \{1,2,4\}$$

$$C_{5}^{7} = \{1,2,4\}$$

$$C_{5}^{7} = \{1,11,16\}$$

$$C_{6}^{7} = \{7\}$$

$$C_{1}^{7} = \{1,2,4\}$$

$$C_{2}^{7} = \{1,2,17,27\}$$

$$C_0^{35} = \{0\}$$

$$C_1^{35} = \{5, 10, 20\}$$

$$C_2^{35} = \{15, 25, 30\}$$

$$C_2^{35} = \{21\}$$

$$C_3^{35} = \{6, 26, 31\}$$

$$C_5^{35} = \{1, 11, 16\}$$

$$C_6^{35} = \{7\}$$

$$C_7^{35} = \{12, 17, 27\}$$

$$C_8^{35} = \{2, 22, 32\}$$

```
C_{9}^{35} = \{28\}
C_{10}^{35} = \{3, 13, 33\}
C_{11}^{35} = \{8, 18, 23\}
C_{12}^{35} = \{14\}
C_{13}^{35} = \{19, 24, 34\}
C_{14}^{35} = \{4, 9, 29\}
```

For the divisor W = 5:

$$\sum_{i=0}^{4} b_{i} = 87,$$

$$\sum_{i=0}^{4} b_{i}^{2} = 1549,$$

$$\sum_{i=0}^{4} b_{i}b_{i+j} = 1505$$
, where  $1 \le j \le$ 

and  $0 \le b_i \le 35$ .

#### Solutions:

| $b_0$ | $b_1$ | $b_2$ | $b_3$ | $b_4$ |
|-------|-------|-------|-------|-------|
| 13    | 17    | 17    | 19    | 21    |
| 13    | 17    | 21    | 17    | 19    |
| 17    | 13    | 19    | 17    | 21    |
| 17    | 13    | 21    | 19    | 17    |
| 19    | 13    | 17    | 21    | 17    |
| 21    | 13    | 17    | 17    | 19    |

For the divisor W = 7:

For the divisor 
$$W = 7$$
:
$$\sum_{i=0}^{6} c_i = 87,$$

$$\sum_{i=0}^{6} c_i^2 = 1119,$$

$$\sum_{i=0}^{6} c_i c_{i+j} = 1075, \text{ where } 1 \le j \le$$

and  $0 \le c_{0,}c_{1,}c_{2}, \dots, c_{6} \le 25.$ 

Solution:

| $C_0$ | $c_1$ | $\mathcal{C}_2$ | $C_3$ | $\mathcal{C}_{4}$ | $C_5$ | C 6 |
|-------|-------|-----------------|-------|-------------------|-------|-----|
| 9     | 11    | 11              | 15    | 11                | 15    | 15  |
| 12    | 10    | 10              | 12    | 10                | 12    | 12  |
| 18    | 11    | 11              | 12    | 11                | 12    | 12  |

For the divisor  $W = 7 \times 5 = 35$ :

$$\sum_{i=0}^{34} d_i = 87, \quad \sum_{i=0}^{34} d_i^2 = 259,$$

$$\sum_{i=0}^{34} d_i d_{i+j} = 215, \quad \text{where} \quad 1 \le j \le 34,$$

and  $0 \le d_0, d_1, \dots, d_{34} \le 5$ .

$$\begin{array}{lll} b_0 &= d_0 + 3 (d_5 + d_{15}) \\ b_1 &= d_{21} + 3 (d_6 + d_1) \\ b_2 &= d_7 + 3 (d_{12} + d_2) \\ b_3 &= d_{28} + 3 (d_3 + d_8) \\ b_4 &= d_{14} + 3 (d_{19} + d_4) \end{array}$$

$$\begin{array}{lll} c_0 &= d_0 + d_{21} + d_7 + d_{28} + d_{14} \\ c_1 &= d_5 + d_6 + d_{12} + d_3 + d_{19} \\ c_2 &= d_{15} + d_1 + d_2 + d_8 + d_{14} \end{array}$$

There is **no solution** for  $d_i$ 's !!!

### Search results

| V    | Multiplier | # of cyclotomic cosets | # of solutions for divisors                             |
|------|------------|------------------------|---------------------------------------------------------|
| 1295 | 16         | 155                    | w = 5: 2<br>w = 37 : 1<br>$w = 5 \times 37 = 185 : 0$   |
| 1599 | 25         | 176                    | w = 3 : 2<br>w = 41 : 1<br>$w = 3 \times 41 = 123$ : 0  |
| 1935 | 16         | 175                    | w = 3 : 1<br>w = 43 : 10<br>$w = 3 \times 43 = 129$ : 0 |
| 3135 | 49         | 189                    | W = 3 : 5<br>W = 5 : 1<br>$W = 3 \times 5 = 15$ : 0     |

### Conclusion

• It is confirmed that there is no CHDS with V < 3000 none of three types.

• remaining cases: 3439, 4355, 4623, 5775, 7395, 7743, 8227, 8463, 8591, 8835, 9135, 9215, 9423.